1
|
Maojin T, Zheng Z, Ying H, Yanyan H, Liang Z. Bacterial Spore Inactivation Technology in Solid Foods: A Review. J Food Prot 2025; 88:100479. [PMID: 40081811 DOI: 10.1016/j.jfp.2025.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
In response to physiological stress, some bacterial strains have the ability to produce spores that are able to resist conventional food heating processes and even more extreme environmental factors. Dormant spores can germinate and return to their vegetative state during food preservation, leading to food spoilage, or safety issues that pose a risk to human health. Thus, spore inactivation technology is gaining more and more attention. Several techniques have been used in liquid foods to efficiently inactivate spores, including novel thermal and nonthermal treatments. However, solid foods have unique characteristics that make it challenging to achieve the same spore inactivation effect as in previous liquid food studies. Therefore, exploring the effectiveness of spore inactivation techniques in solid foods is of great significance, and clarifying the mechanism for deactivating spore through related techniques is informative in enhancing the effectiveness of spore deactivation in solid foods. This article reviews the practical applications of spore inactivation technology in solid foods.
Collapse
Affiliation(s)
- Tian Maojin
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zhou Zheng
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Hu Ying
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Han Yanyan
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Zhou Liang
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China.
| |
Collapse
|
2
|
Leishangthem C, Mujumdar AS, Xiao HW, Sutar PP. Intrinsic and extrinsic factors influencing Bacillus cereus spore inactivation in spices and herbs: Thermal and non-thermal sterilization approaches. Compr Rev Food Sci Food Saf 2025; 24:e70056. [PMID: 39676487 DOI: 10.1111/1541-4337.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 12/17/2024]
Abstract
The presence of Bacillus cereus in spices and herbs has posed a detrimental effect on food safety. The absence of thorough testing, comprehensive reporting, and vigilant surveillance of the illness has resulted in a significant underestimation of the true prevalence of foodborne illness caused by B. cereus. B. cereus spores are resistant to thermal processing (superheated steam, microwave, radiofrequency, infrared) that remains a significant challenge for the spice industry. Non-thermal techniques, such as cold plasma, gamma irradiation, and electron beam irradiation, have gained significant interest for their ability to inactivate B. cereus spores. However, these technologies are constrained by inherent limitations. The composition of B. cereus spores, including dipicolinic acid, divalent cations, and low water content in the core, contributes significantly to their resistance properties. This review delves into the different factors that impact B. cereus spores in spices and herbs during sterilization, considering both intrinsic and extrinsic factors. This review also discussed the various techniques for inactivating B. cereus spores from spices and highlighted their effectiveness and constraints. It also provides valuable insights for enhancing sterilization strategies in the spices and herbs industry.
Collapse
Affiliation(s)
- Chinglen Leishangthem
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - A S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - P P Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
3
|
Karuppuchamy V, Heldman DR, Snyder AB. A review of food safety in low-moisture foods with current and potential dry-cleaning methods. J Food Sci 2024; 89:793-810. [PMID: 38221802 DOI: 10.1111/1750-3841.16920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Food is one of the basic needs of human life. With the increasing population, the production and supply of safe and quality foods are critical. Foods can be classified into different categories including low moisture, intermediate moisture, and high moisture content. Historically, low-moisture foods have been considered safe for human consumption due to the limited amount of moisture for microbial activity. Recalls of these foods due to pathogens such as Salmonella and undeclared allergens have brought attention to the need for improved cleaning and sanitization in dry food manufacturing facilities. In the food industry, cleaning and sanitation activities are the most efficient methods to prevent microbial contamination; however, water is most often required to deliver cleaning and sanitation agents. A well-written and properly implemented sanitation standard operating procedure can take care of microbial and allergen cross-contamination. Nevertheless, there are unique challenges to cleaning and sanitation processes for low-moisture food manufacturing facilities. The introduction of moisture into a low-moisture food environment increases the likelihood of cross-contamination by microbial pathogens. Hence, the use of water during cleaning and sanitation of dry food manufacturing facilities should be limited. However, much less research has been done on these dry methods compared to wet sanitation methods. This review discusses recent foodborne outbreaks and recalls associated with low-moisture foods the accepted methods for cleaning and sanitation in dry food manufacturing facilities and the limitations of these methods. The potential for air impingement as a dry-cleaning method is also detailed.
Collapse
Affiliation(s)
- Veeramani Karuppuchamy
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Dennis R Heldman
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Abigail B Snyder
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Geng Z, Ye P, Zhou L, Fu H, Chen X, Wang Y, Wang Y. Pasteurization of Salmonella spp. in black fungus ( Auricularia auricula) powder by radio frequency heating. FOOD SCI TECHNOL INT 2024; 30:3-17. [PMID: 36065562 DOI: 10.1177/10820132221123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radio frequency (RF) heating has been studied to inactivate bacteria in some powder foods. In this study, a 6 kW, 27.12 MHz RF system was used to pasteurize Salmonella in black fungus (Auricularia auricula) powder. The effects of different conditions (initial aw, electrodes gaps, particle sizes) on RF heating rate and uniformity were investigated. The results showed that RF heating rate was significantly (p < 0.05) improved with decreasing electrodes gap and increasing initial aw, and the heating rate was the slowest when the particle size was 120-160 mesh. However, these factors had no significant (p > 0.05) influence on heating uniformity. RF pasteurization of Salmonella in black fungus powder was also studied. The results showed that, to inactivate Salmonella for 5 log reductions in the cold spot (the center of surface layer), the time needed and bacteria heat resistance at designated temperature (65, 75, 85 °C) decreased with increasing aw, and the first order kinetics and Weibull model could be used to fit inactivation curves of Salmonella with well goodness. Quality analysis results showed that although RF pasteurization had no significant (p > 0.05) effect on Auricularia auricula polysaccharide (AAP) and total polyphenols, obvious changes were found on color. Results suggested that RF pasteurization can be considered as an effective pasteurization method for black fungus powder.
Collapse
Affiliation(s)
- Zheng Geng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Liangfu Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Popa EE, Ungureanu EL, Geicu-Cristea M, Mitelut AC, Draghici MC, Popescu PA, Popa ME. Trends in Food Pathogens Risk Attenuation. Microorganisms 2023; 11:2023. [PMID: 37630583 PMCID: PMC10459359 DOI: 10.3390/microorganisms11082023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Foodborne pathogens represent one of the most dangerous threats to public health along the food chain all over the world. Over time, many methods were studied for pathogen inhibition in food, such as the development of novel packaging materials with enhanced properties for microorganisms' growth inhibition (coatings, films) and the use of emerging technologies, like ultrasound, radio frequency or microwave. The aim of this study was to evaluate the current trends in the food industry for pathogenic microorganisms' inhibition and food preservation in two directions, namely technology used for food processing and novel packaging materials development. Five technologies were discussed in this study, namely high-voltage atmospheric cold plasma (HVACP), High-Pressure Processing (HPP), microwaves, radio frequency (RF) heating and ultrasound. These technologies proved to be efficient in the reduction of pathogenic microbial loads in different food products. Further, a series of studies were performed, related to novel packaging material development, by using a series of antimicrobial agents such as natural extracts, bacteriocins or antimicrobial nanoparticles. These materials proved to be efficient in the inhibition of a wide range of microorganisms, including Gram-negative and Gram-positive bacteria, fungi and yeasts.
Collapse
Affiliation(s)
- Elisabeta Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Elena Loredana Ungureanu
- National Research and Development Institute for Food Bioresources, 6 Dinu Vintila Str., 021102 Bucharest, Romania
| | - Mihaela Geicu-Cristea
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Amalia Carmen Mitelut
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mihaela Cristina Draghici
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Paul Alexandru Popescu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| | - Mona Elena Popa
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania; (M.G.-C.); (A.C.M.); (M.C.D.); (P.A.P.); (M.E.P.)
| |
Collapse
|
6
|
Wang L, Kang J, Zhu C, Zhou Z, Wang S, Huang Z. Modeling the RF heating uniformity contributed by a rotating turntable. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Xu J, Xu Y, Guan X, Yang G, Wang S. Effects of sequential treatments using radio frequency energy and ultraviolet light on inactivation of Bacillus cereus spores and quality attributes of buckwheat. Int J Food Microbiol 2023; 385:109997. [DOI: 10.1016/j.ijfoodmicro.2022.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
8
|
Alonso VPP, Gonçalves MPMBB, de Brito FAE, Barboza GR, Rocha LDO, Silva NCC. Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods. Compr Rev Food Sci Food Saf 2023; 22:688-713. [PMID: 36464983 DOI: 10.1111/1541-4337.13089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/09/2022]
Abstract
Bacterial biofilm formation in low moisture food processing (LMF) plants is related to matters of food safety, production efficiency, economic loss, and reduced consumer trust. Dry surfaces may appear dry to the naked eye, however, it is common to find a coverage of thin liquid films and microdroplets, known as microscopic surface wetness (MSW). The MSW may favor dry surface biofilm (DSB) formation. DSB formation is similar in other industries, it occurs through the processes of adhesion, production of extracellular polymeric substances, development of microcolonies and maturation, it is mediated by a quorum sensing (QS) system and is followed by dispersal, leading to disaggregation. Species that survive on dry surfaces develop tolerance to different stresses. DSB are recalcitrant and contribute to higher resistance to sanitation, becoming potential sources of contamination, related to the spoilage of processed products and foodborne disease outbreaks. In LMF industries, sanitization is performed using physical methods without the presence of water. Although alternative dry sanitizing methods can be efficiently used, additional studies are still required to develop and assess the effect of emerging technologies, and to propose possible combinations with traditional methods to enhance their effects on the sanitization process. Overall, more information about the different technologies can help to find the most appropriate method/s, contributing to the development of new sanitization protocols. Thus, this review aimed to identify the main characteristics and challenges of biofilm management in low moisture food industries, and summarizes the mechanisms of action of different dry sanitizing methods (alcohol, hot air, UV-C light, pulsed light, gaseous ozone, and cold plasma) and their effects on microbial metabolism.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Maria Paula M B B Gonçalves
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Giovana Rueda Barboza
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
9
|
Torki Baghbadorani S, Rahimi E, Shakerian A. Investigation of Virulence and Antibiotic-Resistance of Bacillus cereus Isolated from Various Spices. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:8390778. [PMID: 37200773 PMCID: PMC10188258 DOI: 10.1155/2023/8390778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/15/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Spices and herbs are potential vectors for virulent and pathogenic micro-organisms, which cause illness in consumers, contribute to spoilage, and reduce the durability of foodstuffs. The present study aims to provide relevant data about virulence and antibiotic resistance of Bacillus cereus isolated from various spices. A total of 200 samples of 8 types of spices (black pepper, chilli, white pepper, cumin, cinnamon, turmeric, curry powder, and sumac) were collected from various markets, retail shops, and sucuk production premises located in the Isfahan province of Iran. Presumptive B. cereus strains were obtained using Bacara Agar plates after enrichment in saline peptone water and final colonies were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Enterotoxin (HBL) and nonhaemolytic enterotoxin (NHE) production were assessed using the Duopath® Cereus Enterotoxins Test kit. The Kirby-Bauer disc diffusion method was applied as antibiotics susceptibility test. PCR was used to detect Emetic toxin gene (CES and CER) and enterotoxigenic toxin gene (cytK, nheA, hblC, and entFM). Results show a significant prevalence of B. cereus (42%) in spices. However, the spices meet food safety recommendations (<104 cfu/g). Antibiotics susceptibility test show alarming rate of resistance to beta-lactam antibiotics specially ampicillin (83.33%) and penicillin (82.14%). Concerning the toxin producing capacity more than half of the isolates (51.19%) produce NHE toxin and 27.38% produce HBL toxin. The most abundant gene were nheA, nheB, and nheC and a combination of 4 genes (entFM, nheA, hblC, and cytK) was detected in many isolates. In conclusion, the presence of multidrug resistant B. cereus strains carrying diarrhoeal toxin-encoding genes in spices intended for human consumption represents a serious health hazard. These results indicate the need for regular surveillance of the occurrence of B. cereus strains in spices and food products in Iran.
Collapse
Affiliation(s)
- Sahar Torki Baghbadorani
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ebrahim Rahimi
- Research Center of Nutrition and Organic Products, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Amir Shakerian
- Research Center of Nutrition and Organic Products, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
10
|
Obileke K, Onyeaka H, Miri T, Nwabor OF, Hart A, Al‐Sharify ZT, Al‐Najjar S, Anumudu C. Recent advances in radio frequency, pulsed light, and cold plasma technologies for food safety. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- KeChrist Obileke
- Department of Physics, Renewable Energy Research Centre University of Fort Hare Alice Eastern Cape South Africa
| | - Helen Onyeaka
- School of Chemical Engineering University of Birmingham Birmingham UK
| | - Taghi Miri
- School of Chemical Engineering University of Birmingham Birmingham UK
| | - Ozioma Forstinus Nwabor
- Natural Products Research Centre of Excellence, Division of Biological Science Prince of Songkla University Hat Yai Songkhla Thailand
| | - Abarasi Hart
- Department of Chemical and Biological Engineering University of Sheffield Sheffield South Yorkshire UK
| | - Zainab T. Al‐Sharify
- School of Chemical Engineering University of Birmingham Birmingham UK
- Environmental Engineering Department Mustansiriyah University Baghdad Iraq
| | - Shahad Al‐Najjar
- Chemical Engineering Department Al‐Nahrian University Baghdad Iraq
| | - Christian Anumudu
- School of Chemical Engineering University of Birmingham Birmingham UK
| |
Collapse
|
11
|
Morasi RM, Rall VLM, Dantas STA, Alonso VPP, Silva NCC. Salmonella spp. in low water activity food: Occurrence, survival mechanisms, and thermoresistance. J Food Sci 2022; 87:2310-2323. [PMID: 35478321 DOI: 10.1111/1750-3841.16152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/17/2023]
Abstract
The occurrence of disease outbreaks involving low-water-activity (aw ) foods has gained increased prominence due in part to the fact that reducing free water in these foods is normally a measure that controls the growth and multiplication of pathogenic microorganisms. Salmonella, one of the main bacteria involved in these outbreaks, represents a major public health problem worldwide and in Brazil, which highlights the importance of good manufacturing and handling practices for food quality. The virulence of this pathogen, associated with its high ability to persist in the environment, makes Salmonella one of the main challenges for the food industry. The objectives of this article are to present the general characteristics, virulence, thermoresistance, control, and relevance of Salmonella in foodborne diseases, and describe the so-called low-water-activity foods and the salmonellosis outbreaks involving them.
Collapse
Affiliation(s)
- Rafaela Martins Morasi
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Vera Lúcia Mores Rall
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Stéfani Thais Alves Dantas
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Vanessa Pereira Perez Alonso
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Reduction of E. coli O157: H7 and Bacillus cereus levels in red pepper powder using dielectric barrier discharge (DBD) plasma for enhanced quality. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Tong T, Wang P, Shi H, Li F, Jiao Y. Radio frequency inactivation of E. coli O157: H7 and Salmonella Typhimurium ATCC 14028 in black pepper (piper nigrum) kernels: Thermal inactivation kinetic study and quality evaluation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Inhibition of the fishy odor from boiled crab meatballs during storage via novel combination of radio frequency and carbon dots. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Liu S, Wei X, Tang J, Qin W, Wu Q. Recent developments in low-moisture foods: microbial validation studies of thermal pasteurization processes. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34927484 DOI: 10.1080/10408398.2021.2016601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Outbreaks associated with low-moisture foods (e.g., wheat flour, nuts, and cereals) have urged the development of novel technologies and re-validation of legacy pasteurization process. For various thermal pasteurization processes, they share same scientific facts (e.g., bacterial heat resistance increased at reduced water activity) and guidelines. However, they also face specific challenges because of their different heat transfer mechanisms, processing conditions, or associated low-moisture foods' formulations. In this article, we first introduced the general structural for validating a thermal process and the shared basic information that would support our understanding of the key elements of each thermal process. Then, we reviewed the current progress of validation studies of 7 individual heating technologies (drying roasting, radiofrequency-assisted pasteurization, superheated steam, etc.) and the combined treatments (e.g., infrared and hot air). Last, we discussed knowledge gaps that require more scientific data in the future studies. We aimed to provide a process-centric view point of thermal pasteurization studies of low-moisture foods. The information could provide detailed protocol for process developers, operators, and managers to enhance low-moisture foods safety.
Collapse
Affiliation(s)
- Shuxiang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Institute of Food Processing and Safety, School of Food Science, Sichuan Agricultural University, Sichuan, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| | - Wen Qin
- Institute of Food Processing and Safety, School of Food Science, Sichuan Agricultural University, Sichuan, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
16
|
Jiao S, Zhang H, Liao M, Hayouka Z, Jing P. Investigation of the potential direct and cross protection effects of sublethal injured Salmonella Typhimurium induced by radio frequency heating stress. Food Res Int 2021; 150:110789. [PMID: 34865804 DOI: 10.1016/j.foodres.2021.110789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/22/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
Many studies demonstrated that radio frequency (RF) was an effective pasteurization method for low-moisture foods (LMFs), and our previous study confirmed RF heating stress generated sublethal injured cells (SICs) of Salmonella enterica serovar Typhimurium (S. Typhimurium) in red pepper powder with initial aw ≥ 0.53. So this study investigated the potential direct protection and cross protection effects of the SICs of S. Typhimurium to multiple stresses, and analyzed fatty acid composition and cell morphology. Results showed that the SICs were repaired after incubating for 5 h, and there were no obvious direct and cross protection effects by exposing to different external stresses (heat, 15% ethanol, pH 3.0 acid buffer solution, 10% salt). According to the fatty acid composition analysis, no significant difference (p > 0.05) between the ratio of unsaturated to saturated fatty acids (UFA/SFA) was observed for SICs of S. Typhimurium and control cells, indicating the same membrane fluidity which can support the experimental results. This study investigated and confirmed there are no direct and cross protection effects for the SICs of S. Typhimurium induced by RF heating stress, and it would be helpful for deeply understand the response of pathogens under RF heating stress.
Collapse
Affiliation(s)
- Shunshan Jiao
- SJTU-OSU Innovation Center for Environmental Sustainability and Food Control, Shanghai Food Safety and Engineering Technology Research Center, Key Laboratory of Urban Agriculture, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Hangjin Zhang
- SJTU-OSU Innovation Center for Environmental Sustainability and Food Control, Shanghai Food Safety and Engineering Technology Research Center, Key Laboratory of Urban Agriculture, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Meiji Liao
- SJTU-OSU Innovation Center for Environmental Sustainability and Food Control, Shanghai Food Safety and Engineering Technology Research Center, Key Laboratory of Urban Agriculture, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Pu Jing
- SJTU-OSU Innovation Center for Environmental Sustainability and Food Control, Shanghai Food Safety and Engineering Technology Research Center, Key Laboratory of Urban Agriculture, Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
17
|
Ultrasonic-assisted supercritical CO2 inactivation of bacterial spores and effect on the physicochemical properties of oil-in-water emulsions. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Gomez-Gomez A, Brito-de la Fuente E, Gallegos C, Garcia-Perez JV, Benedito J. Combination of supercritical CO 2 and high-power ultrasound for the inactivation of fungal and bacterial spores in lipid emulsions. ULTRASONICS SONOCHEMISTRY 2021; 76:105636. [PMID: 34192660 PMCID: PMC8254120 DOI: 10.1016/j.ultsonch.2021.105636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 05/28/2023]
Abstract
For the first time, this study addresses the intensification of supercritical carbon dioxide (SC-CO2) treatments using high-power ultrasound (HPU) for the inactivation of fungal (Aspergillus niger) and bacterial (Clostridium butyricum) spores in oil-in-water emulsions. The inactivation kinetics were analyzed at different pressures (100, 350 and 550 bar) and temperatures (50, 60, 70, 80, 85 °C), depending on the microorganism, and compared to the conventional thermal treatment. The inactivation kinetics were satisfactorily described using the Weibull model. Experimental results showed that SC-CO2 enhanced the inactivation level of both spores when compared to thermal treatments. Bacterial spores (C.butyricum) were found to be more resistant to SC-CO2 + HPU, than fungal (A.niger) ones, as also observed in the thermal and SC-CO2 treatments. The application of HPU intensified the SC-CO2 inactivation of C.butyricum spores, e.g. shortening the total inactivation time from 10 to 3 min at 85 °C. However, HPU did not affect the SC-CO2 inactivation of A.niger spores. The study into the effect of a combined SC-CO2 + HPU treatment has to be necessarily extended to other fungal and bacterial spores, and future studies should elucidate the impact of HPU application on the emulsion's stability.
Collapse
Affiliation(s)
- Angela Gomez-Gomez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain
| | - Edmundo Brito-de la Fuente
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Pharmaceuticals & Device Division, Bad Homburg, Germany
| | - Críspulo Gallegos
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Pharmaceuticals & Device Division, Bad Homburg, Germany
| | - Jose V Garcia-Perez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain
| | - Jose Benedito
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain.
| |
Collapse
|
19
|
Effect of radio frequency processing on physical, chemical, rheological and bread-baking properties of white and whole wheat flour. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Deng LZ, Sutar PP, Mujumdar AS, Tao Y, Pan Z, Liu YH, Xiao HW. Thermal Decontamination Technologies for Microorganisms and Mycotoxins in Low-Moisture Foods. Annu Rev Food Sci Technol 2021; 12:287-305. [PMID: 33317321 DOI: 10.1146/annurev-food-062220-112934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The contamination risks of microorganisms and mycotoxins in low-moisture foods have heightened public concern. Developing novel decontamination technologies to improve the safety of low-moisture foods is of great interest in both economics and public health. This review summarizes the working principles and applications of novel thermal decontamination technologies such as superheated steam, infrared, microwave, and radio-frequency heating as well as extrusion cooking. These methods of decontamination can effectively reduce the microbial load on products andmoderately destruct the mycotoxins. Meanwhile, several integrated technologies have been developed that take advantage of synergistic effects to achieve the maximum destruction of contaminants and minimize the deterioration of products.
Collapse
Affiliation(s)
- Li-Zhen Deng
- College of Engineering, China Agricultural University, 100083 Beijing, China; .,State Key Laboratory of Food Science and Technology, Nanchang University, 330047 Nanchang, China
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, USA
| | - Yan-Hong Liu
- College of Engineering, China Agricultural University, 100083 Beijing, China;
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, 100083 Beijing, China;
| |
Collapse
|
21
|
Jantapirak S, Takahashi C, Uemura K. Effect of radiofrequency heating of vacuum-packed nitrite-free sausage on quality properties and microorganism inactivation. Biosci Biotechnol Biochem 2021; 85:907-915. [PMID: 33580680 DOI: 10.1093/bbb/zbaa099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/30/2020] [Indexed: 11/14/2022]
Abstract
The effect of radiofrequency (RF) heating technology at 27 MHz and 8 kW on the quality properties of vacuum-packed nitrite-free sausages was investigated. One of the several advantages of RF heating technology is the use of less time compared to retort heating. RF heating at 125 °C for a holding time of 2 min and retort heating at 121 °C for 7 min reduced Bacillus subtilis to 7 log cfu/g. In addition, the textural properties of the RF-heated sausages were better than those of retort-heated samples. Furthermore, the growth of B. subtilis and general live bacteria at 25 °C were not detected after 42 days of shelf life in the sausages that underwent RF heating at 125 °C with a holding time of 2 min.
Collapse
Affiliation(s)
- Suveena Jantapirak
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan.,Department of Food Processing and Preservation, Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
| | - Chieko Takahashi
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kunihiko Uemura
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
22
|
Fan X, Baik J, Gurtler JB. Thermal Reduction of Bacillus spp. in Naturally Contaminated Mesquite Flour with Two Different Water Activities. J Food Prot 2021; 84:490-496. [PMID: 33125042 DOI: 10.4315/jfp-20-268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Mesquite flour with endogenous high sugar content is often contaminated with Bacillus cereus. The purpose of the present study was to evaluate the thermal resistance of Bacillus spp. in naturally contaminated mesquite flour. Flours with and without adjusted water activity (aw) were treated at various temperatures (100 to 140°C) and times (up to 2 h). Total mesophilic bacteria and Bacillus spp. were enumerated using tryptic soy agar and Brilliance Bacillus cereus Agar, respectively. Results revealed that naturally contaminated Bacillus spp. and other mesophilic bacteria in mesquite flour (aw = 0.34) were highly resistant to heat. To reduce the initial populations (4.75 log CFU/g) of Bacillus spp. to nondetectable levels (<1.18 log CFU/g), thermal treatments of 120°C for 2 h were required. D100°C-values for total mesophilic bacteria were 5.6-fold higher than those of Bacillus spp. With increasing treatment temperature, the difference in D-value between total mesophilic bacteria and Bacillus spp. became smaller. When the aw of flour was adjusted from 0.34 to 0.71, the D-values for Bacillus decreased significantly. Treatment at 100°C for 1 h reduced Bacillus spp. populations to nondetectable levels. Our results demonstrate that naturally present Bacillus spp. in flour are highly resistant to heat, whereas increasing the aw increased their heat sensitivity. The high thermal resistance of microbes in mesquite flour warrants further investigations. HIGHLIGHTS
Collapse
Affiliation(s)
- Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0003-1656-7522 [X.F.]; https://orcid.org/0000-0001-5844-7794 [J.B.G.])
| | - Jessica Baik
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0003-1656-7522 [X.F.]; https://orcid.org/0000-0001-5844-7794 [J.B.G.])
| | - Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA (ORCID: https://orcid.org/0000-0003-1656-7522 [X.F.]; https://orcid.org/0000-0001-5844-7794 [J.B.G.])
| |
Collapse
|
23
|
Xu J, Zhang M, Cao P, Adhikari B. Pasteurization of flavored shredded pork using Zno nanoparticles combined with radio frequency pasteurization technology. Journal of Food Science and Technology 2021; 58:216-222. [PMID: 33505066 DOI: 10.1007/s13197-020-04531-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
Effects of ZnO nanoparticles combined radio frequency (ZNCRF) pasteurization on the survival of microorganism, flavor and taste of Flavored shredded pork were compared with conventional high pressure steam (HPS) sterilization. The results showed that ZNCRF pasteurization was better than HPS sterilization in terms of flavor and taste parameters and at the same time met the pasteurization requirement. GC-MS and NMR measurements were performed to explore changes in volatile compounds and status and distribution of water within the sample. The ZNCRF pasteurization when carried out for 30 min and the HPS sterilization reduced the relative contents of aldehydes by 18.8% and 19.7%, respectively, while the ZNCRF pasteurization within 20 min had less effect on aldehydes. Both ZNCRF pasteurization and HPS sterilization destroyed the vacuolar membrane of the samples caused the loss of water from the cytoplasm (T23). This work shows that ZNCRF when applied for 20 min is a mild pasteurization method that can be applied to improve the quality of Flavored shredded pork.
Collapse
Affiliation(s)
- Jicheng Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China.,College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000 Anhui China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China.,Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Ping Cao
- China Astronaut Research and Training Center, Beijing, 100094 China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083 Australia
| |
Collapse
|
24
|
Farag MA, Mesak MA, Saied DB, Ezzelarab NM. Uncovering the dormant food hazards, a review of foodborne microbial spores' detection and inactivation methods with emphasis on their application in the food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Zhao L, Zhang M, Bhandari B, Bai B. Microbial and quality improvement of boiled gansi dish using carbon dots combined with radio frequency treatment. Int J Food Microbiol 2020; 334:108835. [PMID: 32898829 DOI: 10.1016/j.ijfoodmicro.2020.108835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 11/19/2022]
Abstract
Use of carbon dots (CDs) combined with radio frequency (RF) was applied to pasteurize and reduce the microorganism population in order to improve the quality of boiled gansi dish. CDs were prepared from banana using hydrothermal method, and characterized by using TEM, XRD and FTIR. The minimal inhibitory concentration (MIC) test showed CDs can efficiently inactivate Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis). This study also evaluated the effectiveness of five treatments, including CDs alone, CDs combined RF (CDRF) heating for different time (8 min, 12 min, and 16 min), and high pressure steam (HPS) sterilization of boiled gansi dish inoculated with B. subtilis. After CDRF treated for 8 min, 12 min, and 16 min, the center temperature of samples reached to 78.92, 87.77 and 93.82 °C, and the colony forming units (CFU) of B. subtilis reduced by 2.13, 3.62, and 4.63 log, respectively. Samples with CDRF12 treatment, exhibited better product quality as evidenced by reduced loss of texture, flavor, and sensory as compared with HPS sample. The results indicated that CDRF treatment has a great potential to produce packaged boiled gansi dish with high product quality.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Baosong Bai
- Yechun Food Production and Distribution Co., Ltd., 225000 Yangzhou, Jiangsu, China
| |
Collapse
|
26
|
Qiu L, Zhang M, Mujumdar AS, Liu Y. Recent developments in key processing techniques for oriental spices/herbs and condiments: a review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1839492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Liqing Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S. Mujumdar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Yaping Liu
- R & D Center, Guangdong Galore Food Co. Ltd, Zhongshan, China
| |
Collapse
|
27
|
Gomez-Gomez A, Brito-de la Fuente E, Gallegos C, Garcia-Perez JV, Benedito J. Non-thermal pasteurization of lipid emulsions by combined supercritical carbon dioxide and high-power ultrasound treatment. ULTRASONICS SONOCHEMISTRY 2020; 67:105138. [PMID: 32339868 DOI: 10.1016/j.ultsonch.2020.105138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Supercritical carbon dioxide (SC-CO2) is a novel method for food pasteurization, but there is still room for improvement in terms of the process shortening and its use in products with high oil content. This study addressed the effect of high power ultrasound (HPU) on the intensification of the SC-CO2 inactivation of E. coli and B. diminuta in soybean oil-in-water emulsions. Inactivation kinetics were obtained at different pressures (100 and 350 bar), temperatures (35 and 50 °C) and oil contents (0, 10, 20 and 30%) and were satisfactorily described using the Weibull model. The experimental results showed that for SC-CO2 treatments, the higher the pressure or the temperature, the higher the level of inactivation. Ultrasound greatly intensified the inactivation capacity of SC-CO2, shortening the process time by approximately 1 order of magnitude (from 50 to 90 min to 5-10 min depending on the microorganism and process conditions). Pressure and temperature also had a significant (p < 0.05) effect on SC-CO2 + HPU inactivation for both bacteria, although the effect was less intense than in the SC-CO2 treatments. E. coli was found to be more resistant than B. diminuta in SC-CO2 treatments, while no differences were found when HPU was applied. HPU decreased the protective effect of oil in the inactivation and similar microbial reductions were obtained regardless of the oil content in the emulsion. Therefore, HPU intensification of SC-CO2 treatments is a promising alternative to the thermal pasteurization of lipid emulsions with heat sensitive compounds.
Collapse
Affiliation(s)
- Angela Gomez-Gomez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain
| | - Edmundo Brito-de la Fuente
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Pharmaceuticals & Device Division, Bad Homburg, Germany
| | - Críspulo Gallegos
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Pharmaceuticals & Device Division, Bad Homburg, Germany
| | - Jose Vicente Garcia-Perez
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain
| | - Jose Benedito
- Grupo ASPA, Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camí de Vera s/n, València E46022, Spain.
| |
Collapse
|
28
|
Zhang L, Lan R, Zhang B, Erdogdu F, Wang S. A comprehensive review on recent developments of radio frequency treatment for pasteurizing agricultural products. Crit Rev Food Sci Nutr 2020; 61:380-394. [PMID: 32156148 DOI: 10.1080/10408398.2020.1733929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent pathogen incidents have forced food industry to seek for alternative processes in postharvest pasteurization of agricultural commodities. Radio frequency (RF) heating has been used as one alternative treatment to replace chemical fumigation and other conventional thermal methods since it is relatively easy to apply and leaves no chemical residues. RF technology transfers electromagnetic energy into large bulk volume of the products to provide a fast and volumetric heating. There are two types of RF technology commonly applied in lab and industry to generate the heat energy: free running oscillator and 50-Ω systems. Several reviews have been published to introduce the application of RF heating in food processing. However, few reviews have a comprehensive summary of RF treatment for pasteurizing agricultural products. The objective of this review was to introduce the developments in the RF pasteurization of agricultural commodities and to present future directions of the RF heating applications. While the recent developments in the RF pasteurization were presented, thermal death kinetics of targeted pathogens as influenced by water activity, pathogen species and heating rates, non-thermal effects of RF heating, combining RF heating with other technologies for pasteurization, RF heating uniformity improvements using computer simulation and development of practical RF pasteurization processes were also focused. This review is expected to provide a comprehensive understanding of RF pasteurization for agricultural products and promote the industrial-scale applications of RF technology with possible process protocol optimization purposes.
Collapse
Affiliation(s)
- Lihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Ruange Lan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Beihua Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Ferruh Erdogdu
- Department of Food Engineering, Ankara University, Golbası-Ankara, Turkey
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China.,Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
29
|
Ling B, Cheng T, Wang S. Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review. Crit Rev Food Sci Nutr 2019; 60:2622-2642. [DOI: 10.1080/10408398.2019.1651690] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Bo Ling
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Teng Cheng
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|