1
|
Polak N, Kalisz S, Hać-Szymańczuk E, Kruszewski B. Impact of Conventional Pasteurization, High Temperature Short Time, Ultra-High Temperature, and Storage Time on Physicochemical Characteristics, Bioactive Compounds, Antioxidant Activity, and Microbiological Quality of Fruit Nectars. Foods 2024; 13:3963. [PMID: 39683035 DOI: 10.3390/foods13233963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Berries are a valuable source of numerous bioactive compounds, and they have an interesting organoleptic profile. Unfortunately, their low storage life determines the need for their preservation. Among the various methods used in this regard, it was decided to use the High Temperature Short Time (HTST) (90 °C/15 s) and Ultra-High Temperature (UHT) (130 °C/5 s) methods to preserve the produced fruit nectar blends (strawberry-blackcurrant and strawberry-chokeberry). For comparison, the nectars were also preserved using conventional pasteurization (90 °C/10 min). Physicochemical, chromatographic, and microbiological determinations were carried out in the tested nectars before and immediately after processing, as well as after 1, 2, 3, 4, and 6 months of refrigerated storage. All methods allowed for the significant inactivation of selected microbial groups. Non-significant changes were observed as a result of HTST and UHT processing in the context of pH, TSS, and titratable acidity. Varied major changes occurred in the content of bioactive components (TPC-decrease or increase by 2-4%, TAC-decrease by 3-20%, vitamin C-decrease by 15-78%), antioxidant activity (decrease or increase by 3-9%), and nephelometric turbidity (decrease or increase by 11-65%). Both nectars showed better quality and nutritional value after the HTST and UHT processes compared to treatment with classic pasteurization. Storage affected the degradation of bioactive compounds, reduced antioxidant activity, increased turbidity, and caused the brightening of samples together with reducing redness and yellowness. Considering the results obtained, it is reasonable to recommend the use of the HTST and UHT methods in industrial conditions for the preservation of liquid fruit and vegetable products such as juices, nectars, and beverages.
Collapse
Affiliation(s)
- Natalia Polak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Stanisław Kalisz
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Biotechnology and Food Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Bartosz Kruszewski
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| |
Collapse
|
2
|
Khiabani A, Sarabi-Jamab M, Shakeri MS, Pahlevanlo A, Emadzadeh B. Exploring the Acetobacteraceae family isolated from kombucha SCOBYs worldwide and comparing yield and characteristics of biocellulose under various fermentation conditions. Sci Rep 2024; 14:26616. [PMID: 39496750 PMCID: PMC11535285 DOI: 10.1038/s41598-024-77305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Bacterial cellulose (BC) is a cellulosic biopolymer produced by specific acetic acid bacteria during kombucha fermentation. In this study, bacterial cellulose-producing strains were isolated from four different global kombucha SCOBY samples obtained from markets in the Netherlands, America, China, and Iran. The strains were identified using biochemical and molecular techniques. The ability of species to produce BC was evaluated under both static and stirred fermentation conditions. Seven dominant strains from the Acetobacteraceae family and the genus of Komagataeibacter and Gluconacetobacter were identified and submitted to NCBI gene bank archives: K. xylinus CH1, K. sucrofermentans IR2, K. intermedius IR3, K. cocois AM2, K. sucrofermentans NE4, K. cocois NE6, and G. liquefaciens NE7. Among these, K. intermedius IR3, isolated from local Iranian SCOBY, exhibited the highest BC production yield at 5.733 ± 0.170 gL-1 under static fermentation conditions. On the other hand, K. xylinus CH1, from Chinese SCOBY, had the highest yield under stirred conditions, producing 12.689 ± 0.808 gL-1 of BC. The BC production yield of both K. xylinus CH1 and K. intermedius IR3 under stirred conditions was 3 and 1.3 times more than static conditions, respectively. Despite the yield differences, static fermentation demonstrated superior physicochemical characteristics; such as moisture content, water holding capacity, and crystallinity degree, compared to stirred. Therefore, depending on the intended application in industry and specific criteria, both products could serve as functional substitutes in food and medicine sectors.
Collapse
Affiliation(s)
- Azadeh Khiabani
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Mahboobe Sarabi-Jamab
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | - Monir-Sadat Shakeri
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Abolfazl Pahlevanlo
- Department of Food Biotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Bahareh Emadzadeh
- Department of Food Physics, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
3
|
Marasco R, Michoud G, Seferji KA, Gonella E, Garuglieri E, Rolli E, Alma A, Mapelli F, Borin S, Daffonchio D, Crotti E. Sorlinia euscelidii gen. nov., sp. nov., a novel acetic acid bacterium isolated from the leafhopper Euscelidius variegatus ( Hemiptera: Cicadellidae). Int J Syst Evol Microbiol 2024; 74:006544. [PMID: 39432413 PMCID: PMC11493185 DOI: 10.1099/ijsem.0.006544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Acetic acid bacteria - belonging to the Acetobacteraceae family - are found in the gut of many sugar-feeding insects. In this study, six strains have been isolated from the hemipteran leafhopper Euscelidius variegatus. While they exhibit high 16S rRNA gene sequence similarities to uncultured members of the Acetobacteraceae family, they could not be unequivocally assigned to any particular type species. Considering the clonality of the six isolates, the EV16PT strain was used as a representative of this group of isolates. The genome sequence of EV16PT is composed of a 2.388 Mbp chromosome, with a DNA G+C content of 57 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis indicate that EV16PT forms a monophyletic clade with the uncultivated endosymbiont of Diaphorina citri, the Candidatus Kirkpatrickella diaphorinae. Such a phylogenetic clade is positioned between those of Asaia-Swaminathania and Kozakia. The genomic distance metrics based on gene and protein sequences support the proposal that EV16PT is a new species belonging to a yet-undescribed genus. It is a rod-shaped Gram-stain-negative bacterium, strictly aerobic, non-motile, non-spore-forming, showing optimal growth without salt (NaCl) at 30 °C and pH of 6-7. The major quinone is Q10, and the dominant cellular fatty acids (>10%) are C18:l ω7c, C19 : 0 cyclo ω6c, C16 : 0 and C19 : 1 2OH. The polar lipid profile comprises diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, along with unidentified aminophospholipids, glycophospholipids, aminolipids and lipids. Based on a polyphasic approach, including phylogenetic, phylogenomic, genome relatedness, phenotypic and chemotaxonomic characterisations, EV16PT (= KCTC 8296T, = DSM 117028T) is proposed as a representative of a novel species in a novel genus with the proposed name Sorlinia euscelidii gen. nov., sp. nov., in honour of Prof. Claudia Sorlini, an Italian environmental microbiologist at the University of Milan who inspired the research on microbial diversity, including symbiosis in plants and animals.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kholoud A. Seferji
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Gonella
- Department of Agricultural, Forest, and Food Sciences (DISAFA), University of Torino, Turin, Italy
| | - Elisa Garuglieri
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Alberto Alma
- Department of Agricultural, Forest, and Food Sciences (DISAFA), University of Torino, Turin, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
4
|
O’Sullivan EN, O’Sullivan DJ. Viability and Diversity of the Microbial Cultures Available in Retail Kombucha Beverages in the USA. Foods 2024; 13:1707. [PMID: 38890935 PMCID: PMC11172315 DOI: 10.3390/foods13111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Kombucha is a two-stage fermented sweetened tea beverage that uses yeast and lactic acid bacteria (LAB) to convert sugars into ethanol and lactate and acetic acid bacteria (AAB) to oxidize ethanol to acetate. Its popularity as a beverage grew from claims of health benefits derived from this vibrant microbial bioconversion. While recent studies have shed light on the diversity of cultures in Kombucha fermentation, there is limited information on the diversity, and especially viability, of cultures in retail beverages that advertise the presence of Kombucha and probiotic cultures. In this study, 12 Kombucha beverages produced by different manufacturers throughout the US were purchased and microbially characterized. Eight of the beverages contained viable Kombucha cultures, while 3 of the remaining 4 had viable Bacillus cultures as added probiotics. Amplicon profiling revealed that all contained Kombucha yeast and bacteria cells. The dominant yeasts detected were Lachancea cidri (10/12), Brettanomyces (9/12), Malassezia (6/12), and Saccharomyces (5/12). Dominant LAB included Liquorilactobacillus and Oenococcus oeni, and AAB were Komagataeibacter, Gluconobacter, and Acetobacter. One beverage had a significant amount of Zymomonas mobilis, an ethanol-producing bacterium from Agave cactus. While Kombucha beverages differ in the types and viability of cultures, all except one beverage contained detectable viable cells.
Collapse
Affiliation(s)
| | - Daniel J. O’Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN 55108, USA;
| |
Collapse
|
5
|
Al-Kharousi ZS, Al-Ramadhani Z, Al-Malki FA, Al-Habsi N. Date Vinegar: First Isolation of Acetobacter and Formulation of a Starter Culture. Foods 2024; 13:1389. [PMID: 38731760 PMCID: PMC11083709 DOI: 10.3390/foods13091389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
There is a lack of scientific analysis and control over the production of date vinegar in Oman, despite its growing demand in the worldwide market. Traditional production of date vinegar may lead to elevated amounts of ethanol (≥0.5%) and reduced content of acetic acid (<4%) compared to the standard acceptable levels. This study aimed to isolate non-Gluconobacter species from date vinegar produced by spontaneous fermentation and formulate starter cultures for quick and efficient production of date vinegar. In spontaneous fermentation date vinegar samples, the highest concentration of acetic acid was 10.42% on day 50. Acetobacter malorum (5 isolates), A. persici (3 isolates), and A. tropicalis (3 isolates) were identified based on 16S rRNA gene sequences for the first time in date vinegar. For date vinegar prepared with a starter culture of Acetobacter and yeast, the highest concentration of acetic acid was 4.67%. In conclusion, spontaneous fermentation resulted in the production of date vinegar with a high concentration of acetic acid, acceptable concentrations of ethanol and methanol, and the first isolation of three Acetobacter species. The formulated starter culture produced acceptable amounts of acetic acid and the time of fermentation was reduced 10 times (from 40 days to 4 days). This can provide the basis for producing a personalized or commercial product that ensures the production of good-quality date vinegar in an easier, faster, safer, and more efficient way from low-quality and surplus dates.
Collapse
Affiliation(s)
- Zahra S. Al-Kharousi
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman; (Z.A.-R.); (F.A.A.-M.); (N.A.-H.)
| | | | | | | |
Collapse
|
6
|
Nasharudin MIH, Siew SW, Ahmad HF, Mahmud N. Whole genome sequencing analysis of Komagataeibacter nataicola reveals its potential in food waste valorisation for cellulose production. Mol Biol Rep 2024; 51:503. [PMID: 38600404 DOI: 10.1007/s11033-024-09492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Komagataeibacter nataicola (K. nataicola) is a gram-negative acetic acid bacterium that produces natural bacterial cellulose (BC) as a fermentation product under acidic conditions. The goal of this work was to study the complete genome of K. nataicola and gain insight into the functional genes in K. nataicola that are responsible for BC synthesis in acidic environments. METHODS AND RESULT The pure culture of K. nataicola was obtained from yeast-glucose-calcium carbonate (YGC) agar, followed by genomic DNA extraction, and subjected to whole genome sequencing on a Nanopore flongle flow cell. The genome of K. nataicola consists of a 3,767,936 bp chromosome with six contigs and 4,557 protein coding sequences. The maximum likelihood phylogenetic tree and average nucleotide identity analysis confirmed that the bacterial isolate was K. nataicola. The gene annotation via RAST server discovered the presence of cellulose synthase, along with three genes associated with lactate utilization and eight genes involved in lactate fermentation that could potentially contribute to the increase in acid concentration during BC synthesis. CONCLUSION A more comprehensive genome study of K. nataicola may shed light into biological pathway in BC productivity as well as benefit the analysis of metabolites generated and understanding of biological and chemical interactions in BC production later.
Collapse
Affiliation(s)
- Muhammad Irhamni Haziqi Nasharudin
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Shing-Wei Siew
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
- Group of Environment, Microbiology and Bioprocessing (GERMS), Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Nazira Mahmud
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia.
- Group of Environment, Microbiology and Bioprocessing (GERMS), Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia.
| |
Collapse
|
7
|
Geraris Kartelias I, Karantonis HC, Giaouris E, Panagiotakopoulos I, Nasopoulou C. Kombucha Fermentation of Olympus Mountain Tea ( Sideritis scardica) Sweetened with Thyme Honey: Physicochemical Analysis and Evaluation of Functional Properties. Foods 2023; 12:3496. [PMID: 37761205 PMCID: PMC10528074 DOI: 10.3390/foods12183496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study implemented kombucha fermentation of Olympus Mountain tea (Sideritis scardica) sweetened with honey (OMTWH) in order to investigate the potential for producing a novel beverage with functional properties. The increase in the total count of bacteria and yeast suggests that the OMTWH acts as a viable substrate for supporting the proliferation of the microorganisms of the Kombucha symbiotic culture. The fermentation resulted in a reduction in pH and increased total titratable acidity. After fermentation, a statistically significant increase in the vitamins C, B1, B2, B6, B7, and B12 content was observed (p < 0.05). Total phenolics and antioxidant activity of the fermented beverage was significantly enhanced, as assessed by the method of Folin-Ciocalteu and ABTS assay, respectively. Results revealed that OMTWH had a potent inhibitory activity of α-amylase, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase; OMTWH fermented with a kombucha consortium exhibited even higher inhibition. Hence, the process of kombucha fermentation can convert OMTWH into a novel beverage with enhanced functional properties.
Collapse
Affiliation(s)
- Ioannis Geraris Kartelias
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| | - Haralabos Christos Karantonis
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece;
| | - Ioannis Panagiotakopoulos
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| | - Constantina Nasopoulou
- Laboratory of Food Chemistry and of Technology and Quality of Animal Origin Food, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Greece; (I.G.K.); (I.P.); (C.N.)
| |
Collapse
|
8
|
Al-Rosyid LM, Santoso IB, Titah HS, Mangkoedihardjo S, Trihadiningrum Y, Hidayati D. Correlation between BOD/COD Ratio and Octanol/Water Partition Coefficient for Mixture Organic Compounds. Toxicol Int 2022. [DOI: 10.18311/ti/2022/v29i3/29141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Correlation between the BOD/COD ratio and Partition coefficient of octanol/ water (Pow) on a single organic substance shows that the Pow value is directly proportional to the toxicity level and inversely proportional to BOD/COD ratio. This research examined the correlation to a mixture of organic substances. The objective is to obtain a varied range of substances, as well as determining the quality of wastewater discharging to fresh waters. Need for analysis of organic substances used as antiseptics during the Covid-19 pandemic. In addition, organic substances from the organophosphate pesticide class, diazinon, were used. BOD5, COD, Pow, and LC50-96h toxicity tests using Daphnia magna were used. Six types of the mixture of organic substances included diazinon-formaldehyde-isopropyl alcohol, ethanol-oxalic acid-formaldehyde, isopropyl alcohol-glycerol-lactose, acetic acid-isopropyl alcohol-formaldehyde, sucrose-glycerol-acetic acid, and oxalic acid-formaldehyde-diazinon, with 3 different concentrations of 10, 100, and 1000 mg/L, three repetitions. The lowest BOD/COD ratio (<0.2) and the highest Pow value (>4) are found in diazinon-formaldehyde-IPA. Its toxicity in D. magna also showed the lowest LC-50 (11.82 mg/L). Whereas, sucrose-glycerol-acetic acid had the highest BOD/COD ratio (>0.7) and lowest Pow (<0.7) with the highest LC- 50 (567.88 mg/L). Other organic substances mixtures have characteristics in the range of these mixtures. Pow variability and the BOD/COD ratio have a negative correlation. A mixture of organic matter is more biodegradable making it has a higher tendency to dissolve in water.
Collapse
|
9
|
Huang X, Xin Y, Lu T. A systematic, complexity-reduction approach to dissect the kombucha tea microbiome. eLife 2022; 11:76401. [PMID: 35950909 PMCID: PMC9371603 DOI: 10.7554/elife.76401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/03/2022] [Indexed: 12/14/2022] Open
Abstract
One defining goal of microbiome research is to uncover mechanistic causation that dictates the emergence of structural and functional traits of microbiomes. However, the extraordinary degree of ecosystem complexity has hampered the realization of the goal. Here, we developed a systematic, complexity-reducing strategy to mechanistically elucidate the compositional and metabolic characteristics of microbiome by using the kombucha tea microbiome as an example. The strategy centered around a two-species core that was abstracted from but recapitulated the native counterpart. The core was convergent in its composition, coordinated on temporal metabolic patterns, and capable for pellicle formation. Controlled fermentations uncovered the drivers of these characteristics, which were also demonstrated translatable to provide insights into the properties of communities with increased complexity and altered conditions. This work unravels the pattern and process underlying the kombucha tea microbiome, providing a potential conceptual framework for mechanistic investigation of microbiome behaviors.
Collapse
Affiliation(s)
- Xiaoning Huang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, United States.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongping Xin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, United States
| | - Ting Lu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois Urbana-Champaign, Urbana, United States.,Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, United States.,National Center for Supercomputing Applications, Urbana, United States
| |
Collapse
|
10
|
Anguluri K, La China S, Brugnoli M, De Vero L, Pulvirenti A, Cassanelli S, Gullo M. Candidate Acetic Acid Bacteria Strains for Levan Production. Polymers (Basel) 2022; 14:polym14102000. [PMID: 35631879 PMCID: PMC9146431 DOI: 10.3390/polym14102000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, twelve strains of acetic acid bacteria (AAB) belonging to five different genera were tested for their ability to produce levan, at 70 and 250 g/L of sucrose concentration, respectively. The fructan produced by the bacterial strains was characterized as levan by NMR spectroscopy. Most of the strains produced levan, highlighting intra- and inter-species variability. High yield was observed for Neoasaia chiangmaiensis NBRC 101099 T, Kozakia baliensis DSM 14400 T and Gluconobacter cerinus DSM 9533 T at 70 g/L of sucrose. A 12-fold increase was observed for N. chiangmaiensis NBRC 101099 T at 250 g/L of sucrose concentration. Levan production was found to be affected by glucose accumulation and pH reduction, especially in Ko. baliensis DSM 14400 T. All the Gluconobacter strains showed a negative correlation with the increase in sucrose concentration. Among strains of Komagataeibacter genus, no clear effect of sucrose on levan yield was found. Results obtained in this study highlighted the differences in levan yield among AAB strains and showed interdependence between culture conditions, carbon source utilization, and time of incubation. On the contrary, the levan yield was not always related to the sucrose concentration.
Collapse
|
11
|
An F, Sun H, Wu J, Zhao C, Li T, Huang H, Fang Q, Mu E, Wu R. Investigating the core microbiota and its influencing factors in traditional Chinese pickles. Food Res Int 2021; 147:110543. [PMID: 34399520 DOI: 10.1016/j.foodres.2021.110543] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/27/2022]
Abstract
Pickles are a type of traditional fermented food in Northeast China that exhibit a broad variety of preparations, flavors and microbial components. Despite their widespread consumption, the core microorganisms in various traditional pickles and the precise impact of ecological variables on the microbiota remains obscure. The present study aims to unravel the microbial diversity in different pickle types collected from household (12 samples) and industrial (10 samples) sources. Among these 22 samples tested, differences were observed in total acid, amino acid nitrogen, nitrite, and salt content. Firmicutes and Ascomycota emerged as the predominant microbial phyla as observed by Illumina MiSeq sequencing. Amongst these, the commonly encountered microorganisms were Lactobacillus, Weissella and yeast. Comparative analysis based on non-metric multidimensional scaling (NMDS), showed that the microbial community in the pickles was affected by external conditions such as major ingredients and manufacturing process. Correlation analysis further showed that the resident core microorganisms in pickles could adapt to the changing internal fermentation environment. The insights gained from this study further our understanding of traditional fermented foods and can be used to guide the isolation of excellent fermented strains.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Huijun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Agricultural Development Service Center, Shenyang 110034, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Chunyan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China
| | - Heting Huang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiang Fang
- Liaoning Provincial Institute of Agricultural Mechanization, Shenyang 110161, China
| | - Endong Mu
- Liaoning Agricultural Development Service Center, Shenyang 110034, China.
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Engineering Research Center of Food Fermentation Technology, Liaoning 110866, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, China.
| |
Collapse
|
12
|
Wang Y, Zhao J, Xu F, Zhang Q, Ai Z, Li B. GC‐MS analyses of volatile compounds of steamed breads fermented by Chinese traditional starter “Jiaozi” from different regions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuan‐Hui Wang
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Henan Agricultural University Zhengzhou China
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Jing‐Wen Zhao
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Fei Xu
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Qi‐Dong Zhang
- Zhengzhou Tobacco Research Institute of CNTC Zhengzhou China
| | - Zhi‐Lu Ai
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Henan Agricultural University Zhengzhou China
| | - Bo‐Yu Li
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| |
Collapse
|
13
|
Landis EA, Oliverio AM, McKenney EA, Nichols LM, Kfoury N, Biango-Daniels M, Shell LK, Madden AA, Shapiro L, Sakunala S, Drake K, Robbat A, Booker M, Dunn RR, Fierer N, Wolfe BE. The diversity and function of sourdough starter microbiomes. eLife 2021; 10:e61644. [PMID: 33496265 PMCID: PMC7837699 DOI: 10.7554/elife.61644] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Humans have relied on sourdough starter microbial communities to make leavened bread for thousands of years, but only a small fraction of global sourdough biodiversity has been characterized. Working with a community-scientist network of bread bakers, we determined the microbial diversity of 500 sourdough starters from four continents. In sharp contrast with widespread assumptions, we found little evidence for biogeographic patterns in starter communities. Strong co-occurrence patterns observed in situ and recreated in vitro demonstrate that microbial interactions shape sourdough community structure. Variation in dough rise rates and aromas were largely explained by acetic acid bacteria, a mostly overlooked group of sourdough microbes. Our study reveals the extent of microbial diversity in an ancient fermented food across diverse cultural and geographic backgrounds.
Collapse
Affiliation(s)
| | - Angela M Oliverio
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulderUnited States
- Cooperative Institute for Research in Environmental Sciences, University of ColoradoBoulderUnited States
| | - Erin A McKenney
- Department of Applied Ecology, North Carolina State UniversityRaleighUnited States
- North Carolina Museum of Natural SciencesRaleighUnited States
| | - Lauren M Nichols
- Department of Applied Ecology, North Carolina State UniversityRaleighUnited States
| | - Nicole Kfoury
- Department of Chemistry, Tufts UniversityMedfordUnited States
| | | | - Leonora K Shell
- Department of Applied Ecology, North Carolina State UniversityRaleighUnited States
| | - Anne A Madden
- Department of Applied Ecology, North Carolina State UniversityRaleighUnited States
| | - Lori Shapiro
- Department of Applied Ecology, North Carolina State UniversityRaleighUnited States
| | | | - Kinsey Drake
- Department of Biology, Tufts UniversityMedfordUnited States
| | - Albert Robbat
- Department of Chemistry, Tufts UniversityMedfordUnited States
| | - Matthew Booker
- Department of History, North Carolina State UniversityRaleighUnited States
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State UniversityRaleighUnited States
- Danish Natural History Museum, University of CopenhagenCopenhagenDenmark
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulderUnited States
- Cooperative Institute for Research in Environmental Sciences, University of ColoradoBoulderUnited States
| | | |
Collapse
|