1
|
Chowdhury MAH, Reem CSA, Ashrafudoulla M, Rahman MA, Shaila S, Jie-Won Ha A, Ha SD. Role of advanced cleaning and sanitation techniques in biofilm prevention on dairy equipment. Compr Rev Food Sci Food Saf 2025; 24:e70176. [PMID: 40260792 DOI: 10.1111/1541-4337.70176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025]
Abstract
Biofilm formation on dairy equipment is a persistent challenge in the dairy industry, contributing to product contamination, equipment inefficiency, and economic losses. Traditional methods such as manual cleaning and basic chemical sanitation are discussed as foundational approaches, followed by an in-depth investigation of cutting-edge technologies, including clean-in-place systems, high-pressure cleaning, foam cleaning, ultrasonic and electrochemical cleaning, dry ice blasting, robotics, nanotechnology-based agents, enzymatic cleaners, and oxidizing agents. Enhanced sanitation techniques, such as dry steam, pulsed light, acidic and alkaline electrolyzed water, hydrogen peroxide vapor, microbubble technology, and biodegradable biocides, are highlighted for their potential to achieve superior sanitation while promoting sustainability. The effectiveness, feasibility, and limitations of these methods are evaluated, emphasizing their role in maintaining dairy equipment hygiene and reducing biofilm-associated risks. Additionally, challenges, such as equipment compatibility, cost, and regulatory compliance, are addressed, along with insights into future directions and innovations, including automation, smart cleaning systems, and green cleaning solutions. This review provides a comprehensive resource for researchers, industry professionals, and policymakers aiming to tackle biofilm formation in dairy production systems and enhance food safety, operational efficiency, and sustainability.
Collapse
Affiliation(s)
- Md Anamul Hasan Chowdhury
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Chowdhury Sanat Anjum Reem
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Md Ashikur Rahman
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Shanjida Shaila
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| | - Angela Jie-Won Ha
- Sofitel Ambassador Seoul Hotel & Serviced Residences, Seoul, Republic of Korea
| | - Sang-Do Ha
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong-si, Gyeonggi-Do, Republic of Korea
- GreenTech-Based Food Safety Research Group, BK21 Four, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Hamid Z, Meyrick BK, Macleod J, Heath EA, Blaxland J. The application of ozone within the food industry, mode of action, current and future applications, and regulatory compliance. Lett Appl Microbiol 2024; 77:ovae101. [PMID: 39462123 DOI: 10.1093/lambio/ovae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
The food industry faces numerous challenges today, with the prevention and reduction of microbial contamination being a critical focus. While traditional chemical-based methods are effective and widely used, rising energy costs, the development of microbial tolerances, and growing awareness of the ecological impact of chemical biocides have renewed interest in novel biocides. Ozone, in both its gaseous and aqueous forms, is recognized as a potent disinfectant against bacteria, viruses, and fungi due to its high oxidation potential. Our review highlights several studies on the applications of ozone within the food industry, including its use for surface and aerosol disinfection and its capacity to reduce viable Listeria monocytogenes, a pertinent foodborne pathogen harbouring environmental and biocide stress tolerances and biofilm former. We also explore the use of ozone in food treatment and preservation, specifically on blueberries, apples, carrots, cabbage, and cherry tomatoes. While ozone is an effective disinfectant, it is important to consider material incompatibility, and the risks associated with prolonged human exposure to high concentrations. Nevertheless, for certain applications, ozone proves to be an efficacious and valuable alternative or complementary method for microbial control. Compliance with the biocide products regulation will require ozone device manufacturers to produce proven efficacy and safety data in line with British standards based on European standards (BS EN), and researchers to propose adaptations to account for ozone's unique properties.
Collapse
Affiliation(s)
- Zak Hamid
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Ben K Meyrick
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Joshua Macleod
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - Emily A Heath
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| | - James Blaxland
- Ozone Research Group, ZERO2FIVE Food Industry Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, 200 Western Avenue, Cardiff CF5 2YB, United Kingdom
| |
Collapse
|
3
|
Nogueira Leite N, Garcia Sperandio V, da Piedade Edmundo Sitoe E, de Assis Silva MV, Rodrigues de Alencar E, Gonçalves Machado S. Ozone as a promising method for controlling Pseudomonas spp. biofilm in the food industry: a systematic review. BIOFOULING 2024; 40:660-678. [PMID: 39494760 DOI: 10.1080/08927014.2024.2420002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
This study aimed to evaluate the effectiveness of ozonation in controlling Pseudomonas spp. biofilm in the food industry, and present possible parameters influencing this process. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search was conducted in the PubMed, EMBASE, ScienceDirect, and Scopus databases. Eleven articles published between 1993 and 2023 were included in the study, indicating that the topic has been under investigation for several decades, gaining more prominence in recent years. Studies have demonstrated the antimicrobial effect of ozone under different experimental conditions, indicating that it is an effective strategy. Furthermore, they suggest that, in addition to ozone concentration and exposure time, other parameters such as the type of materials used in processing plants, hydrodynamic conditions, water temperature, and knowledge of commonly found microorganisms contribute to the effectiveness of the process aimed at reducing microbial counts. In conclusion, the available evidence suggests that ozonation in controlling Pseudomonas spp. can be considered a promising antimicrobial strategy. More efforts are needed to adapt the different methodologies according to each industrial reality.
Collapse
|
4
|
Abdelshafy AM, Neetoo H, Al-Asmari F. Antimicrobial Activity of Hydrogen Peroxide for Application in Food Safety and COVID-19 Mitigation: An Updated Review. J Food Prot 2024; 87:100306. [PMID: 38796115 DOI: 10.1016/j.jfp.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Hydrogen peroxide (H2O2) is a well-known agent with a broad-spectrum antimicrobial activity against pathogenic bacteria, fungi, and viruses. It is a colorless liquid and commercially available in aqueous solution over a wide concentration range. It has been extensively used in the food industry by virtue of its strong oxidizing property and its ability to cause cellular oxidative damage in microbial cells. This review comprehensively documents recent research on the antimicrobial activity of H2O2 against organisms of concern for the food industry, as well as its effect against SARS-CoV-2 responsible for the COVID-19 pandemic. In addition, factors affecting the antimicrobial effectiveness of H2O2, different applications of H2O2 as a sanitizer or disinfectant in the food industry as well as safety concerns associated with H2O2 are discussed. Finally, recent efforts in enhancing the antimicrobial efficacy of H2O2 are also outlined.
Collapse
Affiliation(s)
- Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Hudaa Neetoo
- Agricultural and Food Science Department, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius.
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
5
|
Chowdhury B, Anand S. Environmental persistence of Listeria monocytogenes and its implications in dairy processing plants. Compr Rev Food Sci Food Saf 2023; 22:4573-4599. [PMID: 37680027 DOI: 10.1111/1541-4337.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Listeriosis, an invasive illness with a fatality rate between 20% and 30%, is caused by the ubiquitous bacterium Listeria monocytogenes. Human listeriosis has long been associated with foods. This is because the ubiquitous nature of the bacteria renders it a common food contaminant, posing a significant risk to the food processing sector. Although several sophisticated stress coping mechanisms have been identified as significant contributing factors toward the pathogen's persistence, a complete understanding of the mechanisms underlying persistence across various strains remains limited. Moreover, aside from genetic aspects that promote the ability to cope with stress, various environmental factors that exist in food manufacturing plants could also contribute to the persistence of the pathogen. The objective of this review is to provide insight into the challenges faced by the dairy industry because of the pathogens' environmental persistence. Additionally, it also aims to emphasize the diverse adaptation and response mechanisms utilized by L. monocytogenes in food manufacturing plants to evade environmental stressors. The persistence of L. monocytogenes in the food processing environment poses a serious threat to food safety and public health. The emergence of areas with high levels of L. monocytogenes contamination could facilitate Listeria transmission through aerosols, potentially leading to the recontamination of food, particularly from floors and drains, when sanitation is implemented alongside product manufacturing. Hence, to produce safe dairy products and reduce the frequency of outbreaks of listeriosis, it is crucial to understand the factors that contribute to the persistence of this pathogen and to implement efficient control strategies.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
6
|
Pertegal V, Riquelme E, Lozano-Serra J, Cañizares P, Rodrigo MA, Sáez C, Lacasa E. Cleaning technologies integrated in duct flows for the inactivation of pathogenic microorganisms in indoor environments: A critical review of recent innovations and future challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118798. [PMID: 37591101 DOI: 10.1016/j.jenvman.2023.118798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Pathogenic microorganisms are a major concern in indoor environments, particularly in sensitive facilities such as hospitals, due to their potential to cause nosocomial infections. This study evaluates the concentration of airborne bacteria and fungi in the University Hospital Complex of Albacete (Spain), comparing the results with recent literature. Staphylococcus is identified as the most prevalent bacterial genus with a percentage distribution of 35%, while Aspergillus represents the dominant fungal genus at 34%. The lack of high Technology Readiness Levels (TRL 6, TRL 7) for effective indoor air purification requires research efforts to bridge this knowledge gap. A screening of disinfection technologies for pathogenic airborne microorganisms such as bacteria and fungi is conducted. The integration of filtration, irradiation or and (electro)chemical gas treatment systems in duct flows is discussed to enhance the design of the air-conditioning systems for indoor air purification. Concerns over microbial growth have led to recent studies on coating commercial fibrous air filters with antimicrobial particles (silver nanoparticles, iron oxide nanowires) and polymeric materials (polyaniline, polyvinylidene fluoride). Promising alternatives to traditional short-wave UV-C energy for disinfection include LED and Far-UVC irradiation systems. Additionally, research explores the use of TiO2 and TiO2 doped with metals (Ag, Cu, Pt) in filters with photocatalytic properties, enabling the utilization of visible or solar light. Hybrid photocatalysis, combining TiO2 with polymers, carbon nanomaterials, or MXene nanomaterials, enhances the photocatalytic process. Chemical treatment systems such as aerosolization of biocidal agents (benzalkonium chloride, hydrogen peroxide, chlorine dioxide or ozone) with their possible combination with other technologies such as adsorption, filtration or photocatalysis, are also tested for gas disinfection. However, the limited number of studies on the use of electrochemical technology poses a challenge for further investigation into gas-phase oxidant generation, without the formation of harmful by-products, to raise its TRL for effectively inactivating airborne microorganisms in indoor environments.
Collapse
Affiliation(s)
- Víctor Pertegal
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071, Albacete, Spain
| | - Eva Riquelme
- Clinical Parasitology and Microbiology Area. University Hospital Complex of Albacete, C/ Hermanos Falcó 37, 02006, Albacete, Spain
| | - Julia Lozano-Serra
- Clinical Parasitology and Microbiology Area. University Hospital Complex of Albacete, C/ Hermanos Falcó 37, 02006, Albacete, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071, Albacete, Spain.
| |
Collapse
|
7
|
Liu T, Li G, Liu Z, Xi L, Ma W, Gao X. Characteristics of aerosols from swine farms: A review of the past two-decade progress. ENVIRONMENT INTERNATIONAL 2023; 178:108074. [PMID: 37441818 DOI: 10.1016/j.envint.2023.108074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
With the rapid development of large-scale and intensive swine production, the emission of aerosols from swine farms has become a growing concern, attracting extensive attention. While aerosols are found in various environments, those from swine farms are distinguished from human habitats, such as residential, suburban, and urban areas. In order to gain a comprehensive understanding of aerosols from swine farms, this paper reviewed relevant studies conducted between 2000 and 2022. The main components, concentrations, and size distribution of the aerosols were systematically reviewed. The differences between aerosols from swine farms and human living and working environments were compared. Finally, the sources, influencing factors, and reduction technologies for aerosols from swine farms were thoroughly elucidated. The results demonstrated that the concentrations of aerosols inside swine farms varied considerably, and most exceeded safety thresholds. However, further exploration is needed to fully understand the difference in airborne microorganism community structure and particles with small sizes (<1 μm) between swine farms and human living and working environments. More airborne bacterial and viruses were adhered to large particles in swine houses, while the proportion of airborne fungi in the respirable fraction was similar to that of human living and working environments. In addition, swine farms have a higher abundance and diversity of potential pathogens, airborne resistant microorganisms and resistant genes compared to the human living and working environments. The aerosols of swine farms mainly originated from sources such as manure, feed, swine hair and skin, secondary production, and waste treatment. According to the source analysis and factors influencing aerosols in swine farms, various technologies could be employed to mitigate aerosol emissions, and some end-of-pipe technologies need to be further improved before they are widely applied. Swine farms are advised not to increase aerosol concentration in human living and working environments, in order to decrease the impact of aerosols from swine farms on human health and restrain the spread of airborne potential pathogens. This review provides critical insights into aerosols of swine farms, offering guidance for taking appropriate measures to enhance air quality inside and surrounding swine farms.
Collapse
Affiliation(s)
- Tongshuai Liu
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Guoming Li
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; Institute for Artificial Intelligence, The University of Georgia, Athens, GA 30602, USA.
| | - Zhilong Liu
- Henan University of Animal Husbandry and Economy Library, Zhengzhou, Henan 450046, China
| | - Lei Xi
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Wei Ma
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Xuan Gao
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| |
Collapse
|
8
|
Schwartz A, Kossenko A, Zinigrad M, Danchuk V, Sobolev A. Cleaning Strategies of Synthesized Bioactive Coatings by PEO on Ti-6Al-4V Alloys of Organic Contaminations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4624. [PMID: 37444937 DOI: 10.3390/ma16134624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
The effect of various cleaning methods on coating morphology and their effectiveness in removing organic contaminants has been studied in this research. Bioactive coatings containing titanium oxides and hydroxyapatite (HAP) were obtained through plasma electrolytic oxidation in aqueous electrolytes and molten salts. The cleaning procedure for the coated surface was performed using autoclave (A), ultraviolet light (UV), radio frequency (RF), air plasma (P), and UV-ozone cleaner (O). The samples were characterized using scanning electron microscopy (SEM) with an EDS detector, X-ray photoelectron spectroscopy (XPS), X-ray phase analysis (XRD), and contact angle (CA) measurements. The conducted studies revealed that the samples obtained from molten salt exhibited a finer crystalline structure morphology (275 nm) compared to those obtained from aqueous electrolytes (350 nm). After applying surface cleaning methods, the carbon content decreased from 5.21 at.% to 0.11 at.% (XPS), which directly corresponds to a reduction in organic contaminations and a decrease in the contact angle as follows: A > UV > P > O. This holds true for both coatings obtained in molten salt (25.3° > 19.5° > 10.5° > 7.5°) and coatings obtained in aqueous electrolytes (35.2° > 28.3° > 26.1° > 16.6°). The most effective and moderate cleaning method is ozone treatment.
Collapse
Affiliation(s)
- Avital Schwartz
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
| | - Alexey Kossenko
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
| | - Michael Zinigrad
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
| | - Viktor Danchuk
- Physics Department, Faculty of Natural Sciences, Ariel University, Ariel 4076414, Israel
| | - Alexander Sobolev
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
9
|
Botondi R, Lembo M, Carboni C, Eramo V. The Use of Ozone Technology: An Eco-Friendly Method for the Sanitization of the Dairy Supply Chain. Foods 2023; 12:foods12050987. [PMID: 36900504 PMCID: PMC10001170 DOI: 10.3390/foods12050987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The dairy field has considerable economic relevance in the agri-food system, but also has the need to develop new 'green' supply chain actions to ensure that sustainable products are in line with consumer requirements. In recent years, the dairy farming industry has generally improved in terms of equipment and product performance, but innovation must be linked to traditional product specifications. During cheese ripening, the storage areas and the direct contact of the cheese with the wood must be carefully managed because the proliferation of contaminating microorganisms, parasites, and insects increases significantly and product quality quickly declines, notably from a sensory level. The use of ozone (as gas or as ozonated water) can be effective for sanitizing air, water, and surfaces in contact with food, and its use can also be extended to the treatment of waste and process water. Ozone is easily generated and is eco-sustainable as it tends to disappear in a short time, leaving no residues of ozone. However, its oxidation potential can lead to the peroxidation of cheese polyunsaturated fatty acids. In this review we intend to investigate the use of ozone in the dairy sector, selecting the studies that have been most relevant over the last years.
Collapse
Affiliation(s)
- Rinaldo Botondi
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
- Correspondence:
| | - Micaela Lembo
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | | | - Vanessa Eramo
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
10
|
Yan P, Chen X, Chelliah R, Jo KH, Shan L, Shin H, Kim S, Oh DH. Biocontrol and anti-biofilm potential of aerosols sprayed slightly acidic electrolyzed water against Cronobacter sakazakii in infant food industry. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
11
|
Tirpanci Sivri G, Abdelhamid AG, Kasler DR, Yousef AE. Removal of Pseudomonas fluorescens biofilms from pilot-scale food processing equipment using ozone-assisted cleaning-in-place. Front Microbiol 2023; 14:1141907. [PMID: 37125185 PMCID: PMC10140333 DOI: 10.3389/fmicb.2023.1141907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Biofilm formation in food processing environment and within equipment increases the risk of product spoilage and contamination with pathogens. Cleaning-in-place (CIP) operations are useful in removing soils and in sanitizing processing equipment, including eliminating biofilms. However, CIP is a resource-intensive process, particularly in the usage of chemical detergents, heat, and sanitizers. The current study was initiated to investigate the feasibility of integrating ozone into CIP operations to facilitate the elimination of Pseudomonas biofilm, with the long-term goal of decreasing the dependance on conventional cleaning and sanitizing reagents. To investigate integrating ozone into CIP, a robust biofilm of Pseudomonas fluorescens was developed on a pilot-scale food processing equipment after 2 days of incubation in 10% skim milk (skim milk-water mixture, 1:9 v/v) under stagnant conditions, followed by additional 5 days of circulation while feeding 10% fresh skim milk. CIP was applied using water prerinse at 22-25°C, alkaline cleaning with 0.2% potassium hydroxide at 50°C, and a final water rinse. These CIP operations reduced planktonic cell populations below the detection method's limit but did not fully remove P. fluorescens biofilm from either smooth or rough surfaces of the processing equipment. When the CIP process was followed by application of an aqueous ozone step (10 ppm for 10 min), the treatment reduced biofilm cell population, on smooth and rough surfaces, below the recovery method's detection limit (0.9 and 1.4 log CFU/ 100 cm2, respectively). These findings demonstrate the utility of ozone-assisted CIP in eliminating microbial biofilms on processing equipment, but further research is needed to optimize the use of cleaning agents and the application of ozone.
Collapse
Affiliation(s)
- Goksel Tirpanci Sivri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Food Engineering, Faculty of Agriculture, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye
| | - Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - David R. Kasler
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- *Correspondence: Ahmed E. Yousef,
| |
Collapse
|
12
|
Panebianco F, Rubiola S, Buttieri C, Di Ciccio PA, Chiesa F, Civera T. Understanding the Effect of Ozone on Listeria monocytogenes and Resident Microbiota of Gorgonzola Cheese Surface: A Culturomic Approach. Foods 2022; 11:2640. [PMID: 36076825 PMCID: PMC9455919 DOI: 10.3390/foods11172640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
The occurrence of Listeria monocytogenes on Gorgonzola cheese surface was reported by many authors, with risks arising from the translocation of the pathogen inside the product during cutting procedures. Among the novel antimicrobial strategies, ozone may represent a useful tool against L. monocytogenes contamination on Gorgonzola cheese rind. In this study, the effect of gaseous ozone (2 and 4 ppm for 10 min) on L. monocytogenes and resident microbiota of Gorgonzola cheese rind stored at 4 °C for 63 days was evaluated. A culturomic approach, based on the use of six media and identification of colonies by MALDI-TOF MS, was used to analyse variations of resident populations. The decrease of L. monocytogenes was less pronounced in ozonised rinds with final loads of ~1 log CFU/g higher than controls. This behaviour coincided with a lower maximum population density of lactobacilli in treated samples at day 28. No significant differences were detected for the other microbial determinations and resident microbiota composition among treated and control samples. The dominant genera were Candida, Carnobacterium, Staphylococcus, Penicillium, Saccharomyces, Aerococcus, Yarrowia, and Enterococcus. Based on our results, ozone was ineffective against L. monocytogenes contamination on Gorgonzola rinds. The higher final L. monocytogenes loads in treated samples could be associated with a suppressive effect of ozone on lactobacilli, since these are antagonists of L. monocytogenes. Our outcomes suggest the potential use of culturomics to study the ecosystems of complex matrices, such as the surface of mould and blue-veined cheeses.
Collapse
Affiliation(s)
- Felice Panebianco
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Selene Rubiola
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Chiara Buttieri
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Pierluigi Aldo Di Ciccio
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Francesco Chiesa
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| | - Tiziana Civera
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, Grugliasco, 10095 Turin, Italy
| |
Collapse
|
13
|
Cardinali F, Foligni R, Ferrocino I, Harasym J, Orkusz A, Franciosa I, Milanović V, Garofalo C, Mannozzi C, Mozzon M, Cocolin L, Osimani A, Aquilanti L. Microbial diversity, morpho-textural characterization, and volatilome profile of the Portuguese thistle-curdled cheese Queijo da Beira Baixa PDO. Food Res Int 2022; 157:111481. [DOI: 10.1016/j.foodres.2022.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/04/2022]
|
14
|
Occurrence and Identification of Yeasts in Production of White-Brined Cheese. Microorganisms 2022; 10:microorganisms10061079. [PMID: 35744597 PMCID: PMC9228510 DOI: 10.3390/microorganisms10061079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to reveal the sites of yeast contamination in dairy production and perform taxonomic characterization of potential yeast spoilers in cheese making. Occurrence of spoilage yeasts was followed throughout the manufacture of white-brined cheese at a Danish dairy, including the areas of milk pasteurization, curd processing, and packaging (26 sites in total). Spoilage yeasts were isolated from whey, old cheese curd, and air samples in viable counts of 1.48–6.27 log CFU/mL, 5.44 log CFU/g, and 1.02 log CFU/m3, respectively. Yeast isolates were genotypically classified using (GTG)5-PCR fingerprinting and identified by sequencing of the D1/D2 region of the 26S rRNA gene. The largest yeast heterogeneity was found in old curd collected under the turning machine of molds, where 11 different yeast species were identified. The most frequently isolated yeast species were Candida intermedia, Kluyveromyces marxianus, and Pichia kudriavzevii. The less abundant yeast species included Candida auris, Candida parapsilosis, Candida pseudoglaebosa, Candida sojae, Cutaneotrichosporon curvatus, Cutaneotrichosporon moniliiforme, Papiliotrema flavescens, Rhodotorula mucilaginosa, Vanrija humicola, and Wickerhamiella sorbophila. The awareness on occurrence and taxonomy of spoilage yeasts in cheese production will contribute to a knowledge-based control of contaminating yeasts and quality management of cheese at the dairies.
Collapse
|
15
|
Caggiano G, Lopuzzo M, Spagnuolo V, Diella G, Triggiano F, D’Ambrosio M, Trerotoli P, Marcotrigiano V, Barbuti G, Sorrenti GT, Magarelli P, Sorrenti DP, Napoli C, Montagna MT. Investigations on the Efficacy of Ozone as an Environmental Sanitizer in Large Supermarkets. Pathogens 2022; 11:pathogens11050608. [PMID: 35631128 PMCID: PMC9147425 DOI: 10.3390/pathogens11050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Awareness of the importance of the microbial contamination of air and surfaces has increased significantly during the COVID-19 pandemic. The aim of this study was to evaluate the presence of bacteria and fungi in the air and on surfaces within some critical areas of large supermarkets with and without an ozonation system. Surveys were conducted in four supermarkets belonging to the same commercial chain of an Apulian city in June 2021, of which two (A and B) were equipped with an ozonation system, and two (C and D) did not have any air-diffused remediation treatment. There was a statistically significant difference in the total bacterial count (TBC) and total fungal count (TFC) in the air between A/B and C/D supermarkets (p = 0.0042 and p = 0.0002, respectively). Regarding surfaces, a statistically significant difference in TBC emerged between A/B and C/D supermarkets (p = 0.0101). To the best of our knowledge, this is the first study evaluating the effect of ozone on commercial structures in Italy. Future investigations, supported by a multidisciplinary approach, will make it possible to deepen the knowledge on this method of sanitation, in light of any other epidemic/pandemic waves.
Collapse
Affiliation(s)
- Giuseppina Caggiano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.T.M.)
- Correspondence: ; Tel.: +39-(0)-80-5478-475
| | - Marco Lopuzzo
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.L.); (V.S.); (F.T.); (M.D.); (G.B.)
| | - Valentina Spagnuolo
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.L.); (V.S.); (F.T.); (M.D.); (G.B.)
| | - Giusy Diella
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.T.M.)
| | - Francesco Triggiano
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.L.); (V.S.); (F.T.); (M.D.); (G.B.)
| | - Marilena D’Ambrosio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.L.); (V.S.); (F.T.); (M.D.); (G.B.)
| | - Paolo Trerotoli
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.T.M.)
| | - Vincenzo Marcotrigiano
- Department of Prevention, Food Hygiene and Nutrition Service, Local Health Unit BT, Barletta-Andria-Trani, 76125 Trani, Italy; (V.M.); (G.T.S.); (P.M.); (D.P.S.)
| | - Giovanna Barbuti
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.L.); (V.S.); (F.T.); (M.D.); (G.B.)
| | - Giovanni Trifone Sorrenti
- Department of Prevention, Food Hygiene and Nutrition Service, Local Health Unit BT, Barletta-Andria-Trani, 76125 Trani, Italy; (V.M.); (G.T.S.); (P.M.); (D.P.S.)
| | - Pantaleo Magarelli
- Department of Prevention, Food Hygiene and Nutrition Service, Local Health Unit BT, Barletta-Andria-Trani, 76125 Trani, Italy; (V.M.); (G.T.S.); (P.M.); (D.P.S.)
| | - Domenico Pio Sorrenti
- Department of Prevention, Food Hygiene and Nutrition Service, Local Health Unit BT, Barletta-Andria-Trani, 76125 Trani, Italy; (V.M.); (G.T.S.); (P.M.); (D.P.S.)
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Maria Teresa Montagna
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (G.D.); (P.T.); (M.T.M.)
| |
Collapse
|
16
|
The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms 2022; 10:microorganisms10010162. [PMID: 35056612 PMCID: PMC8781958 DOI: 10.3390/microorganisms10010162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Managing spoilage and pathogenic bacteria contaminations represents a major challenge for the food industry, especially for the dairy sector. Biofilms formed by these microorganisms in food processing environment continue to pose concerns to food manufacturers as they may impact both the safety and quality of processed foods. Bacteria inside biofilm can survive in harsh environmental conditions and represent a source of repeated food contamination in dairy manufacturing plants. Among the novel approaches proposed to control biofilm in food processing plants, the ozone treatment, in aqueous or gaseous form, may represent one of the most promising techniques due to its antimicrobial action and low environmental impact. The antimicrobial effectiveness of ozone has been well documented on a wide variety of microorganisms in planktonic forms, whereas little data on the efficacy of ozone treatment against microbial biofilms are available. In addition, ozone is recognized as an eco-friendly technology since it does not leave harmful residuals in food products or on contact surfaces. Thus, this review intends to present an overview of the current state of knowledge on the possible use of ozone as an antimicrobial agent against the most common spoilage and pathogenic microorganisms, usually organized in biofilm, in dairy manufacturing plants.
Collapse
|
17
|
Mazza VB, Bustamante R, Martins ARFDA, Teixeira LAC, dos Santos BF. Modelling and optimization of the ferrous to ferric sulphate conversion with hydrogen peroxide using
polynomial‐PSO
and
PSO‐ANNs
models. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Verônica Barbosa Mazza
- Department of Chemical and Materials Engineering (DEQM) Pontifical Catholic University of Rio de Janeiro (PUC‐Rio). Rio de Janeiro Brazil
| | - Rodrigo Bustamante
- Department of Chemical and Materials Engineering (DEQM) Pontifical Catholic University of Rio de Janeiro (PUC‐Rio). Rio de Janeiro Brazil
| | - Ana Rosa Fonseca de Aguiar Martins
- Department of Chemical and Materials Engineering (DEQM) Pontifical Catholic University of Rio de Janeiro (PUC‐Rio). Rio de Janeiro Brazil
| | - Luiz Alberto Cesar Teixeira
- Department of Chemical and Materials Engineering (DEQM) Pontifical Catholic University of Rio de Janeiro (PUC‐Rio). Rio de Janeiro Brazil
- Peróxidos do Brasil Ltda. (Solvay Group)
| | - Brunno Ferreira dos Santos
- Department of Chemical and Materials Engineering (DEQM) Pontifical Catholic University of Rio de Janeiro (PUC‐Rio). Rio de Janeiro Brazil
| |
Collapse
|
18
|
Avila-Sierra A, Vicaria JM, Lechuga M, Martínez-Gallegos JF, Olivares-Arias V, Medina-Rodríguez AC, Jiménez-Robles R, Jurado-Alameda E. Insights into the optimisation of the Clean-In-Place technique: Cleaning, disinfection, and reduced environmental impact using ozone-based formulations. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Werlang GO, Kich JD, Lopes GV, Coldebella A, Feddern V, Cardoso M. Effect of gaseous ozone application during chilling on microbial and quality attributes of pig carcasses. FOOD SCI TECHNOL INT 2021; 28:366-376. [PMID: 33983853 DOI: 10.1177/10820132211014985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ozone application has been suggested as an additional measure to the slaughter animals under hygiene programs. In this study, we determined the efficacy of gaseous ozone applied to pig carcasses during chilling (16 h at 2-5°C). Forty carcasses were allocated to each treatment: control, without ozone application (T1) and 5 ppm gaseous ozone application (T2), divided in two 4-h periods. The carcasses were sampled before and after chilling. The average counts of total aerobic mesophilic (TAM) bacteria before chilling were not different (p = 0.55) between T1 and T2. In turn, after chilling, the ozone-treated carcasses had significantly reduced about 0.4 colony-forming units (CFU)/cm2 of TAM counts (p < 0.001) than the control carcasses. No significant reduction was observed in the number of carcasses positive for Listeria sp. and Escherichia coli after gaseous ozone treatment; while a tendency (p = 0.08) of lower number of Salmonella positive carcasses in T2 was observed. Common macrorestriction (pulsed-field gel electrophoresis) patterns of S. enterica were observed in the carcasses before and after chilling. Pork samples from treated and untreated carcasses with ozone showed no lipid oxidation or altered color and pH. The results indicate that the gaseous ozone in the tested protocol is effective in reducing TAM populations, but not effective in decreasing the number of carcasses positive for E. coli and Listeria sp. Regarding Salmonella, the tendency of positive carcasses reduction may encourage further studies by testing other protocols of gaseous ozone application inside the chilling chamber.
Collapse
Affiliation(s)
- Gabriela Orosco Werlang
- Departamento de Medicina Veterinária Preventiva, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Pelotas, Brasil
| | | | | | - Marisa Cardoso
- Departamento de Medicina Veterinária Preventiva, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
20
|
Makki G, Alcaine SD. Evaluation of lactose oxidase as enzymatic antifungal control for Penicillium spoilage in yogurt. J Dairy Sci 2021; 104:5208-5217. [PMID: 33685681 DOI: 10.3168/jds.2020-19602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/23/2021] [Indexed: 11/19/2022]
Abstract
In this study, we investigated the antifungal activity of lactose oxidase (LO) as a potential biopreservative in dairy products. Our study objectives were to screen antifungal activity of LO against common mold strains, to detect the minimum inhibitory level of LO against the same strains, and to understand how LO affects the pH and lactic acid bacteria (LAB) counts in set yogurt. Five mold strains (Penicillium chrysogenum, Penicillium citrinum, Penicillium commune, Penicillium decumbens, and Penicillium roqueforti) were used throughout study. These strains were previously isolated from dairy manufacturing plants. Throughout the study, yogurts were stored at 21 ± 2°C for 14 d. Antifungal activity of LO was screened using 2 enzyme levels (1.2 and 12 g/L LO) against selected strains on the surface of a miniature laboratory set-yogurt model. For all tested strains, no visible mold growth was detected on the surface of yogurts covered with LO compared with control yogurt without LO. The minimum inhibitory level of LO against each strain was further investigated using 4 enzyme levels (0.12, 0.48, 0.84, and 1.2 g/L LO) on the miniature laboratory set-yogurt model. We detected 0.84 g/L LO as the minimum level inhibiting visible hyphal growth across strains. The minimum inhibitory level of LO varied for each individual strain. To study the effect of LO on the pH of yogurt, miniature laboratory set-yogurt models were covered with different enzyme levels (0.12, 0.48, 0.84, 1.2, and 12 g/L LO). At d 14, a difference was detected comparing pH values of treatments to control with no LO. Commercial low-fat set yogurt was used to study the effect of LO on LAB survival when yogurt surface was covered with 0.84 g/L LO under the same experimental conditions. Control with no LO was included. At d 14, 3 levels of catalase were added (0, 0.01, and 0.1%) to each treatment. To enumerate LAB, homogenized samples were plated on de Man, Rogosa, and Sharpe agar and incubated. Yogurts with 0.84 g/L LO had lower LAB counts compared with control yogurts, and catalase level did not have a significant effect on LAB counts. Our results demonstrated potential antifungal efficacy of LO against common spoilage organisms in dairy products with residual lactose and relatively low pH. Manufacturers should establish efficacy of LO against mold strains of interest and determine the effects of LO on organoleptic properties and LAB survival in set yogurt.
Collapse
Affiliation(s)
- Ghadeer Makki
- Department of Food Science and Technology, Cornell University, Ithaca, NY 14850
| | - Samuel D Alcaine
- Department of Food Science and Technology, Cornell University, Ithaca, NY 14850.
| |
Collapse
|
21
|
Bigi F, Haghighi H, Quartieri A, De Leo R, Pulvirenti A. Impact of low‐dose gaseous ozone treatment to reduce the growth of in vitro broth cultures of foodborne pathogenic/spoilage bacteria in a food storage cold chamber. J Food Saf 2021. [DOI: 10.1111/jfs.12892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Bigi
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Hossein Haghighi
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Andrea Quartieri
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Riccardo De Leo
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
| | - Andrea Pulvirenti
- Department of Life Sciences University of Modena and Reggio Emilia Reggio Emilia Italy
- Interdepartmental Research Centre BIOGEST‐SITEIA University of Modena and Reggio Emilia Reggio Emilia Italy
| |
Collapse
|
22
|
Kure CF, Langsrud S, Møretrø T. Efficient Reduction of Food Related Mould Spores on Surfaces by Hydrogen Peroxide Mist. Foods 2020; 10:foods10010055. [PMID: 33379242 PMCID: PMC7823841 DOI: 10.3390/foods10010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of the study was to evaluate the fungicidal effect of a H2O2 mist generating system for disinfection of spores of six food-related moulds (Alternaria alternata, Aspergillus flavus, Geotrichum candidum, Mucor plumbeus, Paecilomyces variotii, and Penicillium solitum) dried on stainless steel. Exposure to H2O2 mist for 2 or 4 h lead to >3 log reduction in mould spores in the majority of the tests. The presence of the soils 2% skim milk or 3% BSA did not significantly alter the fungicidal effect, while the presence of raw meat juice had an adverse fungicidal effect against Penicillium and Mucor in two out of three tests. Fungicidal suspension tests with liquid H2O2 confirmed the effectiveness of H2O2 on reducing the mould spores. Both the surface test and the suspension test indicated that P. variotii is more resistant to H2O2 compared to the other moulds tested. The study shows the efficiency of H2O2 mist on reducing food-related mould spores on surfaces.
Collapse
|
23
|
All Treatment Parameters Affect Environmental Surface Sanitation Efficacy, but Their Relative Importance Depends on the Microbial Target. Appl Environ Microbiol 2020; 87:AEM.01748-20. [PMID: 33097504 PMCID: PMC7755260 DOI: 10.1128/aem.01748-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Environmental sanitation in food manufacturing plants promotes food safety and product microbial quality. However, the development of experimental models remains a challenge due to the complex nature of commercial cleaning processes, which include spraying water and sanitizer on equipment and structural surfaces within manufacturing space. Although simple in execution, the physical driving forces are difficult to simulate in a controlled laboratory environment. Here, we present a bench-scale bioreactor system which mimics the flow conditions in environmental sanitation programs. We applied computational fluid dynamic (CFD) simulations to obtain fluid flow parameters that better approximate and predict industrial outcomes. According to the CFD model, the local wall shear stress achieved on the target surface ranged from 0.015 to 5.00 Pa. Sanitation efficacy on six types of environmental surface materials (hydrophobicity, 57.59 to 88.61°; roughness, 2.2 to 11.9 μm) against two different microbial targets, the bacterial pathogen Listeria monocytogenes and Exophiala species spoilage fungi, were evaluated using the bench-scale bioreactor system. The relative reduction ranged from 0.0 to 0.82 for Exophiala spp., which corresponded to a 0.0 to 2.21 log CFU/coupon reduction, and the relative reduction ranged from 0.0 to 0.93 in L. monocytogenes which corresponded to a 0.0 to 6.19 log CFU/coupon reduction. Although most treatment parameters were considered statistically significant against either L. monocytogenes or Exophiala spp., contact time was ranked as the most important predictor for L. monocytogenes reduction. Shear stress contributed the most to Exophiala spp. removal on stainless steel and Buna-N rubber, while contact time was the most important factor on HDPE (high-density polyethylene), cement, and epoxy.IMPORTANCE Commercial food manufacturers commonly employ a single sanitation program that addresses both bacterial pathogen and fungal spoilage microbiota, despite the fact that the two microbial targets respond differently to various environmental sanitation conditions. Comparison of outcome-based clusters of treatment combinations may facilitate the development of compensatory sanitation regimes where longer contact time or greater force are applied so that lower sanitizer concentrations can be used. Determination of microbiological outcomes related to sanitation program efficacy against a panel of treatment conditions allows food processors to balance tradeoffs between quality and safety with cost and waste stream management, as appropriate for their facility.
Collapse
|
24
|
Geronikou A, Srimahaeak T, Rantsiou K, Triantafillidis G, Larsen N, Jespersen L. Occurrence of Yeasts in White-Brined Cheeses: Methodologies for Identification, Spoilage Potential and Good Manufacturing Practices. Front Microbiol 2020; 11:582778. [PMID: 33178163 PMCID: PMC7593773 DOI: 10.3389/fmicb.2020.582778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 01/30/2023] Open
Abstract
Yeasts are generally recognized as contaminants in the production of white-brined cheeses, such as Feta and Feta-type cheeses. The most predominant yeasts species are Debaryomyces hansenii, Geotrichum candidum, Kluyveromyces marxianus, Kluyveromyces lactis, Rhodotorula mucilaginosa, and Trichosporon spp. Although their spoilage potential varies at both species and strain levels, yeasts will, in case of excessive growth, present a microbiological hazard, effecting cheese quality. To evaluate the hazard and trace routes of contamination, the exact taxonomic classification of yeasts is required. Today, identification of dairy yeasts is mainly based on DNA sequencing, various genotyping techniques, and, to some extent, advanced phenotypic identification technologies. Even though these technologies are state of the art at the scientific level, they are only hardly implemented at the industrial level. Quality defects, caused by yeasts in white-brined cheese, are mainly linked to enzymatic activities and metabolism of fermentable carbohydrates, leading to production of metabolites (CO2, fatty acids, volatile compounds, amino acids, sulfur compounds, etc.) and resulting in off-flavors, texture softening, discoloration, and swelling of cheese packages. The proliferation of spoilage yeast depends on maturation and storage conditions at each specific dairy, product characteristics, nutrients availability, and interactions with the co-existing microorganisms. To prevent and control yeast contamination, different strategies based on the principles of HACCP and Good Manufacturing Practice (GMP) have been introduced in white-brined cheese production. These strategies include milk pasteurization, refrigeration, hygienic sanitation, air filtration, as well as aseptic and modified atmosphere packaging. Though a lot of research has been dedicated to yeasts in dairy products, the role of yeast contaminants, specifically in white-brined cheeses, is still insufficiently understood. This review aims to summarize the current knowledge on the identification of contaminant yeasts in white-brined cheeses, their occurrence and spoilage potential related to different varieties of white-brined cheeses, their interactions with other microorganisms, as well as guidelines used by dairies to prevent cheese contamination.
Collapse
Affiliation(s)
- Athina Geronikou
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thanyaporn Srimahaeak
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kalliopi Rantsiou
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Turin, Italy
| | | | - Nadja Larsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
25
|
Kandasamy S, Park WS, Yoo J, Yun J, Kang HB, Seol KH, Oh MH, Ham JS. Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1002-1011. [PMID: 32054221 PMCID: PMC7206383 DOI: 10.5713/ajas.19.0553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/20/2019] [Accepted: 09/30/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study was conducted to determine the composition and diversity of the fungal flora at various control points in cheese ripening rooms of 10 dairy farms from six different provinces in the Republic of Korea. METHODS Floor, wall, cheese board, room air, cheese rind and core were sampled from cheese ripening rooms of ten different dairy farms. The molds were enumerated using YM petrifilm, while isolation was done on yeast extract glucose chloramphenicol agar plates. Morphologically distinct isolates were identified using sequencing of internal transcribed spacer region. RESULTS The fungal counts in 8 out of 10 dairy farms were out of acceptable range, as per hazard analysis critical control point regulation. A total of 986 fungal isolates identified and assigned to the phyla Ascomycota (14 genera) and Basidiomycota (3 genera). Of these Penicillium, Aspergillus, and Cladosporium were the most diverse and predominant. The cheese ripening rooms was overrepresented in 9 farms by Penicillium (76%), while Aspergillusin a single farm. Among 39 species, the prominent members were Penicillium commune, P. oxalicum, P. echinulatum, and Aspergillus versicolor. Most of the mold species detected on surfaces were the same found in the indoor air of cheese ripening rooms. CONCLUSION The environment of cheese ripening rooms persuades a favourable niche for mold growth. The fungal diversity in the dairy farms were greatly influenced by several factors (exterior atmosphere, working personnel etc.,) and their proportion varied from one to another. Proper management of hygienic and production practices and air filtration system would be effective to eradicate contamination in cheese processing industries.
Collapse
Affiliation(s)
- Sujatha Kandasamy
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Won Seo Park
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Jayeon Yoo
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Jeonghee Yun
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Han Byul Kang
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Kuk-Hwan Seol
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Mi-Hwa Oh
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Jun Sang Ham
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365,
Korea
| |
Collapse
|
26
|
Masotti F, Cattaneo S, Stuknytė M, De Noni I. Airborne contamination in the food industry: An update on monitoring and disinfection techniques of air. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|