1
|
Semmouri I, Janssen CR, Asselman J. Health risks associated with the consumption of sea turtles: A review of chelonitoxism incidents and the presumed responsible phycotoxins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176330. [PMID: 39293768 DOI: 10.1016/j.scitotenv.2024.176330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Consuming the meat of some marine turtles can lead to a specific type of seafood poisoning known as chelonitoxism. A recent poisoning event (March 2024) on the Tanzanian island Pemba, resulting in the death of 9 people and hospitalization of 78 others, underscores the need to obtain an up to date overview and understanding of chelonitoxism. Here, we document a global overview of poisoning incidents resulting from the consumption of sea turtle flesh worldwide. All events combined involved over 2400 victims and 420 fatalities. Incidents were predominantly reported in remote regions (often islands) across the Indo-Pacific region. Reported health effects of consuming poisonous sea turtles include epigastric pain, diarrhea, vomiting, a burning mouth and throat sensation, and dehydration. In addition, ulcerative oeso-gastro-duodenal lesions, which occasionally have resulted in hospitalization and death, have been reported. Lyngbyatoxins have been suggested as (one of) the causative agents, originating from the cyanobacterium Moorena producens, growing epiphytically on the seagrass and seaweed consumed by green turtles. However, due to the limited evidence of their involvement, the actual etiology of chelonitoxism remains unresolved and other compounds may be responsible. The data outlined in this review offer valuable insights to both regulatory bodies and the general public regarding the potential risks linked to consuming sea turtles.
Collapse
Affiliation(s)
- Ilias Semmouri
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium.
| | - Colin R Janssen
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Faculty of Bioscience Engineering, Ghent University, Bluebridge, Wetenschapspark 1, 8400 Ostend, Belgium
| |
Collapse
|
2
|
Bian Y, Zhang Y, Feng XS, Gao HY. Marine toxins in seafood: Recent updates on sample pretreatment and determination techniques. Food Chem 2024; 438:137995. [PMID: 38029684 DOI: 10.1016/j.foodchem.2023.137995] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Marine toxins can lead to varying degrees of human poisoning, often resulting in fatal symptoms and causing significant economic losses in seafood-producing regions. To gain a deeper comprehension of the role of marine toxins in seafood and their impact on the environment, it is imperative to develop rapid, cost-effective, environmentally friendly, and efficient methods for sample pretreatment and determination to mitigate adverse impacts of marine toxins. This review presents a comprehensive overview of advancements made in sample pretreatment and determination techniques for marine toxins since 2017. The advantages and disadvantages of various technologies were critically examined. Additionally, the current challenges and future development strategies for the analysis of marine toxins are provided.
Collapse
Affiliation(s)
- Yu Bian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Hui-Yuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
4
|
Jongedijk E, Fifeik M, Arrizabalaga-Larrañaga A, Polzer J, Blokland M, Sterk S. Use of high-resolution mass spectrometry for veterinary drug multi-residue analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Bioassay-directed analysis-based identification of relevant pyrrolizidine alkaloids. Arch Toxicol 2022; 96:2299-2317. [PMID: 35610518 PMCID: PMC9217854 DOI: 10.1007/s00204-022-03308-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are produced by various plant species and have been detected as contaminants in food and feed. Monitoring programmes should include PAs that are present in relevant matrices and that exhibit a high toxic potential. The aim of the present study was to use a bioassay-directed analysis approach to identify relevant PAs not yet included in monitoring programmes. To that end, extracts of Heliotropium europaeum and H. popovii were prepared and analysed with LC–MS/MS for the presence of 35 PAs included in monitoring programmes, as well as for genotoxic activity in the HepaRG/γH2AX assay. Europine, heliotrine and lasiocarpine were found to be the most abundant PAs. The extracts showed a higher γH2AX activity than related artificial mixtures of quantified known PAs, which might point to the presence of unknown toxic PAs. The H. europaeum extract was fractionated and γH2AX activities of individual fractions were determined. Fractions were further analysed applying LC–Orbitrap-MS analysis and Compound Discoverer software, identifying various candidate PAs responsible for the non-explained genotoxic activity. Altogether, the results obtained show that bioassay-directed analysis allows identification of candidate PAs that can be included in monitoring programmes.
Collapse
|
6
|
Mohd Yusop AY, Xiao L, Fu S. Isolation and identification of an isomeric sildenafil analogue as an adulterant in an instant coffee premix. Forensic Sci Res 2022; 7:290-298. [PMID: 35784429 PMCID: PMC9245998 DOI: 10.1080/20961790.2020.1829375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Ahmad Yusri Mohd Yusop
- Centre for Forensic Science, University of Technology Sydney, Ultimo, Australia
- Pharmacy Enforcement Division, Ministry of Health, Selangor, Malaysia
| | - Linda Xiao
- Centre for Forensic Science, University of Technology Sydney, Ultimo, Australia
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
7
|
Kandasamy K, Selvaprakash K, Chen YC. Functional magnetic nanoparticle-based affinity probe for MALDI mass spectrometric detection of ricin B. Mikrochim Acta 2021; 188:339. [PMID: 34510288 DOI: 10.1007/s00604-021-04991-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
The use of lactosylated Fe3O4 magnetic nanoparticles (MNP@LAC) has been explored as affinity probes against ricin B based on galactose-ricin B binding interactions. Lactose was bound onto the surface of aminated MNPs through the Maillard reaction. The enrichment of ricin B took ~1 h by incubating MNP@LAC with samples under shaking at room temperature, followed by magnetic isolation. The resultant MNP@LAC-ricin B conjugates were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The limit of detection toward ricin B was ~3 nM by using the developed method. It was possible to detect the peptides derived from the tryptic digest of trace ricin B (~0.39 nM) enriched by the MNP@LAC probes followed by tryptic digestion and MALDI-MS analysis. The feasibility of using the developed method for detection of ricin B from complex white corn starch samples spiked with trace ricin B was demonstrated.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Karuppuchamy Selvaprakash
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
8
|
Ashrafi AM, Bytesnikova Z, Barek J, Richtera L, Adam V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron 2021; 192:113494. [PMID: 34303137 DOI: 10.1016/j.bios.2021.113494] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
Nanozymes (NZs) are nanomaterials that mimic enzyme-like catalytic activity. They have attracted substantial attention due to their inherent physicochemical properties for use as promising alternatives to natural enzymes (NEs) in a variety of research fields. Particularly, in biosensing and bioassays, NZs have opened a new horizon to eliminate the intrinsic limitations of NEs, including their denaturation at extreme pH values and temperatures, poor reusability and recyclability, and high production costs. Moreover, the catalytic activity of NZs can be modulated in the preparation step by following an appropriate synthesis strategy. This review aims to gain insight into the potential substitution of NEs by NZs in biosensing and bioassays while considering both the pros and cons.
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Jiri Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-12843, Prague 2, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic.
| |
Collapse
|
9
|
Sarion C, Codină GG, Dabija A. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4332. [PMID: 33921874 PMCID: PMC8073677 DOI: 10.3390/ijerph18084332] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Acrylamide is a contaminant as defined in Council Regulation (EEC) No 315/93 and as such, it is considered a chemical hazard in the food chain. The toxicity of acrylamide has been acknowledged since 2002, among its toxicological effects on humans being neurotoxicity, genotoxicity, carcinogenicity, and reproductive toxicity. Acrylamide has been classified as carcinogenic in the 2A group, with human exposure leading to progressive degeneration of the peripheral and central nervous systems characterized by cognitive and motor abnormalities. Bakery products (bread, crispbread, cakes, batter, breakfast cereals, biscuits, pies, etc.) are some of the major sources of dietary acrylamide. The review focuses on the levels of acrylamide in foods products, in particular bakery ones, and the risk that resulting dietary intake of acrylamide has on human health. The evolving legislative situation regarding the acrylamide content from foodstuffs, especially bakery ones, in the European Union is discussed underlining different measures that food producers must take in order to comply with the current regulations regarding the acrylamide levels in their products. Different approaches to reduce the acrylamide level in bakery products such as the use of asparginase, calcium salts, antioxidants, acids and their salts, etc., are described in detail.
Collapse
Affiliation(s)
| | - Georgiana Gabriela Codină
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (C.S.); (A.D.)
| | | |
Collapse
|