1
|
Wu J, Jiao Y, Yu W, Zhang Y, Li Z, Wang X. Preparation of chitosan quaternary ammonium salt/pectin antifogging and antibacterial composite film loaded with riboflavin and its application in rape preservation. Food Chem 2025; 481:144129. [PMID: 40184923 DOI: 10.1016/j.foodchem.2025.144129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
In this study, riboflavin (RIB) was incorporated into a chitosan quaternary ammonium salt/pectin (HACC/PEC) matrix to produce a composite film with excellent antifogging properties and antibacterial activity. The incorporation of RIB significantly enhanced the mechanical properties (The TS and EAB of HP4-0.2 were 32.09 MPa and 107.1 %), ultraviolet blocking performance, thermal stability and antibacterial characteristics of the film. Riboflavin effectively reduced the water contact angle, enhancing its antifogging performance and preventing water vapor from condensing on the product's surface. The HP4-0.2 film with RIB resulted the shelf life of rape to 11 d at 4 °C. The film effectively preserved the quality of rape during storage, which reduced the total plate count and minimized the degradation of chlorophyll caused by ultraviolet rays. This study introduced a new idea for food antifogging and antibacterial packaging, establishing a foundation for research into multifunctional antifogging packaging.
Collapse
Affiliation(s)
- Junjie Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yingshuai Jiao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Wenlong Yu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Yu Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Zongyang Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
2
|
Xu M, Zhang L, Zeng Y, Zhou Z, Han Y. Preparation and characterization of Levan composite film incorporating vanillin for use as a potential edible coating for peony seed oil. Int J Biol Macromol 2025; 288:138732. [PMID: 39674469 DOI: 10.1016/j.ijbiomac.2024.138732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The study prepared an edible packaging material for peony seed oil by adding natural antioxidant vanillin to a microbial Levan composite film. The presence of highly branched Levan, containing polyhydroxyl groups, significantly enhanced the maximum tension (26.57 N), tensile strength (36.31 MPa), and elongation at break (42.15 %) of the Aga/Lev film. The values were 9.84-fold, 5.74-fold, and 1.11-fold higher than those of Aga films, respectively. Furthermore, SEM and FTIR analysis revealed that Levan increased the intermolecular force of the vanillin composite film (Aga/Lev/Gly/Van), forming a dense gel network with a Schiff base reaction occurring between vanillin and glycine. The addition of vanillin and glycine slightly lowered the transparency of the film but enhanced the ultra violet (UV)-blocking with 100 % UV-region and 91 % visible region light screening. The Aga/Lev/Gly/Van films showed strong antioxidant efficacy with 91.85 % ABTS and 44.33 % DPPH radical scavenging potential. The electrical conductivity, P-anisidine value, thiobarbituric acid value, and fatty acid distribution of peony seed oil samples were analyzed after accelerated storage. The Aga/Lev/Gly/Van group had a significantly higher retention rate (95.65 %) for total conjugated fatty acids compared to the control group (84.17 %). The utilization of Aga/Lev/Gly/Van film packaging effectively extended the shelf life of peony seed oil and retarded the degradation of unsaturated fatty acids in the oil. Therefore, Levan composite films incorporating vanillin can be used as sustainable packaging materials to minimize the oxidation of susceptible foods.
Collapse
Affiliation(s)
- Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Lixia Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yihong Zeng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
3
|
Li J, Sun H, Weng Y. Natural Extracts and Their Applications in Polymer-Based Active Packaging: A Review. Polymers (Basel) 2024; 16:625. [PMID: 38475309 DOI: 10.3390/polym16050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
At a time when food safety awareness is increasing, attention is paid not only to food and additives but also to packaging materials. Most current food packaging is usually made of traditional petroleum-based polymeric materials, which are not biodegradable and have adverse effects on the environment and health. In this context, the development of new non-toxic and biodegradable materials for extending the best-before date of food is receiving increasing attention. In addition, additives in packaging materials may migrate outward, resulting in contact with food. For this reason, additives are also seen as a transition from synthetic additives to natural extracts. Active extracts from animals and plants having good antioxidant and antibacterial properties are also beneficial for human health. It is indisputable that active extracts are ideal substitutes for synthetic additives. Polymer packaging materials combined with active extracts not only maintain their original mechanical and optical properties and thermal stability but also endow polymers with new functions to extend the shelf life of food. This review paper provides an overview of this promising natural extract-containing polymer-based active packaging, with a focus on plant essential oils (containing phenolics, monoterpenes, terpene alcohols, terpene ketones, and aldehydes), pigments (procyanidins), vitamins (vitamin B), and peptides (nisin). In particular, this paper covers the research progress of such active extracts, in single or compound forms, combined with diverse polymers (mostly biopolymers) for food packaging applications with particular focus on the antioxidant and antibacterial properties of packaging materials.
Collapse
Affiliation(s)
- Jiawei Li
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hui Sun
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Yunxuan Weng
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Heydari A, KhajeHassani M, Daneshafruz H, Hamedi S, Dorchei F, Kotlár M, Kazeminava F, Sadjadi S, Doostan F, Chodak I, Sheibani H. Thermoplastic starch/bentonite clay nanocomposite reinforced with vitamin B 2: Physicochemical characteristics and release behavior. Int J Biol Macromol 2023; 242:124742. [PMID: 37148934 DOI: 10.1016/j.ijbiomac.2023.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
This study presents the development and characterization of a nanocomposite material, consisting of thermoplastic starch (TPS) reinforced with bentonite clay (BC) and encapsulated with vitamin B2 (VB). The research is motivated by the potential of TPS as a renewable and biodegradable substitute for petroleum-based materials in the biopolymer industry. The effects of VB on the physicochemical properties of TPS/BC films, including mechanical and thermal properties, water uptake, and weight loss in water, were investigated. In addition, the surface morphology and chemical composition of the TPS samples were analyzed using high-resolution SEM microscopy and EDS, providing insight into the structure-property relationship of the nanocomposites. The results showed that the addition of VB significantly increased the tensile strength and Young's modulus of TPS/BC films, with the highest values observed for nanocomposites containing 5 php of VB and 3 php of BC. Furthermore, the release of VB was controlled by the BC content, with higher BC content leading to lower VB release. These findings demonstrate the potential of TPS/BC/VB nanocomposites as environmentally friendly materials with improved mechanical properties and controlled release of VB, which can have significant applications in the biopolymer industry.
Collapse
Affiliation(s)
- Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia; National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4782/4, 921 12 Piešťany, Slovakia.
| | - Milad KhajeHassani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran
| | - Haniyeh Daneshafruz
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran
| | - Sepideh Hamedi
- Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran
| | - Faeze Dorchei
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia
| | - Mário Kotlár
- Centre for Nanodiagnostics of Materials, Faculty of Materials Science and Technology, Slovak University of Technology, Vazovova 5, Bratislava 81243, Slovakia
| | - Fahimeh Kazeminava
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran
| | - Farideh Doostan
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ivan Chodak
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 84541 Bratislava, Slovakia
| | - Hassan Sheibani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran
| |
Collapse
|
5
|
Marković ZM, Kováčová M, Jeremić SR, Nagy Š, Milivojević DD, Kubat P, Kleinová A, Budimir MD, Mojsin MM, Stevanović MJ, Annušová A, Špitalský Z, Todorović Marković BM. Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4070. [PMID: 36432356 PMCID: PMC9699046 DOI: 10.3390/nano12224070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/01/2023]
Abstract
Development of new types of antimicrobial coatings is of utmost importance due to increasing problems with pathogen transmission from various infectious surfaces to human beings. In this study, new types of highly potent antimicrobial polyurethane composite films encapsulated by hydrophobic riboflavin-based carbon polymer dots are presented. Detailed structural, optical, antimicrobial, and cytotoxic investigations of these composites were conducted. Low-power blue light triggered the composites to eradicate Escherichia coli in 30 min, whereas the same effect toward Staphylococcus aureus was reached after 60 min. These composites also show low toxicity against MRC-5 cells. In this way, RF-CPD composites can be used for sterilization of highly touched objects in the healthcare industry.
Collapse
Affiliation(s)
- Zoran M. Marković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Mária Kováčová
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sanja R. Jeremić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Štefan Nagy
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská Cestá 9/6319, 84513 Bratislava, Slovakia
| | - Dušan D. Milivojević
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Pavel Kubat
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Praha, Czech Republic
| | - Angela Kleinová
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
| | - Milica D. Budimir
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija M. Mojsin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Milena J. Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Adriana Annušová
- Department of Multilayers and Nanostructures, Institute of Physics, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta 9, 84511 Bratislava, Slovakia
| | - Zdeno Špitalský
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cestá 9, 84541 Bratislava, Slovakia
| | - Biljana M. Todorović Marković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Zhu K, Chen L, Chen C, Xie J. Preparation and characterization of polyethylene antifogging film and its application in lettuce packaging. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Tang P, Ji B, Sun G. Stabilization of flavin mononucleotide by capturing its "tail" with porous organic polymers for long-term photocatalytic degradation of micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128982. [PMID: 35472536 PMCID: PMC11045341 DOI: 10.1016/j.jhazmat.2022.128982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Flavin mononucleotide (FMN) produces photo-induced reactive oxygen species (ROS), making it a bio-based and sustainable photosensitizer for micropollutant degradation. However, the rapid self-degradation of FMN under light poses challenges in practical applications. We propose for the first time to use porous organic polymer (POP) structures as particles and in situ grown on nanofibrous membranes to capture the ribityl side chain ("tail") of FMN by electrostatic-driven guest-host interaction. By restraining the free bending mode of FMN in POP, its self-degradation is highly inhibited, showing a prolonged half-life (102.7 and 79.7 times to that in solution and in β-cyclodextrin, respectively) without any impact on the ROS production even after 16 h of UVA irradiation. As a proof-of-concept, the photocatalytic degradation efficiency of FMN-POP complexes can be achieved at 58-93% against micropollutants under UVA. The stabilization of FMN by the "tail" capture in the POP allows its photocatalytic degradation function to be continuously online.
Collapse
Affiliation(s)
- Peixin Tang
- Department of Biological and Agricultural Engineering, University of California Davis, CA 95616, USA
| | - Bolin Ji
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California Davis, CA 95616, USA.
| |
Collapse
|
8
|
Pei J, Zhu S, Liu Y, Song Y, Xue F, Xiong X, Li C. Photodynamic Effect of Riboflavin on Chitosan Coatings and the Application in Pork Preservation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041355. [PMID: 35209144 PMCID: PMC8877613 DOI: 10.3390/molecules27041355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
Riboflavin (RF) was considered to be possessed of photoactivity to generate reactive oxygen species (ROS) under ultraviolet (UV) light, which is thought to be a favorable antibacterial candidate. Herein, RF was incorporated into chitosan (CS) coatings and treated under UV with different exposure times (2, 4, and 6 h) to improve the physicochemical and antibacterial properties. The results showed that the light transmittance and antibacterial performance of chitosan coatings gradually increased with the extension of the UV irradiation time. The antibacterial ability of chitosan coatings correlated with the generation of ROS: ∙OH and H2O2, which achieved 1549.08 and 95.48 μg/g, respectively, after 6 h irradiation. Furthermore, the chitosan coatings with UV irradiation also reduced the pH value, total volatile basic nitrogen (TVB-N), ΔE, and total viable counts (TVC) and improved sensory attributes of pork. In conclusion, the UV irradiated chitosan coatings could be used as an environmentally friendly antimicrobial packaging material to effectively delay the spoilage of pork, maintain its sensory quality and prolong its shelf life.
Collapse
Affiliation(s)
- Jiliu Pei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.P.); (S.Z.); (Y.L.); (Y.S.); (X.X.)
| | - Shengyu Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.P.); (S.Z.); (Y.L.); (Y.S.); (X.X.)
| | - Yu Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.P.); (S.Z.); (Y.L.); (Y.S.); (X.X.)
| | - Yukang Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.P.); (S.Z.); (Y.L.); (Y.S.); (X.X.)
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.P.); (S.Z.); (Y.L.); (Y.S.); (X.X.)
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; (J.P.); (S.Z.); (Y.L.); (Y.S.); (X.X.)
- Correspondence: ; Tel.: +86-138-13362715
| |
Collapse
|
9
|
Hadiouch S, Maresca M, Gigmes D, Machado G, Maurel-Pantel A, Frik S, Saunier J, Deniset-Besseau A, Yagoubi N, Michalek L, Barner-Kowollik C, Guillaneuf Y, Lefay C. A versatile and straightforward process to turn plastics into antibacterial materials. Polym Chem 2022. [DOI: 10.1039/d1py01344k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibacterial activity without cell cytotoxicity is conferred to common plastic materials by dispersion of amphiphilic cationic methacrylate-based block copolymers (0.5–2 wt%), while maintaining the mechanical properties of the materials.
Collapse
Affiliation(s)
- Slim Hadiouch
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Didier Gigmes
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Guilherme Machado
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
| | | | - Sabrina Frik
- Université Paris Saclay, UFR de pharmacie, Matériaux et Santé, 92290 Chatenay Malabry, France
| | - Johanna Saunier
- Université Paris Saclay, UFR de pharmacie, Matériaux et Santé, 92290 Chatenay Malabry, France
| | - Ariane Deniset-Besseau
- Institut de Chimie Physique (ICP), CNRS UMR 8000, Univ. of Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Najet Yagoubi
- Université Paris Saclay, UFR de pharmacie, Matériaux et Santé, 92290 Chatenay Malabry, France
| | - Lukas Michalek
- Centre of Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- Centre of Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Yohann Guillaneuf
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| | - Catherine Lefay
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
10
|
Phothisarattana D, Wongphan P, Promhuad K, Promsorn J, Harnkarnsujarit N. Biodegradable Poly(Butylene Adipate-Co-Terephthalate) and Thermoplastic Starch-Blended TiO 2 Nanocomposite Blown Films as Functional Active Packaging of Fresh Fruit. Polymers (Basel) 2021; 13:polym13234192. [PMID: 34883695 PMCID: PMC8659531 DOI: 10.3390/polym13234192] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/27/2022] Open
Abstract
Biodegradable polymers can be used for eco-friendly, functional, active packaging to preserve food quality. Incorporation of titanium dioxide (TiO2) nanoparticles into polymer packaging enhances ethylene-scavenging activity and extends the shelf-life of fresh produce. In this study, TiO2 nanoparticles were incorporated into biodegradable poly(butylene adipate-co-terephthalate) (PBAT)- and thermoplastic cassava starch (TPS)-blended films to produce nanocomposite packaging via blown-film extrusion. The effects of TiO2 on morphology, packaging properties, and applications as functional packaging for fresh produce were investigated. Increased TiO2 in the film packaging increased amorphous starch content and hydrogen bonding by interacting with the TPS phase of the polymer blend, with negligible chemical interaction with the PBAT component and identical mechanical relaxation in the PBAT phase. Surface topography indicated void space due to non-homogeneous dispersion causing increased oxygen and carbon dioxide permeability. Homogeneous dispersion of fine TiO2 nanoparticles increased mechanical strength and reduced oxygen, carbon dioxide, and water vapor permeability. Films containing TiO2 also showed efficient oxygen-scavenging activity that removed residual oxygen from the package headspace dependent on the levels and morphology of nanoparticles in the film matrices. Banana fruit packaged in films containing TiO2 recorded slower darkening color change and enhanced shelf-life with increasing TiO2 content.
Collapse
Affiliation(s)
- Danaya Phothisarattana
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand; (D.P.); (P.W.); (K.P.); (J.P.)
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand; (D.P.); (P.W.); (K.P.); (J.P.)
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand; (D.P.); (P.W.); (K.P.); (J.P.)
| | - Juthathip Promsorn
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand; (D.P.); (P.W.); (K.P.); (J.P.)
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand; (D.P.); (P.W.); (K.P.); (J.P.)
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Bangkok 10900, Thailand
- Correspondence: ; Tel.: +662-562-5045; Fax: +662-562-5046
| |
Collapse
|
11
|
Li R, Zhang M, Wu Y, Tang P, Sun G, Wang L, Mandal S, Wang L, Lang J, Passalacqua A, Subramaniam S, Song G. What We Are Learning from COVID-19 for Respiratory Protection: Contemporary and Emerging Issues. Polymers (Basel) 2021; 13:4165. [PMID: 34883668 PMCID: PMC8659889 DOI: 10.3390/polym13234165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious respiratory diseases such as the current COVID-19 have caused public health crises and interfered with social activity. Given the complexity of these novel infectious diseases, their dynamic nature, along with rapid changes in social and occupational environments, technology, and means of interpersonal interaction, respiratory protective devices (RPDs) play a crucial role in controlling infection, particularly for viruses like SARS-CoV-2 that have a high transmission rate, strong viability, multiple infection routes and mechanisms, and emerging new variants that could reduce the efficacy of existing vaccines. Evidence of asymptomatic and pre-symptomatic transmissions further highlights the importance of a universal adoption of RPDs. RPDs have substantially improved over the past 100 years due to advances in technology, materials, and medical knowledge. However, several issues still need to be addressed such as engineering performance, comfort, testing standards, compliance monitoring, and regulations, especially considering the recent emergence of pathogens with novel transmission characteristics. In this review, we summarize existing knowledge and understanding on respiratory infectious diseases and their protection, discuss the emerging issues that influence the resulting protective and comfort performance of the RPDs, and provide insights in the identified knowledge gaps and future directions with diverse perspectives.
Collapse
Affiliation(s)
- Rui Li
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50010, USA; (R.L.); (M.Z.); (Y.W.); (L.W.)
| | - Mengying Zhang
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50010, USA; (R.L.); (M.Z.); (Y.W.); (L.W.)
| | - Yulin Wu
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50010, USA; (R.L.); (M.Z.); (Y.W.); (L.W.)
| | - Peixin Tang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (P.T.); (G.S.)
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (P.T.); (G.S.)
| | - Liwen Wang
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50010, USA; (R.L.); (M.Z.); (Y.W.); (L.W.)
| | - Sumit Mandal
- Department of Design, Housing and Merchandising, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Lizhi Wang
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50010, USA;
| | - James Lang
- Department of Kinesiology, Iowa State University, Ames, IA 50010, USA;
| | - Alberto Passalacqua
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA; (A.P.); (S.S.)
| | - Shankar Subramaniam
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA; (A.P.); (S.S.)
| | - Guowen Song
- Department of Apparel, Events, and Hospitality Management, Iowa State University, Ames, IA 50010, USA; (R.L.); (M.Z.); (Y.W.); (L.W.)
| |
Collapse
|
12
|
Ran B, Wang Z, Cai W, Ran L, Xia W, Liu W, Peng X. Organic Photo-antimicrobials: Principles, Molecule Design, and Applications. J Am Chem Soc 2021; 143:17891-17909. [PMID: 34677069 DOI: 10.1021/jacs.1c08679] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of multi-drug-resistant pathogens threatens the healthcare systems world-wide. Recent advances in phototherapy (PT) approaches mediated by photo-antimicrobials (PAMs) provide new opportunities for the current serious antibiotic resistance. During the PT treatment, reactive oxygen species or heat produced by PAMs would react with the cell membrane, consequently leaking cytoplasm components and effectively eradicating different pathogens like bacteria, fungi, viruses, and even parasites. This Perspective will concentrate on the development of different organic photo-antimicrobials (OPAMs) and their application as practical therapeutic agents into therapy for local infections, wound dressings, and removal of biofilms from medical devices. We also discuss how to design highly efficient OPAMs by modifying the chemical structure or conjugating with a targeting component. Moreover, this Perspective provides a discussion of the general challenges and direction for OPAMs and what further needs to be done. It is hoped that through this overview, OPAMs can prosper and will be more widely used for microbial infections in the future, especially at a time when the global COVID-19 epidemic is getting more serious.
Collapse
Affiliation(s)
- Bei Ran
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Zuokai Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wenlin Cai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wenxi Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Weijian Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,State Key Laboratory of Fine Chemicals, Shenzhen Research Institute, Dalian University of Technology, Shenzhen 518057, PR China
| |
Collapse
|
13
|
Cai Y, Guan J, Wang W, Wang L, Su J, Fang L. pH and light-responsive polycaprolactone/curcumin@zif-8 composite films with enhanced antibacterial activity. J Food Sci 2021; 86:3550-3562. [PMID: 34254687 DOI: 10.1111/1750-3841.15839] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023]
Abstract
Food packaging materials, especially biodegradable polymer composites incorporated with natural antimicrobial agents with excellent antibacterial activities, are in high demand and attracted immense attention. Herein, a polycaprolactone/curcumin@zeolitic imidazolate framework-8 (PCL/Cur@ZIF-8) composite film with enhanced antibacterial activity was developed. Curcumin, a natural photosensitizer, was loaded in the highly porous nanocrystals ZIF-8 to improve its poor water solubility and stability. The integral structure of Cur@ZIF-8 was maintained well in the PCL matrix even at the highest loading of 35% (w/w), and all composite films had good light transmittance at 420-430 nm. The PCL/Cur@ZIF-8 composite films responded to the acidic growth environment of bacteria by releasing zinc ions and curcumin molecules. Furthermore, upon blue light irradiation (420-430 nm, 2.2 mW/cm2 ), curcumin molecules generated singlet oxygen. With the synergistic effects of zinc ions and singlet oxygen, the composite films exhibited a 99.9% reduction of Escherichia coli and Staphylococcus aureus strains when the amount of Cur@ZIF-8 loading was more than 15% (w/w), as well as a strong anti-adhesion effect on bacteria. Moreover, bacterial resuscitation tests indicated that the composite films exhibited 99.9% reduction in the adhered bacteria population through treatment with photodynamic sterilization. This is the first study presenting that the incorporated curcumin ZIF-8 nanoparticles in the matrix of polymer are pH and light responsive for anti-adhesion of bacteria, which is of great potential application as antibacterial packaging material for the food industry. PRACTICAL APPLICATION: A novel, biodegradable, pH, and light-responsive composite film was developed for antibacterial activity. Natural photosensitizer curcumin was encapsulated in ZIF-8 nanocrystals (Cur@ZIF-8) as the antimicrobial agent. With the synergistic effects of Zn2+ and singlet oxygen, the composite film exhibited a 99.9% reduction of Escherichia coli and Staphylococcus aureus strains, and a strong anti-adhesion property toward bacteria. This composite film is of great potential application as an antibacterial packaging material that enhances the shelf life of fruits, meat, and so on.
Collapse
Affiliation(s)
- Ying Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Jingwei Guan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Sino-Singapore International Joint Research Institute, Guangzhou, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Sino-Singapore International Joint Research Institute, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Liming Fang
- Sino-Singapore International Joint Research Institute, Guangzhou, China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Moradi M, Kousheh SA, Razavi R, Rasouli Y, Ghorbani M, Divsalar E, Tajik H, Guimarães JT, Ibrahim SA. Review of microbiological methods for testing protein and carbohydrate-based antimicrobial food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Su L, Huang J, Li H, Pan Y, Zhu B, Zhao Y, Liu H. Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging. Int J Biol Macromol 2021; 172:231-240. [PMID: 33453253 DOI: 10.1016/j.ijbiomac.2021.01.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/29/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Photodynamic inactivation (PDI) is a novel sterilization technology that has proven effective in medicine. This study focused on applying PDI to food packaging, where chitosan (CS) films containing photosensitizing riboflavin (RB) were prepared via solution casting. The CS-RB composite films exhibited good ultraviolet (UV)-barrier properties, and had a visually appealing highly transparent yellow appearance. Scanning electron microscopy (SEM) confirmed even dispersion of RB throughout the CS film. The addition of RB led to improved film characteristics, including the thickness, mechanical properties, solubility, and water barrier properties. The CS-RB5 composite films produced sufficient singlet oxygen under blue LED irradiation for 2 h to inactivate two food-borne pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) and one spoilage bacteria (Shewanella baltica). The CS-RB composite films were assessed as a salmon packaging material, where inhibition of bacterial growth was observed. The film is biodegradable, and has the potential to alleviate the issues associated with the excessive use of petrochemical materials, such as environmental pollution and limited resources. The CS-RB composite films showed potential as a novel environmentally friendly packaging material for shelf-life extension of refrigerated food products.
Collapse
Affiliation(s)
- Linyue Su
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaming Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huihui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Beiwei Zhu
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
16
|
Simões LS, Abrunhosa L, Vicente AA, Ramos OL. Suitability of β-lactoglobulin micro- and nanostructures for loading and release of bioactive compounds. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|