1
|
Fernández-Hernández E, Sánchez-Sánchez M, Torres-Cifuentes DM, Hernández-Carranza P, Ruiz-López II, Ochoa-Velasco CE. UV-C light-activated gallic acid and non-thermal technologies for inactivating Salmonella Typhimurium inoculated in aqueous solution and whole cow milk. Int J Food Microbiol 2025; 427:110944. [PMID: 39442341 DOI: 10.1016/j.ijfoodmicro.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
This study aimed to evaluate the effect of UV-C light-activated gallic acid (GA) alone and combined with ultrasound (US) or ultraviolet-C light (UV-C, 254 nm) on the inactivation of Salmonella Typhimurium in aqueous solution for being later applied to whole cow milk. First-order, Weibull, and Beta models were used to describe the inactivation kinetics of S. Typhimurium by GA alone and combined with non-thermal technologies. Results indicated that GA concentration, the UV-C light activation process, and the combination of US and UV-C light significantly affected (p < 0.05) the inactivation of S. Typhimurium in aqueous solution, which was properly described by the first order (R2 > 0.84), Weibull (R2 > 0.96), and Beta (R2 > 0.83) models. The activation process of GA increased its antimicrobial activity in the range of 40.87-101.44 %. Moreover, with the highest concentration of GA and the application of US or UV-C light, >5 log reductions were achieved. Nevertheless, although these combinations were applied to whole cow milk, a low reduction (2.0-log cycles) was obtained, regardless of the GA activation and non-thermal technologies. Therefore, the effect of GA, whether UV-C light activated or not, on S. Typhimurium depends on the food matrix. This highlights that in whole cow milk, this treatment was insufficient to ensure safety, even when combined with non-thermal technologies. INDUSTRIAL RELEVANCE: UV-C light and US are non-thermal technologies used as alternatives to thermal treatments. These technologies can be used on their own or in combination; however, in many cases, the necessary microbial reduction is not attained, thus the use of complementary techniques or processes is required. GA is a phenolic compound with low antimicrobial activity; however, UV-C light may activate its antimicrobial activity. In this sense, this study shows the potential application of GA and non-thermal technologies for inactivating S. Typhimurium in an aqueous solution and the first approach of this methodology in whole cow milk as a liquid food product.
Collapse
Affiliation(s)
- E Fernández-Hernández
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico
| | - M Sánchez-Sánchez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico
| | - D M Torres-Cifuentes
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico
| | - P Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico
| | - I I Ruiz-López
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico
| | - C E Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, C.P. 72000, Mexico.
| |
Collapse
|
2
|
Kitsiou M, Wantock T, Sandison G, Harle T, Gutierrez-Merino J, Klymenko OV, Karatzas KA, Velliou E. Determination of the combined effect of grape seed extract and cold atmospheric plasma on foodborne pathogens and their environmental stress knockout mutants. Appl Environ Microbiol 2024; 90:e0017724. [PMID: 39254318 PMCID: PMC11497776 DOI: 10.1128/aem.00177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The study aimed to explore the antimicrobial efficacy of grape seed extract (GSE) and cold atmospheric plasma (CAP) individually or in combination against L. monocytogenes and E. coli wild type (WT) and their isogenic mutants in environmental stress genes. More specifically, we examined the effects of 1% (wt/vol) GSE, 4 min of CAP treatment, and their combined effect on L. monocytogenes 10403S WT and its isogenic mutants ΔsigB, ΔgadD1, ΔgadD2, ΔgadD3, as well as E. coli K12 and its isogenic mutants ΔrpoS, ΔoxyR, and ΔdnaK. In addition, the sequence of the combined treatments was tested. A synergistic effect was achieved for all L. monocytogenes strains when exposure to GSE was followed by CAP treatment. However, the same effect was observed against E. coli strains, only for the reversed treatment sequence. Additionally, L. monocytogenes ΔsigB was more sensitive to the individual GSE and the combined GSE/CAP treatment, whereas ΔgadD2 was more sensitive to CAP, as compared to the rest of the mutants under study. Individual GSE exposure was unable to inhibit E. coli strains, and individual CAP treatment resulted in higher inactivation of E. coli in comparison to L. monocytogenes with the strain ΔrpoS appearing the most sensitive among all studied strains. Our findings provide a step toward a better understanding of the mechanisms playing a role in the tolerance/sensitivity of our model Gram-positive and Gram-negative bacteria toward GSE, CAP, and their combination. Therefore, our results contribute to the development of more effective and targeted antimicrobial strategies for sustainable decontamination.IMPORTANCEAlternative approaches to conventional sterilization are gaining interest from the food industry, driven by (i) the consumer demand for minimally processed products and (ii) the need for sustainable, environmentally friendly processing interventions. However, as such alternative approaches are milder than conventional heat sterilization, bacterial pathogens might not be entirely killed by them, which means that they could survive and grow, causing food contamination and health hazards. In this manuscript, we performed a systematic study of the impact of antimicrobials derived from fruit industry waste (grape seed extract) and cold atmospheric plasma on the inactivation/killing as well as the damage of bacterial pathogens and their genetically modified counterparts, for genes linked to the response to environmental stress. Our work provides insights into genes that could be responsible for the bacterial capability to resist/survive those novel treatments, therefore, contributing to the development of more effective and targeted antimicrobial strategies for sustainable decontamination.
Collapse
Affiliation(s)
- Melina Kitsiou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, United Kingdom
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Thomas Wantock
- Fourth State Medicine Ltd, Fernhurst, Haslemere, Longfield, , United Kingdom
| | - Gavin Sandison
- Fourth State Medicine Ltd, Fernhurst, Haslemere, Longfield, , United Kingdom
| | - Thomas Harle
- Fourth State Medicine Ltd, Fernhurst, Haslemere, Longfield, , United Kingdom
| | | | - Oleksiy V. Klymenko
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, United Kingdom
| | - Kimon Andreas Karatzas
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Eirini Velliou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, United Kingdom
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
3
|
Gonçalves ASC, Leitão MM, Fernandes JR, Saavedra MJ, Pereira C, Simões M, Borges A. Photodynamic activation of phytochemical-antibiotic combinations for combatting Staphylococcus aureus from acute wound infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112978. [PMID: 39002192 DOI: 10.1016/j.jphotobiol.2024.112978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Staphylococcus aureus is characterized by its high resistance to conventional antibiotics, particularly methicillin-resistant (MRSA) strains, making it a predominant pathogen in acute and chronic wound infections. The persistence of acute S. aureus wound infections poses a threat by increasing the incidence of their chronicity. This study investigated the potential of photodynamic activation using phytochemical-antibiotic combinations to eliminate S. aureus under conditions representative of acute wound infections, aiming to mitigate the risk of chronicity. The strategy applied takes advantage of the promising antibacterial and photosensitising properties of phytochemicals, and their ability to act as antibiotic adjuvants. The antibacterial activity of selected phytochemicals (berberine, curcumin, farnesol, gallic acid, and quercetin; 6.25-1000 μg/mL) and antibiotics (ciprofloxacin, tetracycline, fusidic acid, oxacillin, gentamicin, mupirocin, methicillin, and tobramycin; 0.0625-1024 μg/mL) was screened individually and in combination against two S. aureus clinical strains (methicillin-resistant and -susceptible-MRSA and MSSA). The photodynamic activity of the phytochemicals was assessed using a light-emitting diode (LED) system with blue (420 nm) or UV-A (365 nm) variants, at 30 mW/cm2 (light doses of 9, 18, 27 J/cm2) and 5.5 mW/cm2 (light doses of 1.5, 3.3 and 5.0 J/cm2), respectively. Notably, all phytochemicals restored antibiotic activity, with 9 and 13 combinations exhibiting potentiating effects on MSSA and MRSA, respectively. Photodynamic activation with blue light (420 nm) resulted in an 8- to 80-fold reduction in the bactericidal concentration of berberine against MSSA and MRSA, while curcumin caused 80-fold reduction for both strains at the light dose of 18 J/cm2. Berberine and curcumin-antibiotic combinations when subjected to photodynamic activation (420 nm light, 10 min, 18 J/cm2) reduced S. aureus culturability by ≈9 log CFU/mL. These combinations lowered the bactericidal concentration of antibiotics, achieving a 2048-fold reduction for gentamicin and 512-fold reduction for tobramycin. Overall, the dual approach involving antimicrobial photodynamic inactivation and selected phytochemical-antibiotic combinations demonstrated a synergistic effect, drastically reducing the culturability of S. aureus and restoring the activity of gentamicin and tobramycin.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - José R Fernandes
- CQVR-Vila Real Chemistry Center, University of Trás-os-Montes e Alto Douro, Portugal; Physical Department, University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Maria José Saavedra
- Antimicrobials, Biocides and Biofilms Unit (AB2Unit), Laboratory of Medical Microbiology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Animal and Veterinary Research Center (CECAV)-Al4AnimalS, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Center Interdisciplinar of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)-Inov4Agro, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Cristiana Pereira
- Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal; Environmental Hygiene and Human Biomonitoring Unit, Department of Health Protection, Laboratoire National de Santé, Luxembourg
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
4
|
Little A, Mendonca A, Dickson J, Fortes-Da-Silva P, Boylston T, Lewis B, Coleman S, Thomas-Popo E. Acid Adaptation Enhances Tolerance of Escherichia coli O157:H7 to High Voltage Atmospheric Cold Plasma in Raw Pineapple Juice. Microorganisms 2024; 12:1131. [PMID: 38930513 PMCID: PMC11205674 DOI: 10.3390/microorganisms12061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogens that adapt to environmental stress can develop an increased tolerance to some physical or chemical antimicrobial treatments. The main objective of this study was to determine if acid adaptation increased the tolerance of Escherichia coli O157:H7 to high voltage atmospheric cold plasma (HVACP) in raw pineapple juice. Samples (10 mL) of juice were inoculated with non-acid-adapted (NAA) or acid-adapted (AA) E. coli to obtain a viable count of ~7.00 log10 CFU/mL. The samples were exposed to HVACP (70 kV) for 1-7 min, with inoculated non-HVACP-treated juice serving as a control. Juice samples were analyzed for survivors at 0.1 h and after 24 h of refrigeration (4 °C). Samples analyzed after 24 h exhibited significant decreases in viable NAA cells with sub-lethal injury detected in both NAA and AA survivors (p < 0.05). No NAA survivor in juice exposed to HVACP for 5 or 7 min was detected after 24 h. However, the number of AA survivors was 3.33 and 3.09 log10 CFU/mL in juice treated for 5 and 7 min, respectively (p < 0.05). These results indicate that acid adaptation increases the tolerance of E. coli to HVACP in pineapple juice. The potentially higher tolerance of AA E. coli O157:H7 to HVACP should be considered in developing safe juice processing parameters for this novel non-thermal technology.
Collapse
Affiliation(s)
- Allison Little
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Aubrey Mendonca
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
| | - James Dickson
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Paulo Fortes-Da-Silva
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Terri Boylston
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Braden Lewis
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Shannon Coleman
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
| | - Emalie Thomas-Popo
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA; (A.L.); (P.F.-D.-S.); (T.B.); (B.L.); (S.C.); (E.T.-P.)
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
5
|
Cai T, Li Z, Guo P, Guo J, Wang R, Guo D, Yu J, Lü X, Xia X, Shi C. Antimicrobial and Antibiofilm Efficacy and Mechanism of Oregano Essential Oil Against Shigella flexneri. Foodborne Pathog Dis 2023; 20:209-221. [PMID: 37335913 DOI: 10.1089/fpd.2023.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
The aim of this study was to assess the antimicrobial activity of oregano essential oil (OEO) against Shigella flexneri and eradication efficacy of OEO on biofilm. The results showed that the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of OEO against S. flexneri were 0.02% (v/v) and 0.04% (v/v), respectively. OEO effectively killed S. flexneri in Luria-Bertani (LB) broth and contaminated minced pork (the initial population of S. flexneri was about 7.0 log CFU/mL or 7.2 log CFU/g), and after treatment with OEO at 2 MIC in LB broth or at 15 MIC in minced pork, the population of S. flexneri decreased to an undetectable level after 2 or 9 h, respectively. OEO increased intracellular reactive oxygen species concentration, destroyed cell membrane, changed cell morphology, decreased intracellular ATP concentration, caused cell membrane depolarization, and destroyed proteins or inhibited proteins synthesis of S. flexneri. In addition, OEO effectively eradicated the biofilm of S. flexneri by effectively inactivating S. flexneri in mature biofilm, destroying the three-dimensional structure, and reducing exopolysaccharide biomass of S. flexneri. In conclusion, OEO exerts its antimicrobial action effectively and also has a valid scavenging effect on the biofilm of S. flexneri. These findings suggest that OEO has the potential to be used as a natural antibacterial and antibiofilm material in the control of S. flexneri in meat product supply chain, thereby preventing meat-associated infections.
Collapse
Affiliation(s)
- Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jialu Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Chang Y, Xia S, Fei P, Feng H, Fan F, Liu Y, Qin L, Ma L, Song Q, Liu Y. Houttuynia cordata Thunb. crude extract inactivates Cronobacter sakazakii: Antibacterial components, antibacterial mechanism, and application as a natural disinfectant. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Kang S, Li X, Xing Z, Liu X, Bai X, Yang Y, Guo D, Xia X, Zhang C, Shi C. Antibacterial effect of citral on yersinia enterocolitica and its mechanism. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Oteiza JM, Caturla MY, Prado-Silva LD, Câmara AA, Barril PA, Sant’Ana AS, Giannuzzi L, Zaritzky N. Adaptation of O157:H7 and non-O157 Escherichia coli strains in orange juice and subsequent resistance to UV-C radiation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Hao J, Lei Y, Gan Z, Zhao W, Shi J, Jia C, Sun A. Synergetic Inactivation Mechanism of Protocatechuic Acid and High Hydrostatic Pressure against Escherichia coli O157:H7. Foods 2021; 10:foods10123053. [PMID: 34945604 PMCID: PMC8701084 DOI: 10.3390/foods10123053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
With the wide application of high hydrostatic pressure (HHP) technology in the food industry, safety issues regarding food products, resulting in potential food safety hazards, have arisen. To address such problems, this study explored the synergetic bactericidal effects and mechanisms of protocatechuic acid (PCA) and HHP against Escherichia coli O157:H7. At greater than 200 MPa, PCA (1.25 mg/mL for 60 min) plus HHP treatments had significant synergetic bactericidal effects that positively correlated with pressure. After a combined treatment at 500 MPa for 5 min, an approximate 9.0 log CFU/mL colony decline occurred, whereas the individual HHP and PCA treatments caused 4.48 and 1.06 log CFU/mL colony decreases, respectively. Mechanistically, membrane integrity and morphology were damaged, and the permeability increased when E. coli O157: H7 was exposed to the synergetic stress of PCA plus HHP. Inside cells, the synergetic treatment additionally targeted the activities of enzymes such as superoxide dismutase, catalase and ATPase, which were inhibited significantly (p ≤ 0.05) when exposed to high pressure. Moreover, an analysis of circular dichroism spectra indicated that the synergetic treatment caused a change in DNA structure, which was expressed as the redshift of the characteristic absorption peak. Thus, the synergetic treatment of PCA plus HHP may be used as a decontamination method owing to the good bactericidal effects on multiple targets.
Collapse
Affiliation(s)
- Jingyi Hao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuqing Lei
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhilin Gan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Wanbin Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Junyan Shi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chengli Jia
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Aidong Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62336700
| |
Collapse
|
10
|
İnci̇li̇ GK, Aydemi̇r ME, Akgöl M, Kaya B, Kanmaz H, Öksüztepe G, Hayaloğlu AA. Effect of Rheum ribes L. juice on the survival of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium and chemical quality on vacuum packaged raw beef. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Wu RA, Yuk HG, Liu D, Ding T. Recent advances in understanding the effect of acid-adaptation on the cross-protection to food-related stress of common foodborne pathogens. Crit Rev Food Sci Nutr 2021; 62:7336-7353. [PMID: 33905268 DOI: 10.1080/10408398.2021.1913570] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acid stress is one of the most common stresses that foodborne pathogens encounter. It could occur naturally in foods as a by-product of anaerobic respiration (fermentation), or with the addition of acids. However, foodborne pathogens have managed to survive to acid conditions and consequently develop cross-protection to subsequent stresses, challenging the efficacy of hurdle technologies. Here, we cover the studies describing the cross-protection response following acid-adaptation, and the possible molecular mechanisms for cross-protection. The current and future prospective of this research topic with the knowledge gaps in the literature are also discussed. Exposure to acid conditions (pH 3.5 - 5.5) could induce cross-protection for foodborne pathogens against subsequent stress or multiple stresses such as heat, cold, osmosis, antibiotic, disinfectant, and non-thermal technology. So far, the known molecular mechanisms that might be involved in cross-protection include sigma factors, glutamate decarboxylase (GAD) system, protection or repair of molecules, and alteration of cell membrane. Cross-protection could pose a serious threat to food safety, as many hurdle technologies are believed to be effective in controlling foodborne pathogens. Thus, the exact mechanisms underlying cross-protection in a diversity of bacterial species, stress conditions, and food matrixes should be further studied to reduce potential food safety risks. HighlightsFoodborne pathogens have managed to survive to acid stress, which may provide protection to subsequent stresses, known as cross-protection.Acid-stress may induce cross-protection to many stresses such as heat, cold, osmotic, antibiotic, disinfectant, and non-thermal technology stress.At the molecular level, foodborne pathogens use different cross-protection mechanisms, which may correlate with each other.
Collapse
Affiliation(s)
- Ricardo A Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Health Promoting Properties of Cereal Vinegars. Foods 2021; 10:foods10020344. [PMID: 33562762 PMCID: PMC7914830 DOI: 10.3390/foods10020344] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/19/2023] Open
Abstract
Vinegar has been used for its health promoting properties since antiquity. Nowadays, these properties are investigated, scientifically documented, and highlighted. The health benefits of vinegar have been associated with the presence of a variety of bioactive components such as acetic acid and other organic acids, phenolic compounds, amino acids, carotenoids, phytosterols, vitamins, minerals, and alkaloids, etc. These components are known to induce responses in the human body, such as antioxidant, antidiabetic, antimicrobial, antitumor, antiobesity, antihypertensive, and anti-inflammatory effects. The diversity and levels of bioactive components in vinegars depend on the raw material and the production method used. Cereal vinegars, which are more common in the Asia-Pacific region, are usually made from rice, although other cereals, such as millet, sorghum, barley, malt, wheat, corn, rye, oats, bran and chaff, are also used. A variety of bioactive components, such as organic acids, polyphenols, amino acids, vitamins, minerals, alkaloids, melanoidins, butenolides, and specific compounds such as γ-oryzanol, tetramethylpyrazine, γ-aminobutyric acid, etc., have been associated with the health properties of cereal vinegars. In this work, the bioactive components and the related health effects of cereal vinegars are reviewed, and the most recent scientific literature is presented and discussed.
Collapse
|