1
|
Abd El-Hamid MI, El-Malt RMS, Khater SI, Abdelwarith AA, Khamis T, Abd El-Wahab RA, Younis EM, Davies SJ, Mohamed DI, Mohamed RI, Zayed S, Abdelrahman MA, Ibrahim D. Impact of liposomal hesperetin in broilers: prospects for improving performance, antioxidant potential, immunity, and resistance against Listeria monocytogenes. Avian Pathol 2025; 54:120-148. [PMID: 39169883 DOI: 10.1080/03079457.2024.2395357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Liposomal encapsulated phytogenics, such as liposomal hesperetin, are considered novel substitutes for antibiotics in the broiler industry owing to their improved nutritional and therapeutic properties. Therefore, our key goal was to investigate liposomal hesperetin impact on broiler growth performance, health, antioxidant status, tight junction proteins (TJP), and resistance against Listeria monocytogenes. Four broiler groups were fed 0, 150, 250, or 400 mg/kg of liposomal hesperetin-supplemented diets and experimentally infected with L. monocytogenes strain. Herein, liposomal hesperetin, especially at higher concentrations, augmented broilers FCR with upregulation of genes encoding TJP (occludin, JAM-2, MUC-2), and antioxidant attributes (GPX-1, SOD-1, CAT, HO-1, NQO1, COX2), which reflect enhancing health and welfare of broilers. Muscle antioxidant biomarkers were enhanced; meanwhile, muscle MDA, ROS, and H2O2 levels were reduced in response to 400 mg/kg of liposomal hesperetin. Liposomal hesperetin fortification reduced L. monocytogenes loads and expression levels of its virulence-related genes (flaA, hlyA, and ami). Remarkably, histopathological alterations in intestinal and brain tissues of L. monocytogenes-infected broilers were restored post-inclusion at higher levels of liposomal hesperetin, which reflects increase of the birds' resistance to L. monocytogenes infection. Transcription levels of genes encoding cytokines/chemokines (MyD88, AVBD6, CCL20, IL-1β, IL-18), and autophagy (Bcl-2, LC3, AMPK, AKT, CHOP, Bip, p62, XBP1) were ameliorated following dietary liposomal hesperetin fortification, which suggests enhancement of the birds' immunity and health. Collectively, our research recommends liposomal hesperetin application in broiler diets owing to its promoting impact on growth performance, antioxidant status, immunity, health, and welfare besides its antibacterial, and antivirulence characteristics to fight against L. monocytogenes.
Collapse
Affiliation(s)
- Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rania M S El-Malt
- Department of Bacteriology, Animal Health Research Institute (AHRI), Zagazig Branch, Agriculture Research Center (ARC), Zagazig, Egypt
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A Abd El-Wahab
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Dalia Ibrahim Mohamed
- Department of Biochemistry, Animal Health Research Institute, Zagazig Branch, Agriculture Research Center, Zagazig, Egypt
| | - Rania I Mohamed
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute, Mansoura Provincial Laboratory (AHRI-Mansoura), Cairo, Egypt
| | - Shimaa Zayed
- Biochemistry Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Mahmoud A Abdelrahman
- Bacteriology Department, Animal Health Research Institute (AHRI), Mansoura Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Watson SC, Neujahr AC, Chaves BD, Fernando SC, Sullivan GA. Environmental Monitoring of Nebraska Ready-to-eat Meat Processing Establishments Resulted in the Isolation of Listeria Alongside Pseudomonas Highly Resistant to Quaternary Ammonia Sanitizer. J Food Prot 2024; 87:100391. [PMID: 39490688 DOI: 10.1016/j.jfp.2024.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Robust environmental monitoring for Listeria monocytogenes often may not be feasible for small and very small meat processors in the United States due to the limitations in finances, staffing, or expertise. Three small/very small processors in Nebraska were sampled using sponge applicators in nonfood contact surface areas to determine if biofilm and sanitizer resistance behaviors of Pseudomonas could relate to the prevalence of L. monocytogenes and Listeria spp. in ready-to-eat meat processing environments. Samples were 3.3% (3/90) positive for L. monocytogenes, and 12.2% (11/90) of samples were positive for Listeria spp. Pseudomonas spp. were also isolated. When Listeria spp. and Pseudomonas spp. were assayed for biofilm production and resistance to a quaternary ammonia sanitizer, multiple isolates belonging to both genera capable of forming biofilms were identified. Four Pseudomonas spp. isolates resisted the 200 ppm manufacturer-recommended sanitizer concentration for food contact surface sanitation, and one Pseudomonas spp. isolated from a drain sample that was also positive for L. monocytogenes demonstrated a sanitizer minimum bactericidal concentration of 1000 ppm. These findings further support the need for monitoring of small and very small meat processors for L. monocytogenes as well as highlight the need to identify other bacteria in these processing environments, like Pseudomonas, that are resistant to environmental stressors.
Collapse
Affiliation(s)
- Samuel C Watson
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| | - Alison C Neujahr
- Department of Complex Biosystems, University of Nebraska - Lincoln, Lincoln, NE, 68583-0908, USA.
| | - Byron D Chaves
- Department of Food Science and Technology, University of Nebraska - Lincoln, 1901 N 21 St, Lincoln, NE 68588-6205, USA.
| | - Samodha C Fernando
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| | - Gary A Sullivan
- Department of Animal Science, University of Nebraska - Lincoln, C203 ANSC, Lincoln, NE 68583-0908, USA.
| |
Collapse
|
3
|
Sharma RK, Jalalpure SS, Pathak S, Ganapathy S, Desvaux M, Roy S, Hegde S. Molecular detection of Listeria monocytogenes from different dairy and street food sources in North Karnataka, India. J Infect Public Health 2024; 17:696-703. [PMID: 38479066 DOI: 10.1016/j.jiph.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Food-borne pathogen Listeria monocytogenes is abundantly present in nature and accountable for sporadic and epidemic cases of listeriosis in humans. The objective of this study was to screen common food sources for L. monocytogenes using biochemical and molecular methods to detect and characterise its toxin genes as well as for biofilm formation. METHODS A total of 92 samples, comprising dairy and street food products, were randomly collected from various sources for this investigation. The collected samples were processed for biochemical and molecular methods to detect L. monocytogenes. Additionally, virulence factors associated genes, antibiogram profiles and biofilm formation related assays were determined. RESULTS L. monocytogenes presence was confirmed using molecular detection methods targeting prs and lmo1030 genes, along with MALDI-TOF MS. Following 16 S rRNA sequencing, the identified Listeria species were further categorised into two groups. L. monocytogenes was detected in two (2.17%) food samples tested (L-23 and L-74). Multiplex PCR indicated the presence of seven virulence-related genes in L. monocytogenes isolates, i.e., inlA, inlB, prfA, iap, actA, plcB, and hlyA. In addition, 17 antibiotics were tested, whereby two isolates showed resistance to clindamycin and azithromycin, while one isolate (L-74) was also resistant to nalidixic acid, co-trimoxazole, ampicillin, norfloxacin, and cefotaxime. L-23 and L-74 isolates showed biofilm formation, especially at pH 8.6 and 37°C. CONCLUSIONS Besides the demonstration of the presence of L. monocytogenes in some dairy and street food products, this study underscores the need to increase the standards of hygiene on the one hand and the importance of the surveillance of food-borne pathogens on the other.
Collapse
Affiliation(s)
- Roshan Kumar Sharma
- KLE Academy of Higher Education and Research, Dr. Prabhakar Kore Basic Science Research Centre, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swati Pathak
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sachit Ganapathy
- Department of Biostatistics, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India
| | | | - Subarna Roy
- ICMR - National Institute of Traditional Medicine (ICMR-NITM), Department of Health Research, Govt. of India, Belagavi 590010, India
| | - Satisha Hegde
- KLE Academy of Higher Education and Research, Dr. Prabhakar Kore Basic Science Research Centre, Belagavi 590010, India.
| |
Collapse
|
4
|
Wiktorczyk-Kapischke N, Wałecka-Zacharska E, Korkus J, Grudlewska-Buda K, Budzyńska A, Wnuk K, Gospodarek-Komkowska E, Skowron K. The influence of stress factors on selected phenotypic and genotypic features of Listeria monocytogenes - a pilot study. BMC Microbiol 2023; 23:259. [PMID: 37716959 PMCID: PMC10504795 DOI: 10.1186/s12866-023-03006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Listeria monocytogenes are Gram-positive rods, widespread in the environment due to their wide tolerance to changing conditions. The apilot study aimed to assess the impact of six various stresses (heat, cold, osmotic, acid, alkali, frozen) on phenotypic features: MIC of antibiotics (penicillin, ampicillin, meropenem, erythromycin, co-trimoxazole; gradient stripes), motility, ability to form a biofilm (crystal violet method) and growth rate (OD and quantitative method), expression level of sigB (stress induced regulator of genes), agrA, agrB (associated with biofilm formation) and lmo2230, lmo0596 (acid and alkali stress) (qPCR) for three strains of L. monocytogenes. RESULTS Applied stress conditions contributed to changes in phenotypic features and expression levels of sigB, agrA, agrB, lmo2230 and lmo0596. Stress exposure increased MIC value for penicillin (ATCC 19111 - alkaline stress), ampicillin (472CC - osmotic, acid, alkaline stress), meropenem (strains: 55 C - acid, alkaline, o smotic, frozen stress; 472CC - acid, alkaline stress), erythromycin (strains: 55 C - acid stress; 472CC - acid, alkaline, osmotic stress; ATCC 19111 - osmotic, acid, alkaline, frozen stress), co-trimoxazole (strains: 55 C - acid stress; ATCC 19111 - osmotic, acid, alkaline stress). These changes, however, did not affect antibiotic susceptibility. The strain 472CC (a moderate biofilm former) increased biofilm production after exposure to all stress factors except heat and acid. The ATCC 19111 (a weak producer) formed moderate biofilm under all studied conditions except cold and frozen stress, respectively. The strain 55 C became a strong biofilm producer after exposure to cold and produced a weak biofilm in response to frozen stress. Three tested strains had lower growth rate (compared to the no stress variant) after exposure to heat stress. It has been found that the sigB transcript level increased under alkaline (472CC) stress and the agrB expression increased under cold, osmotic (55 C, 472CC), alkali and frozen (472CC) stress. In contrast, sigB transcript level decreased in response to acid and frozen stress (55 C), lmo2230 transcript level after exposure to acid and alkali stress (ATCC 19111), and lmo0596 transcript level after exposure to acid stress (ATCC 19111). CONCLUSIONS Environmental stress changes the ability to form a biofilm and the MIC values of antibiotics and affect the level of expression of selected genes, which may increase the survival and virulence of L. monocytogenes. Further research on a large L. monocytogenes population is needed to assess the molecular mechanism responsible for the correlation of antibiotic resistance, biofilm formation and resistance to stress factors.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| | - Jakub Korkus
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Kacper Wnuk
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Ludwik Rydygier Collegium Medium in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
5
|
Ryu J, Choi Y, Yoon Y. Comparison of genetic variations between high- and low-risk Listeria monocytogenes isolates using whole-genome de novo sequencing. Front Microbiol 2023; 14:1163841. [PMID: 37533826 PMCID: PMC10393277 DOI: 10.3389/fmicb.2023.1163841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/12/2023] [Indexed: 08/04/2023] Open
Abstract
In this study, genetic variations and characteristics of Listeria monocytogenes isolates from enoki mushrooms (23), smoked ducks (7), and processed ground meat products (30) were examined with respect to hemolysis, virulence genes, growth patterns, and heat resistance. The isolates that showed the highest pathogenicity and the lowest pathogenicity were analyzed to obtain the whole-genome sequence, and the sequences were further analyzed to identify genetic variations in virulence, low-temperature growth-related, and heat resistance-related factors. All isolates had β-hemolysis and virulence genes (actA, hlyA, inlA, inlB, and plcB). At low temperatures, isolates with high growth (L. monocytogenes strains SMFM 201803 SD 1-1, SMFM 201803 SD 4-2, and SMFM 201804 SD 5-3) and low growth (L. monocytogenes strains SMFM 2019-FV43, SMFM 2019-FV42, and SMFM 2020-BT30) were selected. Among them, L. monocytogenes SMFM 201804 SD 5-3 showed the highest resistance at 60°C and 70°C. The strains SMFM 201804 SD 5-3 (high-risk) and SMFM 2019-FV43 (low-risk) harbored 45 virulence genes; 41 single nucleotide variants (SNVs) were identified between these two isolates. A comparison of 26 genes related to low-temperature growth revealed 18 SNVs between these two isolates; a comparison of the 21 genes related to heat resistance revealed 16 SNVs. These results indicate that the differences in the pathogenicity of L. monocytogenes SMFM 201804 SD 5-3 and L. monocytogenes SMFM 2019-FV43 are associated with the SNVs identified in virulence genes, low-temperature growth-related genes, and heat resistance-related genes.
Collapse
Affiliation(s)
- Jihye Ryu
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Yukyung Choi
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Republic of Korea
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Wiktorczyk-Kapischke N, Skowron K, Wałecka-Zacharska E. Genomic and pathogenicity islands of Listeria monocytogenes-overview of selected aspects. Front Mol Biosci 2023; 10:1161486. [PMID: 37388250 PMCID: PMC10300472 DOI: 10.3389/fmolb.2023.1161486] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Listeria monocytogenes causes listeriosis, a disease characterized by a high mortality rate (up to 30%). Since the pathogen is highly tolerant to changing conditions (high and low temperature, wide pH range, low availability of nutrients), it is widespread in the environment, e.g., water, soil, or food. L. monocytogenes possess a number of genes that determine its high virulence potential, i.e., genes involved in the intracellular cycle (e.g., prfA, hly, plcA, plcB, inlA, inlB), response to stress conditions (e.g., sigB, gadA, caspD, clpB, lmo1138), biofilm formation (e.g., agr, luxS), or resistance to disinfectants (e.g., emrELm, bcrABC, mdrL). Some genes are organized into genomic and pathogenicity islands. The islands LIPI-1 and LIPI-3 contain genes related to the infectious life cycle and survival in the food processing environment, while LGI-1 and LGI-2 potentially ensure survival and durability in the production environment. Researchers constantly have been searching for new genes determining the virulence of L. monocytogenes. Understanding the virulence potential of L. monocytogenes is an important element of public health protection, as highly pathogenic strains may be associated with outbreaks and the severity of listeriosis. This review summarizes the selected aspects of L. monocytogenes genomic and pathogenicity islands, and the importance of whole genome sequencing for epidemiological purposes.
Collapse
Affiliation(s)
- Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Modulatory Impacts of Multi-Strain Probiotics on Rabbits’ Growth, Nutrient Transporters, Tight Junctions and Immune System to Fight against Listeria monocytogenes Infection. Animals (Basel) 2022; 12:ani12162082. [PMID: 36009671 PMCID: PMC9405287 DOI: 10.3390/ani12162082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Weaning is a crucial period associated with great stress and susceptibility to infection, implying adverse impacts on farmed rabbits’ production. Recently, probiotics have been provided as direct microbial feed supplements, which are considered the ideal antibiotic substitutes during pathogenic infections with an emphasis on promoting rabbits’ growth and modulating their immune functions. Therefore, our experiment was carried out to explore the efficacy of multi-strain probiotics (MSP) on rabbits’ growth, molecular aspects, such as nutrients transporters, cytokines, and intestinal integrity, and effectiveness against Listeria monocytogenes (L. monocytogenes) infection. Altogether, our findings proposed the beneficial consequences of MSP on rabbits’ growth, gut health, and immunity. After post-experimental infection of rabbits with L. monocytogenes, administration of MSP during the whole rearing period greatly reduced the detrimental impact of infection and consequently renovated efficient rabbits’ production. Abstract Multi-strain probiotics (MSP) are considered innovative antibiotics’ substitutes supporting superior gut health and immunity of farmed rabbits. The promising roles of MSP on performance, intestinal immunity, integrity and transporters, and resistance against Listeria monocytogenes (L. monocytogenes) were evaluated. In the feeding trial, 220 rabbits were fed a control diet or diet supplemented with three MSP graded levels. At 60 days of age, rabbits were experimentally infected with L. monocytogenes and the positive control, enrofloxacin, prophylactic MSP (MSPP), and prophylactic and therapeutic MSP (MSPTT) groups were included. During the growing period, MSP at the level of 1 × 108 CFU/kg diet (MSPIII) promoted the rabbits’ growth, upregulated the nutrient transporters and tight-junction-related genes, and modified cytokines expression. Supplementing MSPTT for L. monocytogenes experimentally-infected rabbits restored the impaired growth and intestinal barriers, reduced clinical signs of severity and mortalities, and attenuated the excessive inflammatory reactions. Notably, enrofloxacin decreased L. monocytogenes and beneficial microbial loads; unlike MSPTT, which decreased pathogenic bacterial loads and sustained the beneficial ones. Histopathological changes were greatly reduced in MSPTT, confirming its promising role in restricting L. monocytogenes translocation to different organs. Therefore, our results suggest the use of MSPTT as an alternative to antibiotics, thereby conferring protection for rabbits against L. monocytogenes infection.
Collapse
|
8
|
Butucel E, Balta I, Ahmadi M, Dumitrescu G, Morariu F, Pet I, Stef L, Corcionivoschi N. Biocides as Biomedicines against Foodborne Pathogenic Bacteria. Biomedicines 2022; 10:biomedicines10020379. [PMID: 35203588 PMCID: PMC8962343 DOI: 10.3390/biomedicines10020379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Biocides are currently considered the first line of defense against foodborne pathogens in hospitals or food processing facilities due to the versatility and efficiency of their chemical active ingredients. Understanding the biological mechanisms responsible for their increased efficiency, especially when used against foodborne pathogens on contaminated surfaces and materials, represents an essential first step in the implementation of efficient strategies for disinfection as choosing an unsuitable product can lead to antibiocide resistance or antibiotic–biocide cross-resistance. This review describes these biological mechanisms for the most common foodborne pathogens and focuses mainly on the antipathogen effect, highlighting the latest developments based on in vitro and in vivo studies. We focus on biocides with inhibitory effects against foodborne bacteria (e.g., Escherichia spp., Klebsiella spp., Staphylococcus spp., Listeria spp., Campylobacter spp.), aiming to understand their biological mechanisms of action by looking at the most recent scientific evidence in the field.
Collapse
Affiliation(s)
- Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (E.B.); (I.B.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (E.B.); (I.B.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mirela Ahmadi
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Gabi Dumitrescu
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Florica Morariu
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
- Correspondence: (L.S.); (N.C.)
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (E.B.); (I.B.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
- Correspondence: (L.S.); (N.C.)
| |
Collapse
|
9
|
Montso PK, Bezuidenhout CC, Mienie C, Somorin YM, Odeyemi OA, Mlambo V, Ateba CN. Genetic diversity and whole genome sequence analysis data of multidrug resistant atypical enteropathogenic Escherichia coli O177 strains: An assessment of food safety and public health implications. Int J Food Microbiol 2022; 365:109555. [DOI: 10.1016/j.ijfoodmicro.2022.109555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
|
10
|
Bellich B, Janež N, Sterniša M, Klančnik A, Ravenscroft N, Rizzo R, Sabotič J, Cescutti P. Characterisation of a new cell wall teichoic acid produced by Listeria innocua ŽM39 and analysis of its biosynthesis genes. Carbohydr Res 2021; 511:108499. [PMID: 35007911 DOI: 10.1016/j.carres.2021.108499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 01/14/2023]
Abstract
Listeria innocua is genetically closely related to the foodborne human pathogen Listeria monocytogenes. However, as most L. innocua strains are non-pathogenic, it has been proposed as a surrogate organism for determining the efficacy of antimicrobial strategies against L. monocytogenes. Teichoic acids are one of the three major cell wall components of Listeria, along with the peptidoglycan backbone and cell wall-associated proteins. The polymeric teichoic acids make up the majority of cell wall carbohydrates; the type of teichoic acids directly attached to the peptidoglycan are termed wall teichoic acids (WTAs). WTAs play vital physiological roles, are important virulence factors, antigenic determinants, and phage-binding ligands. The structures of the various WTAs of L. monocytogenes are well known, whereas those of L. innocua are not. In the present study, the WTA structure of L. innocua ŽM39 was determined mainly by 1D and 2D NMR spectroscopy and it was found to be the following: [→4)-[α-D-GlcpNAc-(1→3)]-β-D-GlcpNAc-(1→4)-D-Rbo-(1P→]n This structure is new with respect to all currently known Listeria WTAs and it shares structural similarities with type II WTA serovar 6a. In addition, the genome of strain L. innocua ŽM39 was sequenced and the majority of putative WTA synthesis genes were identified.
Collapse
Affiliation(s)
- Barbara Bellich
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Meta Sterniša
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy.
| |
Collapse
|
11
|
Mathematical modeling of bird flu with vaccination and treatment for the poultry farms. Comp Immunol Microbiol Infect Dis 2021; 80:101721. [PMID: 34891070 DOI: 10.1016/j.cimid.2021.101721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
A deterministic six-compartmental model was developed based on the progression of the disease in poultry, the epidemiological status of the individuals, and intervention measures. The Runge-Kutta method is applied to calculate the variables of the system of equations of the proposed model. The evolution of the epidemic provides some results, such as reproduction number, vaccine efficiency, and antiviral treatment. Numerical results show that the outbreak sizes known as the infected curves increase and decrease with the vaccine limitation rate and treatment rate, respectively, for a specific transmission rate. The calculated results of the reproduction number indicate that avian influenza would spread when vaccine efficiency is less than 70%, and the primary reproduction number is greater than 1. Finally, the disease-free equilibrium of the model is found locally and globally asymptotically stable for R0 < 1.
Collapse
|
12
|
The in vitro and in vivo anti-virulent effect of organic acid mixtures against Eimeria tenella and Eimeria bovis. Sci Rep 2021; 11:16202. [PMID: 34376718 PMCID: PMC8355357 DOI: 10.1038/s41598-021-95459-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Eimeria tenella and Eimeria bovis are complex parasites responsible for the condition of coccidiosis, that invade the animal gastrointestinal intestinal mucosa causing severe diarrhoea, loss of appetite or abortions, with devastating impacts on the farming industry. The negative impacts of these parasitic infections are enhanced by their role in promoting the colonisation of the gut by common foodborne pathogens. The aim of this study was to test the anti-Eimeria efficacy of maltodextrin, sodium chloride, citric acid, sodium citrate, silica, malic acid, citrus extract, and olive extract individually, in vitro and in combination, in vivo. Firstly, in vitro infection models demonstrated that antimicrobials reduced (p < 0.05), both singly and in combination (AG), the ability of E. tenella and E. bovis to infect MDBK and CLEC-213 epithelial cells, and the virulence reduction was similar to that of the anti-coccidial drug Robenidine. Secondly, using an in vivo broiler infection model, we demonstrated that AG reduced (p = 0.001) E. tenella levels in the caeca and excreted faeces, reduced inflammatory oxidative stress, improved the immune response through reduced ROS, increased Mn-SOD and SCFA levels. Levels of IgA and IgM were significantly increased in caecal tissues of broilers that received 0.5% AG and were associated with improved (p < 0.0001) tissue lesion scores. A prophylactic approach increased the anti-parasitic effect in vivo, and results indicated that administration from day 0, 5 and 10 post-hatch reduced tissue lesion scores (p < 0.0001) and parasite excretion levels (p = 0.002). Conclusively, our in vitro and in vivo results demonstrate that the natural antimicrobial mixture (AG) reduced parasitic infections through mechanisms that reduced pathogen virulence and attenuated host inflammatory events.
Collapse
|
13
|
Balta I, Marcu A, Linton M, Kelly C, Gundogdu O, Stef L, Pet I, Ward P, Deshaies M, Callaway T, Sopharat P, Gradisteanu-Pircalabioru G, Corcionivoschi N. Mixtures of natural antimicrobials can reduce Campylobacter jejuni, Salmonella enterica and Clostridium perfringens infections and cellular inflammatory response in MDCK cells. Gut Pathog 2021; 13:37. [PMID: 34099034 PMCID: PMC8182910 DOI: 10.1186/s13099-021-00433-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background The classification of natural antimicrobials as potential antibiotic replacements is still hampered by the absence of clear biological mechanisms behind their mode of action. This study investigated the mechanisms underlying the anti-bacterial effect of a mixture of natural antimicrobials (maltodextrin, citric acid, sodium citrate, malic acid, citrus extract and olive extract) against Campylobacter jejuni RC039, Salmonella enterica SE 10/72 and Clostridium perfringens ATCC® 13124 invasion of Madin–Darby Canine Kidney cells (MDCK). Results Minimum sub-inhibitory concentrations were determined for Campylobacter jejuni (0.25%), Salmonella enterica (0.50%) and Clostridium perfringens (0.50%) required for the in vitro infection assays with MDCK cells. The antimicrobial mixture significantly reduced the virulence of all three pathogens towards MDCK cells and restored the integrity of cellular tight junctions through increased transepithelial resistance (TEER) and higher expression levels of ZO-1 (zonula occludens 1) and occludin. This study also identified the ERK (external regulated kinase) signalling pathway as a key mechanism in blocking the pro-inflammatory cytokine production (IL-1β, IL-6, IL-8, TNF-α) in infected cells. The reduction in hydrogen peroxide (H2O2) production and release by infected MDCK cells, in the presence of the antimicrobial mixture, was also associated with less tetrathionate formed by oxidation of thiosulphate (p < 0.0001). Conclusion The present study describes for the first time that mixtures of natural antimicrobials can prevent the formation of substrates used by bacterial pathogens to grow and survive in anaerobic environments (e.g. tetrathionate). Moreover, we provide further insights into pathogen invasion mechanisms through restoration of cellular structures and describe their ability to block the ERK–MAPK kinase pathway responsible for inflammatory cytokine release
Collapse
Affiliation(s)
- Igori Balta
- Food Microbiology, Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK. .,Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania. .,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, 300645, Timisoara, Romania.
| | - Adela Marcu
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, 300645, Timisoara, Romania.
| | - Mark Linton
- Food Microbiology, Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK
| | - Carmel Kelly
- Food Microbiology, Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, 300645, Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, 300645, Timisoara, Romania
| | | | | | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | | | | | - Nicolae Corcionivoschi
- Food Microbiology, Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK. .,Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania. .,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, 300645, Timisoara, Romania.
| |
Collapse
|
14
|
Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107808] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
The effect of natural antimicrobials on the Campylobacter coli T6SS +/- during in vitro infection assays and on their ability to adhere to chicken skin and carcasses. Int J Food Microbiol 2020; 338:108998. [PMID: 33279789 DOI: 10.1016/j.ijfoodmicro.2020.108998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 11/20/2022]
Abstract
Reducing the Campylobacter load on poultry carcasses represents a major tasks for the industry as its ability to reduce their presence is of major interest aiming to increase consumer safety. This study investigated the ability of a mixture of natural antimicrobials (A3001) to reduce the adherence of the T6SS+/-C. coli isolates (NC1hcp-, NC2 hcp- and NC3 hcp+) to chicken neck skin and whole carcasses. Overall, the antimicrobial mixture induced a significant reduction in the capability of our C. coli isolates to colonise the chicken skin (p < 0.05) and carcasses (p < 0.0001) but with a greater effect (≈3 log reduction) on the NC3 isolate. Using the HCT-8 in vitro infection model we also show that at a concentration of 0.5% A3001, the impact on the NC3 isolate is accompanied by the downregulation of the hcp gene (p = 0.0001), and indicator of the T6SS presence. The results described herein also indicated that these isolates are highly resistant to H2O2, up to 20 mM, suggesting a high resilience to environmental stresses. In summary our study shows that natural antimicrobials can reduce the ability of T6SS positive chicken C. coli isolates to adhere to chicken skin or to the whole carcass and to infect epithelial cells in vitro and could be considered a potential intervention at processor level.
Collapse
|
17
|
Balta I, Stef L, Pet I, Ward P, Callaway T, Ricke SC, Gundogdu O, Corcionivoschi N. Antiviral activity of a novel mixture of natural antimicrobials, in vitro, and in a chicken infection model in vivo. Sci Rep 2020; 10:16631. [PMID: 33024252 PMCID: PMC7538884 DOI: 10.1038/s41598-020-73916-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to test in vitro the ability of a mixture of citrus extract, maltodextrin, sodium chloride, lactic acid and citric acid (AuraShield L) to inhibit the virulence of infectious bronchitis, Newcastle disease, avian influenza, porcine reproductive and respiratory syndrome (PRRS) and bovine coronavirus viruses. Secondly, in vivo, we have investigated its efficacy against infectious bronchitis using a broiler infection model. In vitro, these antimicrobials had expressed antiviral activity against all five viruses through all phases of the infection process of the host cells. In vivo, the antimicrobial mixture reduced the virus load in the tracheal and lung tissue and significantly reduced the clinical signs of infection and the mortality rate in the experimental group E2 receiving AuraShield L. All these effects were accompanied by a significant reduction in the levels of pro-inflammatory cytokines and an increase in IgA levels and short chain fatty acids (SCFAs) in both trachea and lungs. Our study demonstrated that mixtures of natural antimicrobials, such AuraShield L, can prevent in vitro viral infection of cell cultures. Secondly, in vivo, the efficiency of vaccination was improved by preventing secondary viral infections through a mechanism involving significant increases in SCFA production and increased IgA levels. As a consequence the clinical signs of secondary infections were significantly reduced resulting in recovered production performance and lower mortality rates in the experimental group E2.
Collapse
Affiliation(s)
- Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK.,Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, Timisoara, Romania
| | | | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Steven C Ricke
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, 13 Keppel Street, London, WC1E 7HT, UK.
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK. .,Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372, Cluj-Napoca, Romania. .,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, Timisoara, Romania.
| |
Collapse
|
18
|
Gonçalves SM, de Melo NR, da Silva JP, Chávez DW, Gouveia FS, Rosenthal A. Antimicrobial packaging and high hydrostatic pressure: Combined effect in improving the safety of coalho cheese. FOOD SCI TECHNOL INT 2020; 27:301-312. [PMID: 32903099 DOI: 10.1177/1082013220953238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Active cellulose acetate films incorporated with oregano essential oil (antimicrobial film) were previously subjected to high hydrostatic pressure treatment (300 MPa/5 min (FHP1) or 400 MPa/10 min (FHP2)) and investigated for possible changes in their antimicrobial efficiency. In parallel, the efficiency of the antimicrobial films, high hydrostatic pressure (300 MPa/5 min or 400 MPa/10 min), or a combination of antimicrobial film and high hydrostatic pressure, was tested on coalho cheese, experimentally contaminated with Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus, stored for 21 days under refrigeration. Investigations in culture media (agar, brain-heart infusion broth, and micro-atmosphere) detected antimicrobial efficiency for all films, with or without high hydrostatic pressure, against the three bacteria. However, the data indicated that the treatment with 300 MPa/5 min may have impaired the migration of oregano essential oil from FHP1, justifying its lower efficiency in solid medium and brain-heart infusion broth. In cheese samples, the combination of antimicrobial film and 400 MPa/10 min caused greater reductions in counts for the three microorganisms, at zero time throughout the entire coalho cheese storage. Only antimicrobial film or combination (antimicrobial film and high hydrostatic pressure) were able to control microbial multiplication during the 21 days. Therefore, the results confirm that the individual use of high hydrostatic pressure (300 MPa/5 min or 400 MPa/10 min) at the level evaluated can allow bacterial multiplication during storage and that the combination of antimicrobial packaging and high hydrostatic pressure has greater potential to ensure a safer coalho cheese.
Collapse
Affiliation(s)
- Sheyla M Gonçalves
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Brazil
| | - Nathália R de Melo
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Brazil.,Department of Agribusiness Engineering, Federal Fluminense University (UFF), Brazil
| | | | - Davy Wh Chávez
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Brazil
| | - Fabíola S Gouveia
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Brazil
| | - Amauri Rosenthal
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Brazil.,Embrapa Food Technology, Brazil
| |
Collapse
|
19
|
Kayode AJ, Igbinosa EO, Okoh AI. Overview of listeriosis in the Southern African Hemisphere—Review. J Food Saf 2019. [DOI: 10.1111/jfs.12732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Adeoye J. Kayode
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and MicrobiologyUniversity of Fort Hare Alice South Africa
- SAMRC Microbial Water Quality Monitoring CenterUniversity of Fort Hare Alice South Africa
| | - Etinosa O. Igbinosa
- Department of Microbiology, Faculty of Life SciencesPrivate Mail Bag 1154, University of Benin Benin City Nigeria
| | - Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and MicrobiologyUniversity of Fort Hare Alice South Africa
- SAMRC Microbial Water Quality Monitoring CenterUniversity of Fort Hare Alice South Africa
| |
Collapse
|