1
|
Zhong H, Tang C, Li J, Cheng JH. Ultrasound-assisted cold plasma treatment reduces resistance to in vitro digestion of tropomyosin and Allergenicity of tropomyosin digestion products. Food Chem 2025; 473:143049. [PMID: 39864178 DOI: 10.1016/j.foodchem.2025.143049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Tropomyosin (TM), the primary allergen in crustacean aquatic products, has excellent thermal and digestive stability. In this work, the changes in digestive resistance of TM and allergenicity of TM digestion products induced by ultrasound-assisted cold plasma (UCP) treatment were investigated. The stability of TM to simulated digestion were reduced, especially the simulated intestinal fluid (SIF) digestive resistance. The analysis of TM allergenicity showed that the IgE binding capacity of digestion product of UCP treated TM was significantly reduced, from 68.13 % in TM group to 39.12 % in T10 group. Moreover, the level of degranulation, the intensity of intracellular Ca2+ and the concentrations of histamine, IL-4 and TNF-α decreased by 67.91 %, 68.06 %, 48.81 %, 57.19 % and 50.55 %, respectively, which demonstrated that UCP-treated TM resulted in lower degree of degranulation and cytokine secretion in KU812 cells. UCP treatment provide a new possibility to advance the development of shrimp products with low allergenicity.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Caidie Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
2
|
Chen B, He H, Wang X, Wu S, Wang Q, Zhang J, Qiao Y, Liu H. Research Progress on Shrimp Allergens and Allergenicity Reduction Methods. Foods 2025; 14:895. [PMID: 40077598 PMCID: PMC11899471 DOI: 10.3390/foods14050895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Shrimp are highly favored by consumers for their delicious taste and rich nutritional value. However, reports of allergic reactions caused by shrimp and its derivatives have been increasing, significantly impacting consumer health and posing a growing global food safety concern. This article introduces the structure and biochemical characteristics of major allergenic proteins in shrimp, including tropomyosin (TM), arginine kinase, sarcoplasmic calcium-binding protein, myosin light chain, troponin C, and hemocyanin. Currently, there is no effective treatment for shrimp allergies, and prevention is mainly achieved by avoiding consumption. The study of shrimp allergen sensitization reduction technology is of great significance to the development of hypoallergenic or desensitized products. The article provides a detailed overview of the effects of common processing techniques, including physical, chemical, biological, and combined methods, on the allergenicity of shrimp allergens; for instance, the binding rate to immunoglobulin E (IgE) was reduced by 73.59% after treating TM with high pressure (500 MPa) at 55 °C for 10 min and the recognition rate of TM to IgE decreased by 89.4% on average after treating TM with pepsin (30 μg/mL, pH 2) for 2 h. These techniques provide references for the development of hypoallergenic aquatic products or desensitized foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongjin Qiao
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.H.); (X.W.); (S.W.); (Q.W.); (J.Z.)
| | - Hongru Liu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.H.); (X.W.); (S.W.); (Q.W.); (J.Z.)
| |
Collapse
|
3
|
Qu X, Ma Z, Wu X, Lv L. Recent Advances of Processing and Detection Techniques on Crustacean Allergens: A Review. Foods 2025; 14:285. [PMID: 39856951 PMCID: PMC11764718 DOI: 10.3390/foods14020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Crustaceans are delicious and highly nutritional food. However, crustaceans are one of the main food allergens, causing severe public health issues. Thus, it is important to increase the knowledge on crustacean allergens and protect the health of sensitized individuals. This review systematically summarizes the basic information on major crustacean allergens' characteristics, structures, and function. It also summarizes the latest evaluation and detection methods of crustacean allergens. In addition, various processing techniques to alleviate crustacean's allergenicity are discussed and compared. A host of multiplex approaches as innovative research is attractive to decrease crustacean allergenicity. In addition, the strategies to address the risk of crustacean allergens are also reviewed and discussed in detail. This review provides updates and new findings on crustacean allergens, which helps better understand crustacean allergy and provide novel strategies for its prevention and management.
Collapse
Affiliation(s)
- Xin Qu
- Qingdao Municipal Center for Disease Control & Prevention, 175 Shandong Road Shibei District, Qingdao 266033, China;
| | - Zekun Ma
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| |
Collapse
|
4
|
Chen B, Xu X, Chen Y, Xie H, Zhang T, Mao X. Red Swamp Crayfish ( Procambarus clarkii) as a Growing Food Source: Opportunities and Challenges in Comprehensive Research and Utilization. Foods 2024; 13:3780. [PMID: 39682852 DOI: 10.3390/foods13233780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The red swamp crayfish (Procambarus clarkii) was introduced from Japan to China in the 1920s. Crayfish are now widely distributed in almost all types of freshwater wetlands, including rice fields, ditches, swamps, lakes, and ponds in most provinces of China, owing to their multi-directional movement, rapid growth, adaptability to the environment, and relatively high fecundity. The delectable taste and high nutritional value of crayfish have made them popular among consumers, leading to the significant development of red swamp crayfish farming in the last two decades. Currently, it represents the largest proportion of commercially farmed freshwater crustaceans in China and has become an integral component of China's aquatic economy. Crayfish are highly valued for their edibility and for their by-products, which have various important uses. This review discusses nutrient composition, active ingredients, safety evaluation, processing and preservation, and comprehensive utilization of crayfish by-products to explore and organize the existing knowledge about crayfish and to promote the growth of the crayfish industry. This comprehensive review aims to provide a basis for the optimal utilization and sustainable development of crayfish resources worldwide.
Collapse
Affiliation(s)
- Bimin Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xiaoqi Xu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yinji Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Hongkai Xie
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Tao Zhang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Yang J, Zhou S, Kuang H, Tang C, Song J. Edible insects as ingredients in food products: nutrition, functional properties, allergenicity of insect proteins, and processing modifications. Crit Rev Food Sci Nutr 2023; 64:10361-10383. [PMID: 37341655 DOI: 10.1080/10408398.2023.2223644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Edible insect products contain high-quality protein and other nutrients, including minerals and fatty acids. The consumption of insect food products is considered a future trend and a potential strategy that could greatly contribute to meeting food needs worldwide. However, insect proteins have the potential to be allergenic to insect consumers. In this review, the nutritional value and allergy risk of insect-derived foods, and the immune responses elicited by insect allergens are summarized and discussed. Tropomyosin and arginine kinase are the most important and widely known insect allergens, which induce Th2-biased immune responses and reduced the activity of CD4+T regulatory cells. Besides, food processing methods have been effectively improving the nutrients and characteristics of insect products. However, limited reviews systematically address the immune reactions to allergens present in edible insect proteins following treatment with food processing technologies. The conventional/novel food processing techniques and recent advances in reducing the allergenicity of insect proteins are discussed in this review, focusing on the structural changes of allergens and immune regulation.
Collapse
Affiliation(s)
- Jing Yang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Shuling Zhou
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Chunhong Tang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- School of Food Nutrition and Health (Hotpot) Modern Industry, Chongqing Technology and Business University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Zhao J, Timira V, Ahmed I, Chen Y, Wang H, Zhang Z, Lin H, Li Z. Crustacean shellfish allergens: influence of food processing and their detection strategies. Crit Rev Food Sci Nutr 2022; 64:3794-3822. [PMID: 36263970 DOI: 10.1080/10408398.2022.2135485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite the increasing popularity of crustacean shellfish among consumers due to their rich nutrients, they can induce a serious allergic response, sometimes even life-threatening. In the past decades, a variety of crustacean allergens have been identified to facilitate the diagnosis and management of crustacean allergies. Although food processing techniques can ease the risk of crustacean shellfish allergy, no available processing methods to tackle crustacean allergies thoroughly. Strict dietary avoidance of crustacean shellfish and its component is the best option for the protection of sensitized individuals, which should rely on the compliance of food labeling and, as such, on their verification by sensitive, reliable, and accurate detection techniques. In this present review, the physiochemical properties, structure aspects, and immunological characteristics of the major crustacean allergens have been described and discussed. Subsequently, the current research progresses on how various processing techniques cause the alterations and modifications in crustacean allergens to produce hypoallergenic crustacean food products were summarized and discussed. Particularly, various analytical methodologies employed in crustacean shellfish allergen detection, and the effect of food processing and matrix on these techniques, are also herein emphasized for the appropriate selection of analytical detection tools to safeguard consumers safety.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Yan Chen
- China National Center for Food Safety Risk Assessment, Chaoyang District, Beijing, P.R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
7
|
Sun N, Liu Y, Liu K, Wang S, Liu Q, Lin S. Gastrointestinal fate of food allergens and its relationship with allergenicity. Compr Rev Food Sci Food Saf 2022; 21:3376-3404. [PMID: 35751399 DOI: 10.1111/1541-4337.12989] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023]
Abstract
Food allergens are closely related to their gastrointestinal digestion fate, but the changes in food allergens during digestion and related mechanisms are quite complicated. This review presents in detail digestion models for predicting allergenicity, the fates of food allergens in oral, gastric and duodenal digestion, and the applications of digestomics in mapping IgE-binding epitopes of digestion-resistant peptides. Moreover, this review highlights the structure-activity relationships of food allergens during gastrointestinal digestion. Digestion-labile allergens may share common structural characteristics, such as high flexibility, rendering them easier to be hydrolyzed into small fragments with decreased or eliminated allergenicity. In contrast, the presence of disulfide bonds, tightly wound α-helical structures, or hydrophobic domains in food allergens helps them resist gastrointestinal digestion, stabilizing IgE-binding epitopes, thus maintaining their sensitization. In rare cases, digestion leads to increased allergenicity due to exposure of new epitopes. Finally, the action of the food matrix and processing on the digestion and allergenicity of food allergens as well as the underlying mechanisms was overviewed. The food matrix can directly act on the allergen by forming complexes or new epitopes to affect its gastrointestinal digestibility and thereby alter its allergenicity or indirectly affect the allergenicity by competing for enzymatic cleavage or influencing gastrointestinal pH and microbial flora. Several processing techniques attenuate the allergenicity of food proteins by altering their conformation to improve susceptibility to degradation by digestive enzymes. Given the complexity of food components, the food itself rather than a single allergen should be used to obtain more accurate data for allergenicity assessment. PRACTICAL APPLICATION: The review article will help to understand the relationship between food protein digestion and allergenicity, and may provide fundamental information for evaluating and reducing the allergenicity of food proteins.
Collapse
Affiliation(s)
- Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Yao Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Kexin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Shan Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Qiaozhen Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
8
|
Roobab U, Fidalgo LG, Arshad RN, Khan AW, Zeng XA, Bhat ZF, Bekhit AEDA, Batool Z, Aadil RM. High-pressure processing of fish and shellfish products: Safety, quality, and research prospects. Compr Rev Food Sci Food Saf 2022; 21:3297-3325. [PMID: 35638360 DOI: 10.1111/1541-4337.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
Seafood products have been one of the main drivers behind the popularity of high-pressure processing (HPP) in the food industry owing to a high demand for fresh ready-to-eat seafood products and food safety. This review provides an overview of the advanced knowledge available on the use of HPP for production of wholesome and highly nutritive clean label fish and shellfish products. Out of 653 explored items, 65 articles published during 2016-2021 were used. Analysis of the literature showed that most of the earlier work evaluated the HPP effect on physicochemical and sensorial properties, and limited information is available on nutritional aspects. HPP has several applications in the seafood industry. Application of HPP (400-600 MPa) eliminates common seafood pathogens, such as Vibrio and Listeria spp., and slows the growth of spoilage microorganisms. Use of cold water as a pressure medium induces minimal changes in sensory and nutritional properties and helps in the development of clean label seafood products. This technology (200-350 MPa) is also useful to shuck oysters, lobsters, crabs, mussels, clams, and scallops to increase recovery of the edible meat. High-pressure helps to preserve organoleptic and functional properties for an extended time during refrigerated storage. Overall, HPP helps seafood manufacturers to maintain a balance between safety, quality, processing efficiency, and regulatory compliance. Further research is required to understand the mechanisms of pressure-induced modifications and clean label strategies to minimize these modifications.
Collapse
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong, China
| | - Liliana G Fidalgo
- Department of Technology and Applied Sciences, School of Agriculture, Polytechnic Institute of Beja, Beja, Portugal.,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Abdul Waheed Khan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-Jammu, Jammu and Kashmir, India
| | - Ala El-Din A Bekhit
- Department of Food Sciences, University of Otago, Dunedin, Otago, New Zealand
| | - Zahra Batool
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
9
|
Chen G, Wu C, Chen X, Yang Z, Yang H. Studying the effects of high pressure-temperature treatment on the structure and immunoreactivity of β-lactoglobulin using experimental and computational methods. Food Chem 2022; 372:131226. [PMID: 34627095 DOI: 10.1016/j.foodchem.2021.131226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022]
Abstract
The effects of high hydrostatic pressure (HHP) on the conformation and immunoreactivity of bovine β-lactoglobulin (BLG) were studied. BLG was treated under 100-600 MPa at the temperature of 20-60 °C. The immunoglobulin E (IgE) binding ability of BLG decreased when the pressure increased from 0.1 to 200 MPa. However, the IgE binding increased with the increase in pressure from 200 to 400 MPa, followed by a gradual decrease until a pressure of 600 MPa. The IgE binding ability continuously decreased with an increase in pressure at 60 °C. The conformation of HHP-treated BLG was evaluated using fluorescence spectroscopy, circular dichroism spectroscopy and molecular dynamics (MD) simulation. Increasing the temperature and pressure promoted the unfolding of BLG, causing the disappearance of some α-helixes and some β-sheets. Based on ELISA analysis, it was revealed that HHP-termperature treatment altered the immunoreactivity of BLG by altering the structures and conformational states of BLG.
Collapse
Affiliation(s)
- Gang Chen
- School of Agriculture and Food Science, Zhejiang Agriculture and Forest University, 666, Wusu Street, Hangzhou 311300, Zhejiang, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 11 Fucheng Rd., 100048, China
| | - Chenyu Wu
- School of Agriculture and Food Science, Zhejiang Agriculture and Forest University, 666, Wusu Street, Hangzhou 311300, Zhejiang, China
| | - Xiaojie Chen
- School of Food science and Technology, Henan University of Technology, Zhengzhou, 100 Lianhua St., China
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 11 Fucheng Rd., 100048, China
| | - Huqing Yang
- School of Agriculture and Food Science, Zhejiang Agriculture and Forest University, 666, Wusu Street, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
10
|
Cheng JH, Wang H, Sun DW. An overview of tropomyosin as an important seafood allergen: Structure, cross-reactivity, epitopes, allergenicity, and processing modifications. Compr Rev Food Sci Food Saf 2021; 21:127-147. [PMID: 34954871 DOI: 10.1111/1541-4337.12889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/19/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
Tropomyosin (TM) is a major allergen in crustaceans, which often causes allergy and is fatal to some consumers. Currently, the most effective treatment is to avoid ingesting TM, although most adverse events occur in accidental ingestion. In this review, the molecular characterization, epitopes, cross-reactivity, and pathogenesis of TM are introduced and elucidated. Modification of TM by traditional processing methods such as heat treatment and enzymatic hydrolysis, and innovative processing technologies including high-pressure treatment, cold plasma (CP), ultrasound, pulsed electric field (PEF), pulsed ultraviolet, microwave and irradiation are discussed in detail. Particularly, enzymolysis, PEF, and CP technologies show great potential for modifying TM and more studies are needed to verify their effectiveness for the seafood industry. Possible mechanisms and the advantages/disadvantages of these technologies for the mitigation of TM allergenicity are also highlighted. Further work should be conducted to investigate the allergenicity caused by protein segments such as epitopes, examine the interaction sites between the allergen and the processing techniques and reveal the reduction mechanism of allergenicity.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Huifen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Belfield, Ireland
| |
Collapse
|
11
|
Laurchan P, E-Kobon T, Srisapoome P, Unajak S, Sinthuvanich C. Molecular Characterization and Cross-Allergenicity of Tropomyosin from Freshwater Crustaceans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8247-8256. [PMID: 34255496 DOI: 10.1021/acs.jafc.1c00934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tropomyosin is a major allergen responsible for cross-allergenicity in a number of shellfish species. Although extensively characterized in marine crustaceans, the information of tropomyosin is limited to a few freshwater crustacean species. As a result, more cross-reactivity evidence and information of tropomyosin at the molecular level are required for the detection of freshwater crustaceans in the food industry. In this study, we explored tropomyosin allergenicity in four freshwater crustacean species: prawn (Macrobrachium rosenbergii and Macrobrachium lanchesteri) and crayfish (Procambarus clarkii and Cherax quadricarinatus). Immunoblotting, liquid chromatography-tandem mass spectrometry, and immunoprecipitation studies indicated that tropomyosin was recognized by the sera's IgE of crustacean-allergic volunteers. Cloning and characterization of nucleotide sequences of tropomyosin cDNA from M. lanchesteri and C. quadricarinatus revealed highly conserved amino acid sequences with other crustaceans. This study emphasized the role of tropomyosin as a universal marker for the detection of both freshwater and marine crustaceans in the food industry.
Collapse
Affiliation(s)
- Panyarat Laurchan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 19000, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 19000, Thailand
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 19000, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 19000, Thailand
| | - Chomdao Sinthuvanich
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 19000, Thailand
| |
Collapse
|
12
|
Cong Y, Li Y, Li L. Immunoglobulin E and immunoglobulin G cross-reactive allergens and epitopes between cow milk α S1-casein and soybean proteins. J Dairy Sci 2020; 103:9815-9824. [PMID: 32896409 DOI: 10.3168/jds.2020-18250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Some infants allergic to cow milk-based formula are also sensitive to soybean-based formula. This paper aimed to explore the association of IgE and IgG cross-reactivity between αS1-casein in cow milk (CM) and soybean proteins. The IgE and IgG cross-reactive allergens and epitopes were identified using sera from infants allergic to CM or mice monoclonal antibodies. The AA sequence alignment was performed using bioinformatics software. Finally, the digestion and heating stability of the cross-reactive allergen were explored by sodium dodecyl sulfate (SDS)-PAGE and Western blotting. The results showed that the IgE and IgG cross-reactive allergen was α subunit of β-conglycinin named Gly m Bd 60K. The IgE and IgG epitopes were the sequences at AA 319-341 and AA 164-182. No intact Gly m Bd 60K allergen could be observed after 2 min in simulated gastric fluid by SDS-PAGE. Heating did not change IgE and IgG cross-reactivity by Western blotting. Therefore, the existence of cross-reactivity between CM αS1-casein and soybean proteins possibly contributes to the frequently observed cosensitization for these allergens in cow milk-allergic patients. The same IgE- and IgG-binding epitopes of cross-reactive allergens may provide important information for elucidation of the association between IgG and IgE antibody generation.
Collapse
Affiliation(s)
- Yanjun Cong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food and Health, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Ye Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food and Health, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Beijing 100050, P. R. China
| |
Collapse
|
13
|
Maity S, Bhakta S, Bhowmik M, Sircar G, Bhattacharya SG. Identification, cloning, and immunological studies on a major eggplant (Solanum melongena L.) allergen Sola m 1: A new member of profilin allergen family. Mol Immunol 2020; 118:210-221. [DOI: 10.1016/j.molimm.2019.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 11/17/2022]
|
14
|
Faisal M, Dargahi N, Vasiljevic T, Donkor ON. Immunomodulatory properties of selectively processed prawn protein fractions assessed using human peripheral blood mononuclear cells. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Md Faisal
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| | - Narges Dargahi
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| | - Osaana N. Donkor
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| |
Collapse
|