1
|
da Silva DR, Sharjeel AB, Beliakoff R, Teixeira LD, Kima PE, Jones MK, Gonzalez CF, Lorca GL. The Sdp-SH3b2 domain contained in Lactobacillus johnsonii N6.2-derived extracellular vesicles inhibit murine norovirus replication. Front Immunol 2024; 15:1490755. [PMID: 39712028 PMCID: PMC11659762 DOI: 10.3389/fimmu.2024.1490755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
The internalization of Lactobacillus johnsonii N6.2 extracellular vesicles (EVs) by cells results in a significant induction of the 2',5'-oligoadenylate synthetase (OAS) pathway. It also induces expression of IFI44L, MX1, MX2 and DDX60. In this work, we evaluated whether the antiviral response induced by L. johnsonii N6.2-derived EVs, has an inhibitory effect on an RNA viral insult using murine norovirus (MNV-1) as the viral infection model. We found that RAW 264.7 Macrophages treated with EVs significantly decreased the levels of MNV-1 genome. These results were consistent with an increase in expression of Oas1b, Oas2, Oasl, Mx1, Mx2 and Ifi44l (6 hours post infection). Out of six proteins enriched in EVs, we found that SH3b2 domain of Sdp was the only protein effector molecule able to recapitulate the activation of the OAS pathway. In C57BL6 mice, the administration of live L. johnsonii N6.2, EVs, and Sdp-SH3b2/liposomes significantly decreased MNV-1 titers in the distal ileum, in contrast to the controls with PBS and liposomes alone that did not affect MNV-1. These results establish that the SH3b2 domain of Sdp, which is enriched in L. johnsonii derived EVs, is an effector molecule in EVs that can orchestrate the control of viral infections in vivo.
Collapse
Affiliation(s)
- Danilo R. da Silva
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Asra B. Sharjeel
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Reagan Beliakoff
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Leandro D. Teixeira
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Peter E. Kima
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Melissa K. Jones
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Claudio F. Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Yang Y, An R, Lyu C, Wang D. Interactions between human norovirus and intestinal microbiota/microbes: A scoping review. Food Microbiol 2024; 119:104456. [PMID: 38225056 DOI: 10.1016/j.fm.2023.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Human norovirus (HuNoV) is an important foodborne virus, which causes non-bacterial acute gastroenteritis and is associated with a high disease burden. Recently, researchers have focus on the interaction between HuNoV and intestinal microbiota/microbes and engaged in studies investigating the implications of this interaction on HuNoV infection. However, the interaction mechanism and the implication of this interaction on host remain obscure. Current scoping review aimed to systematically investigate the interaction between HuNoV and intestinal microbiota, as well as their implication on HuNoV or HuNoV related symptoms. We found that HuNoV could bind to intestinal microbes and affect the intestinal microbial composition, diversity, and microbial gene expression. In reverse, intestinal microbes could affect HuNoV infectivity, although demonstrating contradictory effects (i.e., promote or inhibit HuNoV replication). These contradictory effects existed among microbes, in part, could be attributed to the differences among microbes (histo-blood group antigens and/or other small molecule substances). Results of current scoping review could assist in the selection and isolation of potential microbial candidates to prevent and/or alleviate HuNoV related symptoms.
Collapse
Affiliation(s)
- Yaqi Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ran An
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenang Lyu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Bai GH, Tsai MC, Lin SC, Hsu YH, Chen SY. Unraveling the interplay between norovirus infection, gut microbiota, and novel antiviral approaches: a comprehensive review. Front Microbiol 2023; 14:1212582. [PMID: 37485533 PMCID: PMC10359435 DOI: 10.3389/fmicb.2023.1212582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Norovirus infection is a leading cause of acute gastroenteritis worldwide and can also cause harmful chronic infections in individuals with weakened immune systems. The role of the gut microbiota in the interactions between the host and noroviruses has been extensively studied. While most past studies were conducted in vitro or focused on murine noroviruses, recent research has expanded to human noroviruses using in vivo or ex vivo human intestinal enteroids culture studies. The gut microbiota has been observed to have both promoting and inhibiting effects on human noroviruses. Understanding the interaction between noroviruses and the gut microbiota or probiotics is crucial for studying the pathogenesis of norovirus infection and its potential implications, including probiotics and vaccines for infection control. Recently, several clinical trials of probiotics and norovirus vaccines have also been published. Therefore, in this review, we discuss the current understanding and recent updates on the interactions between noroviruses and gut microbiota, including the impact of norovirus on the microbiota profile, pro-viral and antiviral effects of microbiota on norovirus infection, the use of probiotics for treating norovirus infections, and human norovirus vaccine development.
Collapse
Affiliation(s)
- Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Division of Allergy, Asthma and Immunology, Shuang Ho Hospital, New Taipei, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, New Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Lee M, Kim D, Ji Choi E, Hee Song J, Yong Kang J, Won Lee K, Yoon Chang J. Transcriptome responses of lactic acid bacteria isolated from kimchi under hydrogen peroxide exposure. Food Res Int 2023; 168:112681. [PMID: 37120183 DOI: 10.1016/j.foodres.2023.112681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
In this study, five species of lactic acid bacteria (LAB) isolated from kimchi were analyzed in terms of their potential antioxidant activity. Latilactobacillus curvatus WiKim38, Companilactobacillus allii WiKim39, and Lactococcus lactis WiKim0124 exhibited higher radical scavenging activity, reducing power, and lipid peroxidation inhibition than the reference strain and tolerated hydrogen peroxide (H2O2) exposure up to a concentration of 2.5 mM. To investigate the antioxidant mechanism of LAB strains, transcriptomic and proteomic signatures were compared between the H2O2-exposed and untreated group using RNA sequencing and two-dimensional protein gel electrophoresis. Across all LAB strains, cell membrane responses and metabolic processes were the most prominent in the main categories of gene ontology classification, indicating that cellular components and interactions play an important role in oxidative stress responses. Thus, LAB strains isolated from kimchi could be considered for potential use in functional food production and in antioxidant starter cultures.
Collapse
|
5
|
Abstract
Fermented foods (FFs) hold global attention because of their huge advantages. Their health benefits, palatability, preserved, tasteful, and aromatic properties impart potential importance in the comprehensive evaluation of FFs. The bioactive components, such as minerals, vitamins, fatty acids, amino acids, and other phytochemicals synthesized during fermentation, provide consumers with several health benefits. Fermentation of food is an ancient process that has met with many remarkable changes owing to the development of scientific technologies over the years. Initially, fermentation relied on back-slapping. Nowadays, starter cultures strains are specifically chosen for the type of fermentation process. Modern biotechnological methods are being implemented in the fermentation process to achieve the desired product in high quality. Respiratory and gastrointestinal tract infections are the most severe health issues affecting human beings of all age groups, especially children and older adults, during this COVID-19 pandemic period. Studies suggest that the consumption of probiotic Lactobacillus strains containing fermented foods protects the subjects from common infectious diseases (CIDs, which is classified as upper respiratory tract infections, lower respiratory tract infections and gastrointestinal infections) by improving the host’s immune system. Further studies are obligatory to develop probiotic-based functional FFs that are effective against CIDs. Presently, we are urged to find alternative, safe, and cost-effective prevention measures against CIDs. The current manuscript briefs the production of FFs, functional properties of FFs, and their beneficial effects against respiratory tract infections. It summarizes the outcomes of clinical trials using human subjects on the effects of supplementation of FFs.
Collapse
|
6
|
Double-Barrel Shotgun: Probiotic Lactic Acid Bacteria with Antiviral Properties Modified to Serve as Vaccines. Microorganisms 2021; 9:microorganisms9081565. [PMID: 34442644 PMCID: PMC8401918 DOI: 10.3390/microorganisms9081565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022] Open
Abstract
Contrary to the general belief that the sole function of probiotics is to keep intestinal microbiota in a balanced state and stimulate the host’s immune response, several studies have shown that certain strains of lactic acid bacteria (LAB) have direct and/or indirect antiviral properties. LAB can stimulate the innate antiviral immune defence system in their host, produce antiviral peptides, and release metabolites that prevent either viral replication or adhesion to cell surfaces. The SARS-CoV (COVID-19) pandemic shifted the world’s interest towards the development of vaccines against viral infections. It is hypothesised that the adherence of SARS-CoV spike proteins to the surface of Bifidobacterium breve could elicit an immune response in its host and trigger the production of antibodies. The question now remains as to whether probiotic LAB could be genetically modified to synthesize viral antigens and serve as vaccines—this concept and the role that LAB play in viral infection are explored in this review.
Collapse
|
7
|
Yang M, Zhao F, Tong L, Wang S, Zhou D. Contamination, bioaccumulation mechanism, detection, and control of human norovirus in bivalve shellfish: A review. Crit Rev Food Sci Nutr 2021; 62:8972-8985. [PMID: 34184956 DOI: 10.1080/10408398.2021.1937510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Human norovirus (HuNoV) is a major foodborne pathogen that causes acute viral gastroenteritis, and bivalve shellfish are one of the main carriers of HuNoV transmission. A comprehensive understanding of bivalve shellfish-related HuNoV outbreaks focusing on contamination factors, bioaccumulation mechanisms, and pre- and post-harvest interventions is essential for the development of effective strategies to prevent contamination of shellfish. This review comprehensively surveys the current knowledge on global contamination and non-thermal treatment of HuNoV in bivalve shellfish. HuNoV contamination in bivalve shellfish is significantly related to the season and water. While evaluating the water quality of shellfish-inhabited waters is a key intervention, the development of non-heat treatment technology to effectively inactivate the HuNoV in bivalve shellfish while maintaining the flavor and nutrition of the shellfish is also an important direction for further research. Additionally, this review explores the bioaccumulation mechanisms of HuNoV in bivalve shellfish, especially the mechanism underlying the binding of histo-blood group antigen-like molecules and HuNoV. The detection methods for infectious HuNoV are also discussed. The establishment of effective methods to rapidly detect infectious HuNoV and development of biological components to inactivate or prevent HuNoV contamination in shellfish also need to be studied further.
Collapse
Affiliation(s)
- Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Zhao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Lihui Tong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts of Pilot National laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Muhialdin BJ, Zawawi N, Abdull Razis AF, Bakar J, Zarei M. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control 2021; 127:108140. [PMID: 33867696 PMCID: PMC8036130 DOI: 10.1016/j.foodcont.2021.108140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
The recent COVID-19, a viral outbreak calls for a high demand for non-conventional antiviral agents that can reduce the risk of infections and promote fast recovery. Fermented foods and their probiotics bacteria have recently received increasing interest due to the reported potential of high antiviral activity. Several probiotics strains demonstrated broad range of antiviral activities and different mechanisms of action. This article will review the diversity, health benefits, interaction with immune system and antiviral activity of fermented foods and their probiotics bacteria. In addition, the mechanisms of action will be reviewed to determine the broad range potential antiviral activity against the respiratory and alimentary tracts viruses. The probiotics bacteria and bioactive compounds in fermented foods demonstrated antiviral activities against respiratory and alimentary tracts viruses. The mechanism of action was reported to be due to the stimulation of the immune system function via enhancing natural killers cell toxicity, enhance the production of pro-inflammatory cytokines, and increasing the cytotoxic of T lymphocytes (CD3+, CD16+, CD56+). However, further studies are highly recommended to determine the potential antiviral activity for traditional fermented foods.
Collapse
Affiliation(s)
- Belal J Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Mohammad Zarei
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
9
|
Gobeil A, Maherani B, Lacroix M. Norovirus elimination on the surface of fresh foods. Crit Rev Food Sci Nutr 2020; 62:1822-1837. [DOI: 10.1080/10408398.2020.1848784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexandra Gobeil
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| | - Behnoush Maherani
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| | - Monique Lacroix
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| |
Collapse
|
10
|
Chen X, Daliri EBM, Chelliah R, Oh DH. Isolation and Identification of Potentially Pathogenic Microorganisms Associated with Dental Caries in Human Teeth Biofilms. Microorganisms 2020; 8:E1596. [PMID: 33081291 PMCID: PMC7603000 DOI: 10.3390/microorganisms8101596] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Dental caries is attributed to the predominance of cariogenic microorganisms. Cariogenic microorganisms are pathological factors leading to acidification of the oral microenvironment, which is related to the initiation and progression of caries. The accepted cariogenic microorganism is Streptococcus mutans (S. mutans). However, studies have found that caries could occur in the absence of S. mutans. This study aimed to assess the presence of potentially cariogenic microorganisms in human teeth biofilm. The microorganisms were isolated from human mouth and freshly extracted human maxillary incisors extracted for reasons of caries. The isolates were sorted based on their acidogenic and aciduric properties, and the S. mutans was used as the reference strain. Four potentially cariogenic strains were selected. The selected strains were identified as Streptococcus salivarius (S. salivarius), Streptococcus anginosus (S. anginosus), Leuconostoc mesenteroides (L. mesenteroides), and Lactobacillus sakei (L. sakei) through morphological analysis followed by 16S rRNA gene sequence analysis. The cariogenicity of isolates was analyzed. We show, for the first time, an association between L. sakei (present in fermented food) and dental caries. The data provide useful information on the role of lactic acid bacteria from fermented foods and oral commensal streptococci in dental caries.
Collapse
Affiliation(s)
| | | | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Korea; (X.C.); (E.B.-M.D.); (R.C.)
| |
Collapse
|