1
|
da Costa RHS, Pessoa RT, Silva EDS, Araujo IM, Gonçalves SA, Rocha JE, Pereira Junior FN, Oliveira NC, de Oliveira VM, da Rocha MN, Marinho ES, Kelly Gomes de Carvalho N, Galberto Martins da Costa J, dos Santos HS, de Menezes IRA. Antibacterial and Inhibitory Activity of Nora and Mepa Efflux Pumps of Estragole Complexed to β-Cyclodextrin (ES/β-CD) In Vitro Against Staphylococcus aureus Bacteria, Molecular Docking and MPO-Based Pharmacokinetics Prediction. Pharmaceutics 2024; 16:1469. [PMID: 39598592 PMCID: PMC11597315 DOI: 10.3390/pharmaceutics16111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The work investigates the effect of the estragole complex encapsulated in beta-cyclodextrin (ES/β-CD) in modulating bacterial resistance, specifically in Staphylococcus aureus strains expressing NorA and MepA efflux pumps. Efflux pumps are mechanisms that bacteria use to resist antibiotics by expelling them from the cell. Methodology: Several compounds and antibiotics, such as ciprofloxacin and norfloxacin, were used to evaluate the antimicrobial activity and the ability of the ES/β-CD complex to reverse resistance. Methods: The study included scanning electron microscopy assays, minimum inhibitory concentration (MIC) determination, and efflux pump inhibition tests. Results: The ES/β-CD complex did not show significant direct antibacterial activity. However, it modulated the action of norfloxacin, decreasing the MIC when combined with this antibiotic in the 1199B (NorA) strain. These results suggest a potential for synergy but not a direct inhibition of efflux pumps. Conclusion: ES/β-CD can potentiate the efficacy of some antibiotics but does not directly act as an efflux pump inhibitor; it is more of an antibiotic potentiator than a direct solution to bacterial resistance. The molecular docking simulation data suggest its high affinity for forming the ES/β-CD complex. The pharmacokinetic predictions based on MPO suggest that the compound has moderate lipophilicity, highly effective cellular permeability, and low incidence of organic toxicity, pointing to a promising pharmacological principle with controlled daily oral dosing. Conclusions: These results indicate this complex's possible and relevant association as an adjuvant in antibiotic therapy to reduce multidrug-resistant bacteria; however, new in vivo assays are necessary to confirm this effect.
Collapse
Affiliation(s)
- Roger Henrique Sousa da Costa
- Veterinary Medicine Course, Maurício de Nassau University Center, Juazeiro do Norte 63010-475, CE, Brazil;
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (R.T.P.); (E.d.S.S.)
| | - Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (R.T.P.); (E.d.S.S.)
| | - Eduardo dos Santos Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (R.T.P.); (E.d.S.S.)
| | - Isaac Moura Araujo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil; (I.M.A.); (S.A.G.); (J.E.R.)
| | - Sheila Alves Gonçalves
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil; (I.M.A.); (S.A.G.); (J.E.R.)
| | - Janaína Esmeraldo Rocha
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil; (I.M.A.); (S.A.G.); (J.E.R.)
| | | | | | - Victor Moreira de Oliveira
- Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (V.M.d.O.); (M.N.d.R.); (E.S.M.)
| | - Matheus Nunes da Rocha
- Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (V.M.d.O.); (M.N.d.R.); (E.S.M.)
| | - Emmanuel Silva Marinho
- Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil; (V.M.d.O.); (M.N.d.R.); (E.S.M.)
| | - Natália Kelly Gomes de Carvalho
- Laboratory of Research and Natural Product (LPPN), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (N.K.G.d.C.); (J.G.M.d.C.)
| | - José Galberto Martins da Costa
- Laboratory of Research and Natural Product (LPPN), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (N.K.G.d.C.); (J.G.M.d.C.)
| | - Hélcio Silva dos Santos
- Center for Exact Sciences and Technology, Vale do Acaraú University, Sobral 62040-370, CE, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, CE, Brazil; (R.T.P.); (E.d.S.S.)
| |
Collapse
|
2
|
Gonzalez-Prada I, Borges A, Santos-Torres B, Magariños B, Simões M, Concheiro A, Alvarez-Lorenzo C. Antimicrobial cyclodextrin-assisted electrospun fibers loaded with carvacrol, citronellol and cinnamic acid for wound healing. Int J Biol Macromol 2024; 277:134154. [PMID: 39116822 DOI: 10.1016/j.ijbiomac.2024.134154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
This work aimed to explore an alternative to the use of antibiotics for prevention and treatment of wounds infection caused by two common bacterial pathogens Staphylococcus aureus and Pseudomonas aeruginosa. For this purpose, three different essential oil components (EOCs), namely carvacrol, citronellol and cinnamic acid, were loaded into electrospun fibers of poly-ε-caprolactone (PCL) aided by alpha-cyclodextrin (αCD) and hydroxypropyl-β-cyclodextrin (HPβCD). Electrospun-fibers prepared with each EOC and their mixtures were screened for antimicrobial capability and characterized regarding morphological, mechanical, thermal, surface polarity, antibiofilm and antioxidant properties. αCD formed poly(pseudo)rotaxanes with PCL and weakly interacted with EOCs, while HPβCD facilitated EOC encapsulation and formation of homogeneous fibers (500-1000 nm diameter) without beads. PCL/HPβCD fibers with high concentration of EOCs (mainly carvacrol and cinnamic acid) showed strong antibiofilm (>3 log CFU reduction) and antioxidant activity (10-50% DPPH scavenging effects). Different performances were recorded for the EOCs and their mixtures; cinnamic acid migrated to fiber surface and was released faster. Fibers biocompatibility was verified using hemolysis tests and in ovo tissue integration and angiogenesis assays. Overall, HPβCD facilitates complete release of EOCs from the fibers to the aqueous medium, being an environment-friendly and cost-effective strategy for the treatment of infected wounds.
Collapse
Affiliation(s)
- Iago Gonzalez-Prada
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain
| | - Anabela Borges
- LEPABE - Department of Chemical Engineering, Faculty of Engineering, University of Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Portugal
| | - Beatriz Santos-Torres
- Departamento de Microbiología y Parasitología, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, Spain
| | - Beatriz Magariños
- Departamento de Microbiología y Parasitología, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, Spain
| | - Manuel Simões
- LEPABE - Department of Chemical Engineering, Faculty of Engineering, University of Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Portugal
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain.
| |
Collapse
|
3
|
The New Strategy for Studying Drug-Delivery Systems with Prolonged Release: Seven-Day In Vitro Antibacterial Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228026. [PMID: 36432127 PMCID: PMC9695913 DOI: 10.3390/molecules27228026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
The new method of antibacterial-drug-activity investigation in vitro is proposed as a powerful strategy for understanding how carriers affect drug action during long periods (7 days). In this paper, we observed fluoroquinolone moxifloxacin (MF) antibacterial-efficiency in non-covalent complexes, with the sulfobutyl ether derivative of β-cyclodextrin (SCD) and its polymer (SCDpol). We conducted in vitro studies on two Escherichia coli strains that differed in surface morphology. It was found that MF loses its antibacterial action after 3-4 days in liquid media, whereas the inclusion of the drug in SCD led to the increase of MF antibacterial activity by up to 1.4 times within 1-5 days of the experiment. In the case of MF-SCDpol, we observed a 12-fold increase in the MF action, and a tendency to prolonged antibacterial activity. We visualized this phenomenon (the state of bacteria, cell membrane, and surface morphology) during MF and MF-carrier exposure by TEM. SCD and SCDpol did not change the drug's mechanism of action. Particle adsorption on cells was the crucial factor for determining the observed effects. The proteinaceous fimbriae on the bacteria surface gave a 2-fold increase of the drug carrier adsorption, hence the strains with fimbriae are more preferable for the proposed treatment. Furthermore, the approach to visualize the CD polymer adsorption on bacteria via TEM is suggested. We hope that the proposed comprehensive method will be useful for the studies of drug-delivery systems to uncover long-term antibacterial action.
Collapse
|
4
|
Mamur S, Gündüzer E, Yaman M. Toxicological aspect of bioinsecticide pyrethrum extract and expressions of apoptotic gene levels in human hepotacellular carcinoma HepG2 cells. Toxicol Mech Methods 2022; 32:373-384. [PMID: 35321623 DOI: 10.1080/15376516.2022.2057266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pyrethrum extract (PE), an important natural bioinsecticide, is extensively used across the world to control pest insects in homes and farms. The aim of this study was to evaluate the potential cytotoxic effect of PE using MTT assay and genotoxic effect using micronucleus (MN) assay. The changes in the expressions of the apoptosis genes in mRNA levels were also investigated using Real Time qPCR analysis as well as the ratio of apoptotic/necrotic cells with AnnexinV-FITC/Propidium iodide (PI) assay in HepG2 cells. PE markedly suppressed the cell proliferation on HepG2 cells. It significantly increased the frequency of micronucleus (MN) at 500 and 1000 µg/mL. PE also induced the percentage of cell population of late apoptotic/necrotic cells (FITC + PI+) and necrotic cells (FITC- PI+) especially at 4000 μg/mL analyzed by flow cytometry. PE caused significant fold changes in the expression of several apoptotic genes including APAF1, BIK, BAX, BAD, BİD, MCL-1, CASP3, CASP1, CASP2, FAS, FADD and TNFRSF1A. In particularly, the pro-apoptotic gene Hrk (Harakiri) remarkably and dose-dependently was overexpressed of the mRNA level. As a result, PE may exhibit cyto-genotoxic effects especially at higher concentrations and lead to significant changes in the expression of mRNA levels in several apoptotic genes.Highlights [Database][Mismatch]Natural bioinsecticide PE exhibited cytotoxic effect in HepG2 cells.PE significantly induced the micronucleus (MN) frequency at 500 and 1000 µg/mL.This bioinsecticide induced cell death and it lead to significant fold changes in the expression of mRNA levels in several apoptotic genes in HepG2 cells.The highest increase of the expression of mRNA levels was determined in Hrk (Harakiri) at 4000 µg/mL.
Collapse
Affiliation(s)
- Sevcan Mamur
- Gazi University, Life Sciences Application and Research Center, 06830, Ankara, Turkey
| | - Esra Gündüzer
- Gazi University, Science Faculty, Deparment of Biology, 06560, Ankara, Turkey
| | - Melek Yaman
- Gazi University, Medicine Faculty, Department of Immunology, 06800, Ankara, Turkey
| |
Collapse
|
5
|
Tian B, Liu J, Liu Y, Wan JB. Integrating diverse plant bioactive ingredients with cyclodextrins to fabricate functional films for food application: a critical review. Crit Rev Food Sci Nutr 2022; 63:7311-7340. [PMID: 35253547 DOI: 10.1080/10408398.2022.2045560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The popularity of plant bioactive ingredients has become increasingly apparent in the food industry. However, these plant bioactive ingredients have many deficiencies, including low water solubility, poor stability, and unacceptable odor. Cyclodextrins (CDs), as cyclic molecules, have been extensively studied as superb vehicles of plant bioactive ingredients. These CD inclusion compounds could be added into various film matrices to fabricate bioactive food packaging materials. Therefore, in the present review, we summarized the extraction methods of plant bioactive ingredients, the addition of these CD inclusion compounds into thin-film materials, and their applications in food packaging. Furthermore, the release model and mechanism of active film materials based on various plant bioactive ingredients with CDs were highlighted. Finally, the current challenges and new opportunities based on these film materials have been discussed.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
6
|
Lin Y, Huang R, Sun X, Yu X, Xiao Y, Wang L, Hu W, Zhong T. The p-Anisaldehyde/β-cyclodextrin inclusion complexes as a sustained release agent: Characterization, storage stability, antibacterial and antioxidant activity. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, Li Y, Pan SY. Recent updates on bioactive properties of linalool. Food Funct 2021; 12:10370-10389. [PMID: 34611674 DOI: 10.1039/d1fo02120f] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural products, including essential oils and their components, have been used for their bioactivities. Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic monoterpene alcohol that is widely found in essential oils and is broadly used in perfumes, cosmetics, household cleaners and food additives. This review covers the sources, physicochemical properties, application, synthesis and bioactivities of linalool. The present study focuses on the bioactive properties of linalool, including anticancer, antimicrobial, neuroprotective, anxiolytic, antidepressant, anti-stress, hepatoprotective, renal protective, and lung protective activity and the underlying mechanisms. Besides this, the therapeutic potential of linalool and the prospect of encapsulating linalool are also discussed. Linalool can induce apoptosis of cancer cells via oxidative stress, and at the same time protects normal cells. Linalool exerts antimicrobial effects through disruption of cell membranes. The protective effects of linalool to the liver, kidney and lung are owing to its anti-inflammatory activity. On account of its protective effects and low toxicity, linalool can be used as an adjuvant of anticancer drugs or antibiotics. Therefore, linalool has a great potential to be applied as a natural and safe alternative therapeutic.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Sha-Sha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yue Song
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yang Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
8
|
El Kharraf S, Farah A, El Hadrami EM, El‐Guendouz S, Lourenço JP, Rosa Costa AM, Miguel MG. Encapsulation of
Rosmarinus officinalis
essential oil in β‐cyclodextrins. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sara El Kharraf
- Applied Organic Chemistry Laboratory Faculty of Sciences and Technique University Sidi Mohamed Ben Abdellah Imouzzer, Fez Morocco
| | - Abdellah Farah
- Applied Organic Chemistry Laboratory Faculty of Sciences and Technique University Sidi Mohamed Ben Abdellah Imouzzer, Fez Morocco
| | - El Mestafa El Hadrami
- Applied Organic Chemistry Laboratory Faculty of Sciences and Technique University Sidi Mohamed Ben Abdellah Imouzzer, Fez Morocco
| | - Soukaïna El‐Guendouz
- Faculdade de Ciências e Tecnologia Departamento de Química e Farmácia Universidade do Algarve Faro Portugal
| | - João P. Lourenço
- Faculdade de Ciências e Tecnologia Departamento de Química e Farmácia Universidade do Algarve Faro Portugal
- Centro de Química Estrutural Instituto Superior TécnicoUniversidade de Lisboa Lisboa Portugal
| | - Ana M. Rosa Costa
- Faculdade de Ciências e Tecnologia Departamento de Química e Farmácia Universidade do Algarve Faro Portugal
| | - Maria G. Miguel
- Faculdade de Ciências e Tecnologia Departamento de Química e Farmácia Universidade do Algarve Faro Portugal
- Mediterranean Institute for Agriculture, Environment and DevelopmentUniversidade do Algarve Faro Portugal
| |
Collapse
|
9
|
Mamur S. Geraniol, a natural monoterpene, identifications of cytotoxic and genotoxic effects in vitro. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1974581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sevcan Mamur
- Life Sciences Application and Research Center, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
López-Miranda S, Berdejo D, Pagán E, García-Gonzalo D, Pagán R. Modified cyclodextrin type and dehydration methods exert a significant effect on the antimicrobial activity of encapsulated carvacrol and thymol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3827-3835. [PMID: 33314093 DOI: 10.1002/jsfa.11017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The antimicrobial activity of essential oils and their constituents has led to increasing interest in using them as natural preservative agents. However, their high sensitivity to light and oxygen, their volatility and their low aqueous solubility are all obstacles to their application in the food, cosmetic or pharmaceutical industries. Encapsulation in cyclodextrins (CDs) is a solution for the application of such essential oils. RESULTS The complexation of carvacrol and thymol with hydroxypropyl (HP)-α-, HP-β- and HP-γ-CD, the behavior of the solid complexes prepared by freeze-drying and spray-drying methods and the antibacterial activity of solid complexes were studied. Kc values of HP-α- and HP-γ-CD complexes with carvacrol (118.4 and 365.7 L mol-1 ) and thymol (112.5 and 239.7 L mol -1 ) were far lower than those observed for HP-β-CD complexes with carvacrol (2268.2 L mol -1 ) and thymol (881.6 L mol -1 ). The lower stability of HP-α- and HP-γ-CD complexes increased the release of compounds, thereby affecting the antimicrobial activity of carvacrol and thymol to a lesser extent than complexation with HP-β-CD, normally used in the encapsulation of carvacrol and thymol. HP-β-CD encapsulation of carvacrol and thymol markedly reduced their antimicrobial activity. The freeze-drying method barely affected the antimicrobial activity of carvacrol and thymol after encapsulation, while spray drying could be considered for the production of solid complexes in combination with the appropriate CD. CONCLUSIONS It was thus demonstrated that HP-α- and HP-γ-CD are very suitable alternatives for the encapsulation of carvacrol and thymol with the purpose of preserving their bacteriostatic and bactericidal activities. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Santiago López-Miranda
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Elisa Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
11
|
Velázquez-Contreras F, García-Caldera N, Padilla de la Rosa JD, Martínez-Romero D, Núñez-Delicado E, Gabaldón JA. Effect of PLA Active Packaging Containing Monoterpene-Cyclodextrin Complexes on Berries Preservation. Polymers (Basel) 2021; 13:polym13091399. [PMID: 33925969 PMCID: PMC8123619 DOI: 10.3390/polym13091399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/01/2023] Open
Abstract
Blackberries and raspberries are highly perishable and fragile products, which limits their shelf life. The effect of biodegradable active packaging of blackberries and raspberries containing 2.5% and 5.0% weight (wt%) of thymol or carvacrol complexed in β-cyclodextrins (β-CDs), successively added to poly (lactic acid) (PLA), and melt-processed by injection molding was evaluated under stored conditions at 4 °C for 21 days, using as reference commercial clamshell and PLA package control samples. Thus, physicochemical, headspace, microbiological, and sensory quality studies were carried out in order to compare the efficacy of the different packages. Concerning weight loss, color, and total phenolic and soluble solids content, significant differences were detected when compared with commercial clamshell packaging. The results show that the PLA packages containing thymol and carvacrol complexes maintained the color, weight, and phenolic content of berries until day 21, with a score up to 45% better compared to commercial clamshell. The headspace analysis detected 101 mg L−1 (ppm) of thymol and 35 ppm of carvacrol on the first day of refrigeration; these concentrations decreased with time. This release mechanism of carvacrol and thymol into the PLA package modified the initial atmosphere composition. After 21 days of storage, the berries had 4.25 degrees of acceptance, without adverse perception of aroma or flavor for both carvacrol and thymol compounds. A general microbial inhibition was observed for yeast and molds, which increased with the concentration of monoterpene in PLA packages, and showed an inhibition of 3.5 log units for PLA packages containing thymol, and of 3 log units for those containing carvacrol. Overall results show that PLA/β-CD-thymol 5.0% packages prolonged raspberries’ and blackberries’ shelf life by one more week at 4 °C, compared with commercial clamshell packaging.
Collapse
Affiliation(s)
- Friné Velázquez-Contreras
- Department of Health Sciences, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia, No.135 Guadalupe, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
- Escuela de Administración de Instituciones (ESDAI), Universidad Panamericana, Álvaro del Portillo 49, Ciudad Granja, Zapopan 45010, Mexico;
| | - Nelsy García-Caldera
- Escuela de Administración de Instituciones (ESDAI), Universidad Panamericana, Álvaro del Portillo 49, Ciudad Granja, Zapopan 45010, Mexico;
| | - José Daniel Padilla de la Rosa
- Departamento de Tecnología Alimentaria, Centro de Investigación y Asistencia Tecnológica y Diseño del Estado de Jalisco (CIATEJ), Marcelino García Barragán 800, Guadalajara 44270, Mexico;
| | - Domingo Martínez-Romero
- Department of Food Technology, University Miguel Hernández, Orihuela, 03312 Alicante, Spain;
| | - Estrella Núñez-Delicado
- Department of Health Sciences, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia, No.135 Guadalupe, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
| | - José Antonio Gabaldón
- Department of Health Sciences, Campus de los Jerónimos, Universidad Católica San Antonio de Murcia, No.135 Guadalupe, 30107 Murcia, Spain; (F.V.-C.); (E.N.-D.)
- Correspondence: ; Tel.: +34-968-278-622
| |
Collapse
|
12
|
Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Anti-Tumor Efficiency of Perillylalcohol/β-Cyclodextrin Inclusion Complexes in a Sarcoma S180-Induced Mice Model. Pharmaceutics 2021; 13:pharmaceutics13020245. [PMID: 33578857 PMCID: PMC7916601 DOI: 10.3390/pharmaceutics13020245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/17/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
The low solubility and high volatility of perillyl alcohol (POH) compromise its bioavailability and potential use as chemotherapeutic drug. In this work, we have evaluated the anticancer activity of POH complexed with β-cyclodextrin (β-CD) using three complexation approaches. Molecular docking suggests the hydrogen-bond between POH and β-cyclodextrin in molar proportion was 1:1. Thermal analysis and Fourier-transform infrared spectroscopy (FTIR) confirmed that the POH was enclosed in the β-CD cavity. Also, there was a significant reduction of particle size thereof, indicating a modification of the β-cyclodextrin crystals. The complexes were tested against human L929 fibroblasts after 24 h of incubation showing no signs of cytotoxicity. Concerning the histopathological results, the treatment with POH/β-CD at a dose of 50 mg/kg promoted approximately 60% inhibition of tumor growth in a sarcoma S180-induced mice model and the reduction of nuclear immunoexpression of the Ki67 antigen compared to the control group. Obtained data suggest a significant reduction of cycling cells and tumor proliferation. Our results confirm that complexation of POH/β-CD not only solves the problem related to the volatility of the monoterpene but also increases its efficiency as an antitumor agent.
Collapse
|
14
|
Muñoz-Shugulí C, Vidal CP, Cantero-López P, Lopez-Polo J. Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Rodríguez-López MI, Mercader-Ros MT, Lucas-Abellán C, Pellicer JA, Pérez-Garrido A, Pérez-Sánchez H, Yáñez-Gascón MJ, Gabaldón JA, Núñez-Delicado E. Comprehensive Characterization of Linalool-HP-β-Cyclodextrin Inclusion Complexes. Molecules 2020; 25:molecules25215069. [PMID: 33139617 PMCID: PMC7662393 DOI: 10.3390/molecules25215069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022] Open
Abstract
The objective of the present study is to obtain linalool- cyclodextrin (CDs) solid complexes for possible applications in the food industry. For this purpose, a detailed study of linalool complexation was carried out at different pH values, to optimize the type of CDs and reaction medium that support the highest quantity of encapsulated linalool. Once demonstrated the ability of hydroxypropyl-β-cyclodextrin (HP-β-CDs), to form inclusion complexes with linalool (KC = 921 ± 21 L mol−1) and given their greater complexation efficacy (6.788) at neutral pH, HP-β-CDs were selected to produce solid inclusion complexes by using two different energy sources, ultrasounds and microwave irradiation, subsequently spraying the solutions obtained in the Spray Dryer. To provide scientific solidity to the experimental results, the complexes obtained were characterized by using different instrumental techniques in order to confirm the inclusion of linalool in the HP-β-CDs hydrophobic cavity. The linalool solid complexes obtained were characterized by using 1H nuclear magnetic resonance (1H-NMR) and 2D nuclear magnetic resonance (ROSEY), differential scanning calorimetry, thermogravimetry and Fourier transform infrared spectrometry. Moreover, the structure of the complex obtained were also characterized by molecular modeling.
Collapse
Affiliation(s)
- María Isabel Rodríguez-López
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (M.I.R.-L.); (M.T.M.-R.); (C.L.-A.); (J.A.P.); (M.J.Y.-G.); (J.A.G.)
| | - María Teresa Mercader-Ros
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (M.I.R.-L.); (M.T.M.-R.); (C.L.-A.); (J.A.P.); (M.J.Y.-G.); (J.A.G.)
| | - Carmen Lucas-Abellán
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (M.I.R.-L.); (M.T.M.-R.); (C.L.-A.); (J.A.P.); (M.J.Y.-G.); (J.A.G.)
| | - José Antonio Pellicer
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (M.I.R.-L.); (M.T.M.-R.); (C.L.-A.); (J.A.P.); (M.J.Y.-G.); (J.A.G.)
| | - Alfonso Pérez-Garrido
- Structural Bioinformatics and High Performance Computing Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.P.-G.); (H.P.-S.)
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (A.P.-G.); (H.P.-S.)
| | - María Josefa Yáñez-Gascón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (M.I.R.-L.); (M.T.M.-R.); (C.L.-A.); (J.A.P.); (M.J.Y.-G.); (J.A.G.)
| | - José Antonio Gabaldón
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (M.I.R.-L.); (M.T.M.-R.); (C.L.-A.); (J.A.P.); (M.J.Y.-G.); (J.A.G.)
| | - Estrella Núñez-Delicado
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain; (M.I.R.-L.); (M.T.M.-R.); (C.L.-A.); (J.A.P.); (M.J.Y.-G.); (J.A.G.)
- Correspondence: ; Tel.: +34-96-827-8869
| |
Collapse
|
16
|
Serna-Escolano V, Serrano M, Valero D, Isabel Rodríguez-López M, Gabaldón JA, Castillo S, Valverde JM, Zapata PJ, Guillén F, Martínez-Romero D. Thymol Encapsulated into HP-β-Cyclodextrin as an Alternative to Synthetic Fungicides to Induce Lemon Resistance against Sour Rot Decay. Molecules 2020; 25:E4348. [PMID: 32971952 PMCID: PMC7570568 DOI: 10.3390/molecules25184348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/17/2023] Open
Abstract
Consumers demand the use of eco-friendly fungicides to treat fruit and vegetables and governmental authorities have unauthorized the application of chemical antifungals for the efficient control of sour rot. In the present research, the microwave irradiation (MW) method was used to encapsulate thymol into 2-hydroxylpropyl-beta-cyclodextrin (HP-β-CD) and the effect of these HP-β-CD on controlling sour rot in citrus fruit, caused by Geotrichum citri-aurantii, was evaluated. Amounts of 25 and 50 mM of HP-β-CD-thymol were used, and compared with propiconazole, to control the decay of inoculated lemon fruit. The treatments were performed in curative and preventive experiments. The incidence and severity of Geotrichum citri-aurantii in 25 and 50 mM HP-β-CD-thymol-treated fruit were reduced in both experiments. The preventive 50 mM HP-β-CD-thymol treatment showed the best effect, reducing the sour rot, respiration rate and fruit weight loss during storage at 20 °C. HP-β-CD-thymol increased polyphenol concentration and the activity of antioxidant enzymes, such as catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) in lemon peel, and the highest effects were found with the 50-mM dose. In conclusion, the results show that the use of thymol encapsulated by MW into HP-β-CD could be an effective and sustainable tool, a substitute to the synthetic fungicides, for G. citri-auriantii control in citrus fruit.
Collapse
Affiliation(s)
- Vicente Serna-Escolano
- Department of Food Technology, University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (V.S.-E.); (D.V.); (S.C.); (J.M.V.); (P.J.Z.); (F.G.)
| | - María Serrano
- Department of Applied Biology, University Miguel Hernández, Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain;
| | - Daniel Valero
- Department of Food Technology, University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (V.S.-E.); (D.V.); (S.C.); (J.M.V.); (P.J.Z.); (F.G.)
| | - María Isabel Rodríguez-López
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain; (M.I.R.-L.); (J.A.G.)
| | - José Antonio Gabaldón
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Católica San Antonio de Murcia (UCAM), Avenida de los Jerónimos s/n, 30107 Guadalupe, Murcia, Spain; (M.I.R.-L.); (J.A.G.)
| | - Salvador Castillo
- Department of Food Technology, University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (V.S.-E.); (D.V.); (S.C.); (J.M.V.); (P.J.Z.); (F.G.)
| | - Juan Miguel Valverde
- Department of Food Technology, University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (V.S.-E.); (D.V.); (S.C.); (J.M.V.); (P.J.Z.); (F.G.)
| | - Pedro Javier Zapata
- Department of Food Technology, University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (V.S.-E.); (D.V.); (S.C.); (J.M.V.); (P.J.Z.); (F.G.)
| | - Fabián Guillén
- Department of Food Technology, University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (V.S.-E.); (D.V.); (S.C.); (J.M.V.); (P.J.Z.); (F.G.)
| | - Domingo Martínez-Romero
- Department of Food Technology, University Miguel Hernández (UMH), Ctra. Beniel km. 3.2, Orihuela, 03312 Alicante, Spain; (V.S.-E.); (D.V.); (S.C.); (J.M.V.); (P.J.Z.); (F.G.)
| |
Collapse
|
17
|
Schoina V, Terpou A, Papadaki A, Bosnea L, Kopsahelis N, Kanellaki M. Enhanced Aromatic Profile and Functionality of Cheese Whey Beverages by Incorporation of Probiotic Cells Immobilized on Pistacia terebinthus Resin. Foods 2019; 9:E13. [PMID: 31877900 PMCID: PMC7022775 DOI: 10.3390/foods9010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
: In the present study, cheese whey was utilized for the development of a novel functional beverage, using Lactobacillus casei ATCC 393 probiotic cells immobilized on Pistacia terebinthus resin (pissa Paphos). Evaluation of shelf life of the produced beverages showed that spoilage microorganisms were not observed in beverages containing P. terebinthus resin. Terpenes' rich content might have contributed to the antimicrobial activity of the produced beverages; however, no significant effect on the viability of the immobilized probiotic cells was obtained. Whey beverages containing the immobilized biocatalyst retained a high viability (>1 × 106 CFU/g) of probiotic cells during a storage period of 30 days at 4 °C. The superiority of whey beverages containing the immobilized biocatalyst was also highlighted by GC-MS analysis, while the enhanced aromatic profile, which was mostly attributed to the higher concentration of terpenes, was also detected during the sensory evaluation performed. Conclusively, this study indicated the high commercialization potential of these novel functional whey beverages, within the frame of a sustainable dairy waste valorization approach. To the best of our knowledge, this is the first food-oriented approach within the guidelines of the circular economy reported in the literature, using the autochthonous Pistacia terebinthus resin for the production of functional whey beverages.
Collapse
Affiliation(s)
- Vasiliki Schoina
- Food Biotechnology Group, Department of Chemistry, University of Patras, GR-26500 Patras, Greece; (V.S.); (M.K.)
| | - Antonia Terpou
- Food Biotechnology Group, Department of Chemistry, University of Patras, GR-26500 Patras, Greece; (V.S.); (M.K.)
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, 28100 Kefalonia, Greece; (A.P.); (N.K.)
| | - Loulouda Bosnea
- Hellenic Agricultural Organization DEMETER, Dairy Research Institute, 45221 Ioannina, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, 28100 Kefalonia, Greece; (A.P.); (N.K.)
| | - Maria Kanellaki
- Food Biotechnology Group, Department of Chemistry, University of Patras, GR-26500 Patras, Greece; (V.S.); (M.K.)
| |
Collapse
|
18
|
Friné VC, Hector AP, Manuel NDS, Estrella ND, Antonio GJ. Development and Characterization of a Biodegradable PLA Food Packaging Hold Monoterpene-Cyclodextrin Complexes against Alternaria alternata. Polymers (Basel) 2019; 11:E1720. [PMID: 31640138 PMCID: PMC6836089 DOI: 10.3390/polym11101720] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
The fungi of the genus Alternaria are among the main pathogens causing post-harvest diseases and significant economic losses. The consumption of Alternaria contaminated foods may be a major risk to human health, as many Alternaria species produce several toxic mycotoxins and secondary metabolites. To protect consumer health and extend the shelf life of food products, the development of new ways of packaging is of outmost importance. The aim of this work was to investigate the antifungal capacity of a biodegradable poly(lactic acid) (PLA) package filled with thymol or carvacrol complexed in β-cyclodextrins (β-CDs) by the solubility method. Once solid complexes were obtained by spray drying, varying proportions (0.0%, 1.5%, 2.5%, and 5.0 wt%) of β-CD-thymol or β-CD-carvacrol were mixed with PLA for packaging development by injection process. The formation of stable complexes between β-CDs and carvacrol or thymol molecules was assessed by Fourier-transform infrared spectroscopy (FTIR). Mechanical, structural, and thermal characterization of the developed packaging was also carried out. The polymer surface showed a decrease in the number of cuts and folds as the amount of encapsulation increased, thereby reducing the stiffness of the packaging. In addition, thermogravimetric analysis (TGA) revealed a slight decrease in the temperature of degradation of PLA package as the concentration of the complexes increased, with β-CD-carvacrol or β-CDs-thymol complexes acting as plasticisers that lowered the intermolecular forces of the polymer chains, thereby improving the breaking point. Packages containing 2.5% and 5% β-CD-carvacrol, or 5% β-CD-thymol showed Alternaria alternata inhibition after 10 days of incubation revealing their potential uses in agrofood industry.
Collapse
Affiliation(s)
- Velázquez-Contreras Friné
- Campus de los Jerónimos, Universidad Católica San Antonio de Murcia, 135, 30107 Guadalupe, Murcia, Spain.
- Universidad Panamericana ESDAI, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico.
| | - Acevedo-Parra Hector
- Universidad Panamericana ESDAI, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico.
| | - Nuño-Donlucas Sergio Manuel
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd, Marcelino García Barragán 1421, Guadalajara 44430, Jalisco, Mexico.
| | - Núñez-Delicado Estrella
- Campus de los Jerónimos, Universidad Católica San Antonio de Murcia, 135, 30107 Guadalupe, Murcia, Spain.
| | - Gabaldón José Antonio
- Campus de los Jerónimos, Universidad Católica San Antonio de Murcia, 135, 30107 Guadalupe, Murcia, Spain.
| |
Collapse
|