1
|
Zheng S, Zou X, Wei Y, Cui X, Cai S, Li X, Zhang Z, Li Y. Phytochemical-Loaded Thermo-responsive Liposome for Synergistic Treatment of Methicillin-Resistant Staphylococcus aureus Infection. Biomater Res 2025; 29:0159. [PMID: 40083645 PMCID: PMC11906118 DOI: 10.34133/bmr.0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
The ever-increasing emergence and prevalence of multidrug-resistant bacteria accelerate the desire for the development of new antibacterial strategies. Although antibacterial phytochemicals are a promising approach for long-term treatment of resistant bacteria, their low antibacterial activity and poor solubility hinder their practical applications. Here, the natural antibacterial compound sanguinarine (SG) together with gallic acid-ferrous coordination nanoparticles (GA-Fe(II) NPs) was encapsulated in a near-infrared (NIR)-activated thermo-responsive liposome. By virtue of the photothermal effect of GA-Fe(II) NPs, the nanoplatform released SG on demand upon NIR irradiation. Additionally, the heat can boost the Fenton reaction triggered by GA-Fe(II) NPs to generate hydroxyl radicals and perform sterilization. By coupling with photothermal therapy, chemodynamic therapy, and SG-based pharmacotherapy, the platform showed enhanced antibacterial efficiency and an antibiofilm effect toward methicillin-resistant Staphylococcus aureus and reduced the risk of developing new bacterial resistance. This antibacterial system displayed excellent antibacterial activity in a methicillin-resistant S. aureus-caused skin abscess, demonstrating its potential clinical application. Moreover, transcription analysis clarified that the platform achieved a synergistic antibacterial effect by attacking the cell membrane, inducing energy metabolism disorder, inhibiting nucleic acid synthesis, etc. The developed NIR-controlled phytochemical-loaded platform offers new possibilities for killing antibiotic-resistant bacteria and avoiding bacterial resistance, making it contributory in the fields of anti-infective therapy and precision medicine.
Collapse
Affiliation(s)
- Sidi Zheng
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, PR China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Xinshu Zou
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, PR China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Yanru Wei
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, PR China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Xilong Cui
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, PR China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Shuang Cai
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, PR China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Xiubo Li
- Feed Research Institute,
Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhiyun Zhang
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, PR China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| | - Yanhua Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, PR China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, PR China
| |
Collapse
|
2
|
Wu X, He Y, Fu J, Zhao Y. Study on Electrochemical Behaviors of Heat-Treated Escherichia coli and Staphylococcus aureus. ACS OMEGA 2024; 9:44907-44915. [PMID: 39554440 PMCID: PMC11561634 DOI: 10.1021/acsomega.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/26/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Evaluating the bacterial activity effectively is critical to addressing the challenges posed by bacterial infections. Electrochemistry offers significant advantages in accuracy and cost efficiency compared with methods that are more time-consuming or require expensive instrumentation. This study initially established an electrochemical method for detecting bacterial activity using heat treatment as the pretreatment step. Subsequent optimization of the heat treatment and detection conditions further enhanced the method efficiency. The detection results of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) under different heating conditions showed that the peak current values of E. coli and S. aureus were the highest after heating at 50 °C for 15 min. The dynamic changes in the electrochemical signals from the heat-treated bacteria with alteration in heating conditions were indicated to be related to the effects of heating on the external structure and purine metabolism of the bacterial cells. Although heat-treated E. coli and S. aureus exhibited similar peak potentials, different substances were observed to have contributed to these potentials. A positive linear correlation was observed between the peak current and bacterial concentration. Compared to the plate counting method, the electrochemical method detected the activity changes in E. coli and S. aureus from the logarithmic to the stationary phase earlier. The findings support the broad application of electrochemical methods in microbial detection and provide valuable insights into the purine metabolism of heat-stressed bacteria.
Collapse
Affiliation(s)
- Xiaofan Wu
- College of
Chemistry and Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yupo He
- College of
Chemistry and Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Jiaqi Fu
- College of
Chemistry and Pharmacy, Jiamusi University, Jiamusi 154007, China
- Heilongjiang
Provincial Key Laboratory of New Drug Development and Pharmacotoxicological
Evaluation, College of Pharmacy, Jiamusi
University, Jiamusi 154007, China
| | - Yanli Zhao
- College of
Chemistry and Pharmacy, Jiamusi University, Jiamusi 154007, China
- Heilongjiang
Provincial Key Laboratory of New Drug Development and Pharmacotoxicological
Evaluation, College of Pharmacy, Jiamusi
University, Jiamusi 154007, China
| |
Collapse
|
3
|
Tonti M, Verheyen D, Kozak D, Tsakali E, Skåra T, Van Impe JFM. Radio frequency-only thermal processing of skimmed milk powder: Case study on the influence of RF heating profile on quality and Salmonella Typhimurium inactivation. FOOD SCI TECHNOL INT 2024:10820132241278804. [PMID: 39328059 DOI: 10.1177/10820132241278804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Radio frequency (RF) is a dielectric heating technology that allows rapid and volumetric heating of milk powder, outperforming the heating uniformity of conventional powder heating methods. Typically, RF milk powder processing consists of a fast RF heating phase, followed by an oven heating phase in temperatures around 90 °C. This methodology can result in milk powder quality deterioration due to non-uniform temperature distributions and local overheating. Radio frequency-only processes with a more gradual heating rate are alternative solutions to minimise the impact on milk powder quality. This study investigated the effect of the heating rate on the microbial inactivation of Salmonella Typhimurium inoculated in skimmed milk powder, as well as the effect of each process on two quality characteristics, colour and solubility. Overall, a slower heating profile resulted in sufficient inactivation rates of Salmonella in skimmed milk powder, while still providing a high-quality end product. A 4-log reduction was achieved by treating the skimmed milk powder up to 95 °C using a slower, longer heating rate. No statistically significant changes were observed in the solubility of skimmed milk powder and only the harshest treatment to 95 °C led to a slight increase in the yellowness of the skimmed milk powder colour.
Collapse
Affiliation(s)
- Maria Tonti
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
- OPTEC, Optimization in Engineering Center-of-Excellence, KU Leuven, Gent, Belgium
- CPMF2, Flemish Cluster Predictive Microbiology in Foods
| | - Davy Verheyen
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
- OPTEC, Optimization in Engineering Center-of-Excellence, KU Leuven, Gent, Belgium
- CPMF2, Flemish Cluster Predictive Microbiology in Foods
| | - Dmytro Kozak
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
- OPTEC, Optimization in Engineering Center-of-Excellence, KU Leuven, Gent, Belgium
- CPMF2, Flemish Cluster Predictive Microbiology in Foods
| | - Efstathia Tsakali
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
- Department of Food Science and Technology, University of West Attica, Egaleo, Greece
| | | | - Jan F M Van Impe
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Gent, Belgium
- OPTEC, Optimization in Engineering Center-of-Excellence, KU Leuven, Gent, Belgium
- CPMF2, Flemish Cluster Predictive Microbiology in Foods
| |
Collapse
|
4
|
Geng Z, Ye P, Zhou L, Fu H, Chen X, Wang Y, Wang Y. Pasteurization of Salmonella spp. in black fungus ( Auricularia auricula) powder by radio frequency heating. FOOD SCI TECHNOL INT 2024; 30:3-17. [PMID: 36065562 DOI: 10.1177/10820132221123437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radio frequency (RF) heating has been studied to inactivate bacteria in some powder foods. In this study, a 6 kW, 27.12 MHz RF system was used to pasteurize Salmonella in black fungus (Auricularia auricula) powder. The effects of different conditions (initial aw, electrodes gaps, particle sizes) on RF heating rate and uniformity were investigated. The results showed that RF heating rate was significantly (p < 0.05) improved with decreasing electrodes gap and increasing initial aw, and the heating rate was the slowest when the particle size was 120-160 mesh. However, these factors had no significant (p > 0.05) influence on heating uniformity. RF pasteurization of Salmonella in black fungus powder was also studied. The results showed that, to inactivate Salmonella for 5 log reductions in the cold spot (the center of surface layer), the time needed and bacteria heat resistance at designated temperature (65, 75, 85 °C) decreased with increasing aw, and the first order kinetics and Weibull model could be used to fit inactivation curves of Salmonella with well goodness. Quality analysis results showed that although RF pasteurization had no significant (p > 0.05) effect on Auricularia auricula polysaccharide (AAP) and total polyphenols, obvious changes were found on color. Results suggested that RF pasteurization can be considered as an effective pasteurization method for black fungus powder.
Collapse
Affiliation(s)
- Zheng Geng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Liangfu Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Liu S, Xiong H, Qiu Y, Dai J, Zhang Q, Qin W. Radiofrequency-assisted low-temperature long-time (LTLT) pasteurization of onion powder. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Combination of DNA walker and Pb2+-specific DNAzyme-based signal amplification with a signal-off electrochemical DNA sensor for Staphylococcus aureus detection. Anal Chim Acta 2022; 1222:340179. [DOI: 10.1016/j.aca.2022.340179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
|
7
|
Cui B, Sun Y, Wang K, Liu Y, Fu H, Wang Y, Wang Y. Pasteurization mechanism on the cellular level of radio frequency heating and its possible non-thermal effect. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Feng Y, Ming T, Zhou J, Lu C, Wang R, Su X. The Response and Survival Mechanisms of Staphylococcus aureus under High Salinity Stress in Salted Foods. Foods 2022; 11:foods11101503. [PMID: 35627073 PMCID: PMC9140498 DOI: 10.3390/foods11101503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus (S. aureus) has a strong tolerance to high salt stress. It is a major reason as to why the contamination of S. aureus in salted food cannot be eradicated. To elucidate its response and survival mechanisms, changes in the morphology, biofilm formation, virulence, transcriptome, and metabolome of S. aureus were investigated. IsaA positively regulates and participates in the formation of biofilm. Virulence was downregulated to reduce the depletion of nonessential cellular functions. Inositol phosphate metabolism was downregulated to reduce the conversion of functional molecules. The MtsABC transport system was downregulated to reduce ion transport and signaling. Aminoacyl-tRNA biosynthesis was upregulated to improve cellular homeostasis. The betaine biosynthesis pathway was upregulated to protect the active structure of proteins and nucleic acids. Within a 10% NaCl concentration, the L-proline content was upregulated to increase osmotic stability. In addition, 20 hub genes were identified through an interaction analysis. The findings provide theoretical support for the prevention and control of salt-tolerant bacteria in salted foods.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.F.); (T.M.); (J.Z.); (C.L.); (X.S.)
- College of Life Sciences, Tonghua Normal University, Tonghua 134000, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.F.); (T.M.); (J.Z.); (C.L.); (X.S.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.F.); (T.M.); (J.Z.); (C.L.); (X.S.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.F.); (T.M.); (J.Z.); (C.L.); (X.S.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Correspondence: ; Tel.: +86-574-8760-8368
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (Y.F.); (T.M.); (J.Z.); (C.L.); (X.S.)
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Comparative Transcriptomic Analysis of Staphylococcus aureus Reveals the Genes Involved in Survival at Low Temperature. Foods 2022; 11:foods11070996. [PMID: 35407083 PMCID: PMC8997709 DOI: 10.3390/foods11070996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023] Open
Abstract
In food processing, the temperature is usually reduced to limit bacterial reproduction and maintain food safety. However, Staphylococcus aureus can adapt to low temperatures by controlling gene expression and protein activity, although its survival strategies normally vary between different strains. The present study investigated the molecular mechanisms of S. aureus with different survival strategies in response to low temperatures (4 °C). The survival curve showed that strain BA-26 was inactivated by 6.0 logCFU/mL after 4 weeks of low-temperature treatment, while strain BB-11 only decreased by 1.8 logCFU/mL. Intracellular nucleic acid leakage, transmission electron microscopy, and confocal laser scanning microscopy analyses revealed better cell membrane integrity of strain BB-11 than that of strain BA-26 after low-temperature treatment. Regarding oxidative stress, the superoxide dismutase activity and the reduced glutathione content in BB-11 were higher than those in BA-26; thus, BB-11 contained less malondialdehyde than BA-26. RNA-seq showed a significantly upregulated expression of the fatty acid biosynthesis in membrane gene (fabG) in BB-11 compared with BA-26 because of the damaged cell membrane. Then, catalase (katA), reduced glutathione (grxC), and peroxidase (ahpC) were found to be significantly upregulated in BB-11, leading to an increase in the oxidative stress response, but BA-26-related genes were downregulated. NADH dehydrogenase (nadE) and α-glucosidase (malA) were upregulated in the cold-tolerant strain BB-11 but were downregulated in the cold-sensitive strain BA-26, suggesting that energy metabolism might play a role in S. aureus under low-temperature stress. Furthermore, defense mechanisms, such as those involving asp23, greA, and yafY, played a pivotal role in the response of BB-11 to stress. The study provided a new perspective for understanding the survival mechanism of S. aureus at low temperatures.
Collapse
|
10
|
Jeong KO, Kim SS, Park SH, Kang DH. Inactivation of Salmonella enterica Serovar Typhimurium and Staphylococcus aureus in Rice by Radio Frequency Heating. J Food Prot 2022; 85:380-383. [PMID: 34614177 DOI: 10.4315/jfp-21-275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The objectives of this study were to determine the effect of the milling degree (MD) of rice (Oryza sativa L.) on the heating rate, pathogen inactivation (Salmonella Typhimurium and Staphylococcus aureus), and color change resulting from radio frequency (RF) heating. Rice samples inoculated with pathogens were placed in a polypropylene jar and subjected to RF heating for 0 to 75 s. The heating rate of rice with a 2% MD was the highest during RF heating, followed by those with a 0, 8, and 10% MD; the reduction of pathogens showed the same trend. The reductions of pathogen levels in rice with MDs of 0 and 2% were significantly higher than those observed for rice with MDs of 8 and 10% under the same treatment conditions. For example, log reductions of Salmonella Typhimurium in rice by 55-s RF heating were 3.64, 5.19, 2.18, and 1.80 for MDs of 0, 2, 8, and 10%, respectively. At the same treatment conditions, log reductions of S. aureus were 2.77, 5.08, 1.15, and 0.90 for MDs of 0, 2, 8, and 10%, respectively. The color of rice measured according to L*, a*, and b* was not significantly altered after RF heating, regardless of the MD. Therefore, the MD of rice should be considered before RF heating is applied to inactivate foodborne pathogens. HIGHLIGHTS
Collapse
Affiliation(s)
- Ki-Ok Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Soon Kim
- Department of Food Engineering, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam, 32439, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea
| |
Collapse
|
11
|
Zhang Y, Wei J, Guo H, Niu C, Yuan Y, Yue T. Phenotypic and Transcriptomic Analyses Reveal the Cell Membrane Damage of Pseudomonas fragi Induced by Cinnamic Acid. Front Microbiol 2022; 12:796754. [PMID: 35058913 PMCID: PMC8764163 DOI: 10.3389/fmicb.2021.796754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cinnamic acid (CA) is a safe and effective antimicrobial agent. The objective of this study was to reveal the antibacterial mechanism of CA against a food-derived Pseudomonas fragi 38-8, from the aspects of bacterial growth kinetics, cell membrane homeostasis, cell microstructure, and transcription. The minimum inhibitory concentration (MIC) of CA against P. fragi 38-8 was 0.25 mg/ml. CA retarded bacterial growth and induced a series of cell membrane changes. After CA treatment, cell membrane homeostasis was destroyed, which was evidenced by cell membrane depolarization, intracellular pH reduction, and intracellular ATPase activity decrease. Field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), and confocal laser scanning fluorescence microscope (CLSM) realized the visualization of cell microstructure changes, showing cell death and morphological changes, such as cell rupture, shrinkage, and hollowness. RNA sequencing analysis further confirmed the effects of CA to the cell membrane, because of the significant enrichment of differentially expressed genes (DEGs) related to membrane. The results of the phenotype tests and RNA-seq both focused on cell membrane damage, which showed that CA exerted antibacterial effect mainly by acting on cell membrane.
Collapse
Affiliation(s)
- Yuxiang Zhang
- College of Food Science and Technology, Northwest University, Xi'an, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jianping Wei
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Hong Guo
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Chen Niu
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Zhao N, Jiao L, Xu J, Zhang J, Qi Y, Qiu M, Wei X, Fan M. Integrated transcriptomic and proteomic analysis reveals the response mechanisms of Alicyclobacillus acidoterrestris to heat stress. Food Res Int 2022; 151:110859. [PMID: 34980395 DOI: 10.1016/j.foodres.2021.110859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Alicyclobacillus acidoterrestris can survive pasteurization and is implicated in pasteurized fruit juice spoilage. However, the mechanisms underlying heat responses remain largely unknown. Herein, gene transcription changes of A. acidoterrestris under heat stress were detected by transcriptome, and an integrated analysis with proteomic and physiological data was conducted. A total of 911 differentially expressed genes (DEGs) was observed. The majority of DEGs and differentially expressed proteins (DEPs) were exclusively regulated at the mRNA and protein level, respectively, whereas only 59 genes were regulated at both levels and had the same change trends. Comparative analysis of the functions of the specifically or commonly regulated DEGs and DEPs revealed that the heat resistance of A. acidoterrestris was primarily based on modulating peptidoglycan and fatty acid composition to maintain cell envelope integrity. Low energy consumption strategies were established with attenuated glycolysis, decreased ribosome de novo synthesis, and activated ribosome hibernation. Terminal oxidases, cytochrome bd and aa3, in aerobic respiratory chain were upregulated. Meanwhile, the MarR family transcriptional regulator was upregulated, reactive oxygen species (ROS) was discovered, and the concentration of superoxide dismutase (SOD) increased, indicating that the accompanied oxidative stress was induced by high temperature. Additionally, DNA and protein damage repair systems were activated. This study provided a global perspective on the response mechanisms of A. acidoterrestris to heat stress, with implications for better detection and control of its contamination in fruit juice.
Collapse
Affiliation(s)
- Ning Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiman Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhen Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Guan X, Lin B, Xu Y, Yang G, Xu J, Zhang S, Li R, Wang S. Recent developments in pasteurising seeds and their products using radio frequency heating: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiangyu Guan
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Biying Lin
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Gaoji Yang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Shuang Zhang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Department of Biological Systems Engineering Washington State University Pullman WA 99164‐6120 USA
| | - Rui Li
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Department of Biological Systems Engineering Washington State University Pullman WA 99164‐6120 USA
| |
Collapse
|
14
|
Pasteurization mechanism of S. aureus ATCC 25923 in walnut shells using radio frequency energy at lab level. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Wu T, Sun M, Liu R, Sui W, Zhang J, Yin J, Fang S, Zhu J, Zhang M. Bifidobacterium longum subsp. longum Remodeled Roseburia and Phosphatidylserine Levels and Ameliorated Intestinal Disorders and liver Metabolic Abnormalities Induced by High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4632-4640. [PMID: 32237746 DOI: 10.1021/acs.jafc.0c00717] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bifidobacterium longum is considered as a potential supplement in antiobesity treatment; however, the underlying molecular mechanism has rarely been studied. To understand the contributions of B. longum subsp. longum (BL21) in the prevention of obesity, we investigated alterations in the liver metabonomic phenotype and gut microbiota by ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and 16S ribosomal RNA gene sequencing in C57BL/6J male mice orally administered with BL21 for 8 weeks [high-fat diet (HFD)]. BL21 at 1 × 109 CFU·day-1 per mouse reduced the weight of mice by 16.9% relative to that of the mice fed with HFD and significantly lowered the serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol. BL21 also ameliorated fat vacuolization in liver cells and epididymal fat accumulation. BL21 also lowered the Firmicutes/Bacteroidetes ratio, regulated liver remodeling in glycerophospholipids, and alleviated the levels of d-tryptophan. A positive correlation between the butyrate-producing strain Roseburia and the cell membrane component phosphatidylserine was found for the first time. Thus, BL21 can potentially prevent mice from being obese by rebalancing the gut microbiota and glycerophospholipid metabolism. BL21 can be a promising dietary supplement for weight control.
Collapse
Affiliation(s)
- Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mengzhen Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiaojiao Zhang
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuguang Fang
- Jiangsu Wecare Biotechnology Co., LTD, Suzhou, Jiangsu 215200, China
| | - Jianguo Zhu
- Jiangsu Wecare Biotechnology Co., LTD, Suzhou, Jiangsu 215200, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Agricultural University, Tianjin 300384, PR China
| |
Collapse
|
16
|
Label free-based proteomic analysis of Escherichia coli O157:H7 subjected to ohmic heating. Food Res Int 2020; 128:108815. [PMID: 31955771 DOI: 10.1016/j.foodres.2019.108815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 12/11/2022]
Abstract
To investigate the inactivation mechanism of ohmic heating (OH) on Escherichia coli O157:H7 at the same inactivation levels, a label-free quantitative proteomic approach was employed in this study. Quantification of 2633 proteins was obtained with high confidence. Compared to untreated samples (CT), a total of 169, 84, and 26 proteins showed significantly differential abundance after high voltage OH (HVOH, 10 V/cm), low voltage OH (LVOH, 5 V/cm), and water bath heating (WB), respectively. Glyoxylate and dicarboxylate metabolism, ABC transporters, biosynthesis of amino acids, glycerophospholipid metabolism, and ribosome pathway were the main KEGG pathways mediated by OH, but only ribosome pathway was greatly affected by WB. The significant differences in proteome changes of E. coli O157:H7 among HVOH, LVOH, and WB treatments, especially the greater number of differential proteins in HVOH, indicated that OH might exert additional effects on proteome of E. coli O157:H7 due to the electric current, particularly in HVOH with higher electric field. This result enriched our understanding of molecular changes of E. coli O157:H7 induced by OH and provided data reference for further research into the inactivation mechanism of OH.
Collapse
|