1
|
Lake A, Yusuf NG, Maybank M, Johnson S, Mutch CK, Mueck AP, Riley SS, Havelaar AH, Montazeri N. Effectiveness of chlorine against Tulane virus, a human norovirus surrogate, and Escherichia coli in preharvest agricultural water. J Food Prot 2025:100524. [PMID: 40316048 DOI: 10.1016/j.jfp.2025.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
The use of fecally polluted water increases the risk of crop contamination with human norovirus (HuNoV) and its transmission to humans, particularly through ready-to-eat foods such as fresh produce. Preventing such exposure at preharvest stages is critical to ensure food safety throughout the supply chain. Despite HuNoV being the leading cause of foodborne illnesses in the United States, effective mitigating strategies in preharvest agricultural water remain underdeveloped. This research evaluated the effectiveness of calcium hypochlorite, a commercially available sanitizer to inactivate the Tulane virus, a surrogate for HuNoV, and Escherichia coli TVS 353 in preharvest agricultural waters. Water samples from two Florida farms were collected and inoculated with each microbial type, then treated with different free chlorine dosages (2, 4, 10, 15, 20, 30, and 40 ppm) for 5 and 10 minutes. The treatments were conducted at 12°C to reflect colder months in Florida, aligning with the temperature specification outlined in the EPA/FDA protocol. Microbial counts were performed using plaque assay for Tulane virus and plate counts forE. coli. Since increasing the contact time from 5 to 10 minutes did not significantly enhance microbial inactivation rates (p>0.05), kinetic models were fit to inactivation data for 5-minute contact time. The log10-logistic model predicted that achieving the EPA/FDA 3-log10 microbial reduction criteria in the agricultural water samples required treatment with free chlorine ranging between 0.6-0.9 ppm for E. coli and 9.6-23 ppm for Tulane virus. Compared to E. coli, Tulane virus was more resistant to inactivation with higher variability in reduction rates between the two agricultural water samples (p<0.001). The necessity for elevated doses needed to inactivate viruses demands additional investigation, emphasizing the importance of implementing risk-based, environmentally safe treatments for agricultural water.
Collapse
Affiliation(s)
- Ashlyn Lake
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States
| | - Nuradeen Garba Yusuf
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States
| | - Mya Maybank
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Sarah Johnson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Christopher K Mutch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Alexander P Mueck
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States
| | - Simon S Riley
- Institute of Food and Agricultural Sciences Statistical Consulting Unit, University of Florida, Gainesville, FL, United States
| | - Arie H Havelaar
- Animal Sciences Department and Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States; Global Food Systems Institute, University of Florida, Gainesville, FL, United States
| | - Naim Montazeri
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States; Global Food Systems Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
2
|
Pabst CR, Kharel K, De J, Bardsley CA, Bertoldi B, Schneider KR. Evaluating the efficacy of peroxyacetic acid in preventing Salmonella cross-contamination on tomatoes in a model flume system. Heliyon 2024; 10:e31521. [PMID: 38813225 PMCID: PMC11133892 DOI: 10.1016/j.heliyon.2024.e31521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
The use of flume tanks for tomato processing has been identified as a potential source of cross-contamination, which could result in foodborne illness. This study's objective was to assess the efficacy of peroxyacetic acid (PAA) at a concentration of ≤80 mg/L in preventing Salmonella enterica cross-contamination under various organic loads in a benchtop model tomato flume tank. The stability of 80 mg/L PAA at different chemical oxygen demand (COD) levels was also tested. Tomatoes were spot inoculated with a five-serovar rifampin-resistant (rif+) Salmonella cocktail (106 or 108 colony forming unit (CFU)/tomato). Inoculated (n = 3) and uninoculated (n = 9) tomatoes were introduced into the flume system containing 0-80 mg/L PAA and 0 or 300 mg/L COD. After washing for 30, 60, or 120 s, uninoculated tomatoes were sampled and analyzed for cross-contamination. All experiments were conducted in triplicate. Increasing the organic load (measured as COD) affected the stability of PAA in water with significantly faster dissociation when exposed to 300 mg/L COD. The concentration of PAA, inoculum level, COD levels, and time intervals were all significant factors that affected cross-contamination. Cross-contamination occurred at the high inoculum level (108 CFU/tomato) even when 80 mg/L PAA was present in the model flume tank, regardless of the organic load level. When the tomatoes were contaminated at a level of 106 CFU/tomato, concentrations as low as 5 mg/L of PAA were effective in preventing cross-contamination at 0 mg/L COD; however, 100 % tomatoes (9/9) were positive when the organic load increased to 300 mg/L COD. When the PAA concentration was increased to 10 mg/L, it effectively prevented cross-contamination in the tank, regardless of the presence of organic load. These results suggest that using PAA at concentrations below the maximum limit remains effective in limiting bacterial cross-contamination and offers a more environment-friendly option for tomato packinghouse operators.
Collapse
Affiliation(s)
- Christopher R. Pabst
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, 32611, USA
| | - Karuna Kharel
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, 32611, USA
| | - Jaysankar De
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, 32611, USA
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Cameron A. Bardsley
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, 32611, USA
- USDA-ARS Southeastern Fruit and Tree Nut Research Station, Byron, GA, 31008, USA
| | - Bruna Bertoldi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, 32611, USA
| | - Keith R. Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
3
|
Murphy CM, Hamilton AM, Waterman K, Rock C, Schaffner DW, Strawn LK. Efficacy of Peracetic Acid and Chlorine on the Reduction of Shiga Toxin-producing Escherichia coli and a Nonpathogenic E. coli Strain in Preharvest Agricultural Water. J Food Prot 2023; 86:100172. [PMID: 37783289 DOI: 10.1016/j.jfp.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Produce-borne outbreaks of Shiga toxin-producing Escherichia coli (STEC) linked to preharvest water emphasize the need for efficacious water treatment options. This study quantified reductions of STEC and generic E. coli in preharvest agricultural water using commercially available sanitizers. Water was collected from two sources in Virginia (pond, river) and inoculated with either a seven-strain STEC panel or environmental generic E. coli strain TVS 353 (∼9 log10 CFU/100 mL). Triplicate inoculated water samples were equilibrated to 12 or 32°C and treated with peracetic acid (PAA) or chlorine (Cl) [low (PAA:6ppm, Cl:2-4 ppm) or high (PAA:10 ppm, Cl:10-12 ppm) residual concentrations] for an allotted contact time (1, 5, or 10 min). Strains were enumerated, and a log-linear model was used to characterize how treatment combinations influenced reductions. All Cl treatment combinations achieved a ≥3 log10 CFU/100 mL reduction, regardless of strain (3.43 ± 0.25 to 7.05 ± 0.00 log10 CFU/100 mL). Approximately 80% (19/24) and 67% (16/24) of PAA treatment combinations achieved a ≥3 log10 CFU/100 mL for STEC and E. coli TVS 353, respectively. The log-linear model showed contact time (10 > 5 > 1 min) and sanitizer type (Cl > PAA) had the greatest impact on STEC and E. coli TVS 353 reductions (p < 0.001). E. coli TVS 353 in water samples was more resistant to sanitizer treatment (p < 0.001) indicating applicability as a good surrogate. Results demonstrated Cl and PAA can be effective agricultural water treatment strategies when sanitizer chemistry is managed. These data will assist with the development of in-field validation studies and may identify suitable candidates for the registration of antimicrobial pesticide products for use against foodborne pathogens in preharvest agricultural water treatment.
Collapse
Affiliation(s)
- Claire M Murphy
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA; School of Food Science, Washington State University - Irrigated Agriculture Research and Extension Center, Prosser, WA, USA
| | - Alexis M Hamilton
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Kim Waterman
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Channah Rock
- Department of Environmental Science, University of Arizona - Maricopa Agricultural Center, Maricopa, AZ, USA
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Morris JN, Esseili MA. The Effect of Water Hardness and pH on the Efficacy of Peracetic Acid and Sodium Hypochlorite against SARS-CoV-2 on Food-Contact Surfaces. Foods 2023; 12:2981. [PMID: 37627980 PMCID: PMC10453873 DOI: 10.3390/foods12162981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Sodium hypochlorite (NaOCl) and peracetic acid (PAA) are commonly used disinfectants with a maximum recommended concentration of 200 ppm for food-contact surfaces. The objectives of this study were to assess the effect of pH and water hardness on NaOCl and PAA efficacy against SARS-CoV-2 on stainless steel (SS). The two disinfectants were prepared at 200 ppm in water of hardness 150 or 300 ppm with the final pH adjusted to 5, 6, 7, or 8. Disinfectants were applied to virus-contaminated SS for one minute at room temperature following the ASTM E2197 standard assay. SARS-CoV-2 infectivity was quantified using TCID50 assay on Vero-E6 cells. In general, increasingly hard water decreased the efficacy of NaOCl while increasing the efficacy of PAA. Hard water at 300 ppm significantly increased virus log reduction with PAA at pH 8 by ~1.5 log. The maximum virus log reductions were observed at pH 5 for both NaOCl (~1.2 log) and PAA (~2 log) at 150 and 300 ppm hard water, respectively. In conclusion, PAA performed significantly better than NaOCl with harder water. However, both disinfectants at 200 ppm and one minute were not effective (≤3 log) against SARS-CoV-2 on contaminated food-contact surfaces, which may facilitate the role of these surfaces in virus transmission.
Collapse
Affiliation(s)
| | - Malak A. Esseili
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30223, USA;
| |
Collapse
|
5
|
Murphy CM, Hamilton AM, Waterman K, Rock C, Schaffner D, Strawn LK. Sanitizer Type and Contact Time Influence Salmonella Reductions in Preharvest Agricultural Water Used on Virginia Farms. J Food Prot 2023; 86:100110. [PMID: 37268194 DOI: 10.1016/j.jfp.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
No Environmental Protection Agency (EPA) chemical treatments for preharvest agricultural water are currently labeled to reduce human health pathogens. The goal of this study was to examine the efficacy of peracetic acid- (PAA) and chlorine (Cl)-based sanitizers against Salmonella in Virginia irrigation water. Water samples (100 mL) were collected at three time points during the growing season (May, July, September) and inoculated with either the 7-strain EPA/FDA-prescribed cocktail or a 5-strain Salmonella produce-borne outbreak cocktail. Experiments were conducted in triplicate for 288 unique combinations of time point, residual sanitizer concentration (low: PAA, 6 ppm; Cl, 2-4 ppm or high: PAA, 10 ppm; Cl, 10-12 ppm), water type (pond, river), water temperature (12°C, 32°C), and contact time (1, 5, 10 min). Salmonella were enumerated after each treatment combination and reductions were calculated. A log-linear model was used to characterize how treatment combinations influenced Salmonella reductions. Salmonella reductions by PAA and Cl ranged from 0.0 ± 0.1 to 5.6 ± 1.3 log10 CFU/100 mL and 2.1 ± 0.2 to 7.1 ± 0.2 log10 CFU/100 mL, respectively. Physicochemical parameters significantly varied by untreated water type; however, Salmonella reductions did not (p = 0.14), likely due to adjusting the sanitizer amounts needed to achieve the target residual concentrations regardless of source water quality. Significant differences (p < 0.05) in Salmonella reductions were observed for treatment combinations, with sanitizer (Cl > PAA) and contact time (10 > 5 > 1 min) having the greatest effects. The log-linear model also revealed that outbreak strains were more treatment-resistant. Results demonstrate that certain treatment combinations with PAA- and Cl-based sanitizers were effective at reducing Salmonella populations in preharvest agricultural water. Awareness and monitoring of water quality parameters are essential for ensuring adequate dosing for the effective treatment of preharvest agricultural water.
Collapse
Affiliation(s)
- Claire M Murphy
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Alexis M Hamilton
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Kim Waterman
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Channah Rock
- Department of Environmental Science, University of Arizona - Maricopa Agricultural Center, Maricopa, Arizona, USA
| | - Donald Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
6
|
Charlebois S, Juhasz M, Music J, Vézeau J. A review of Canadian and international food safety systems: Issues and recommendations for the future. Compr Rev Food Sci Food Saf 2021; 20:5043-5066. [PMID: 34390310 DOI: 10.1111/1541-4337.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/27/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022]
Abstract
In January 2019, the Safe Food for Canadians Act/Safe Food for Canadians regulations (heretofore identified as SFCR) came into force across Canada and brought a more streamlined process to food safety practice in Canada. Food trade and production processes have evolved rapidly in recent decades, as Canada imports and exports food products; therefore it is critically important to remain aware of the latest advances responding to a range of challenges and opportunities in the food safety value chain. Looking through the optics of the recent SFCR framework, this paper places the spotlight on leading domestic and international research and practices to help strengthen food safety policies of the future. By shedding some light on new research, we also draw attention to international developments that are noteworthy, and place those in context as to how new Canadian food safety policy and regulation can be further advanced. The paper will benchmark Canada through a review study of food safety best practices by juxtaposing (i) stated aspirations with, (ii) actual performance in leading Organization for Economic Cooperation and Development (OECD) jurisdictions.
Collapse
Affiliation(s)
- Sylvain Charlebois
- Food Distribution and Policy, Faculty of Management, Faculty of Agriculture, Agri-food Analytics Lab, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark Juhasz
- Food Distribution and Policy, Faculty of Management, Faculty of Agriculture, Agri-food Analytics Lab, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Janet Music
- Food Distribution and Policy, Faculty of Management, Faculty of Agriculture, Agri-food Analytics Lab, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Janèle Vézeau
- Food Distribution and Policy, Faculty of Management, Faculty of Agriculture, Agri-food Analytics Lab, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Recent progress on the management of the industrial washing of fresh produce with a focus on microbiological risks. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Kang C, Sloniker N, Ryser ET. Use of a Novel Sanitizer To Inactivate Salmonella Typhimurium and Spoilage Microorganisms during Flume Washing of Diced Tomatoes. J Food Prot 2020; 83:2158-2166. [PMID: 32692851 DOI: 10.4315/jfp-20-134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/20/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT As demand for fresh-cut produce increases, minimizing the risk of salmonellosis becomes critical for the produce industry. Sanitizers are routinely used during commercial flume washing of fresh-cut produce to minimize cross-contamination from the wash water. This study assessed the efficacy of a novel sanitizer blend consisting of peracetic acid (PAA; OxypHresh 15) with a sulfuric acid-surfactant (SS) antimicrobial (PAA-SS; ProduceShield Plus) against Salmonella during simulated commercial washing of diced tomatoes. Triplicate 9.1-kg batches of Roma tomatoes were dip inoculated in a two-strain avirulent Salmonella cocktail (Salmonella Typhimurium LT2 and MHM112) to achieve 5 to 6 log CFU per tomato and air dried for 2 h. After mechanical dicing, the tomatoes were washed in a pilot-scale processing line for 60 s with or without an added organic load in 90 ppm of PAA-SS (pH 1.8), SS at pH 1.8, 90 ppm of PAA, 5 or 10 ppm of free chlorine or sanitizer-free water as the control. Overall, PAA-SS (1.75 ± 0.75 log CFU/g) was significantly (P ≤ 0.05) more effective than water (0.69 ± 0.42 log CFU/g), chlorine (0.35 ± 0.36 log CFU/g), or SS (0.36 ± 0.19 log CFU/g) in reducing Salmonella. After washing for 20 s, PAA-SS was the only sanitizer to show a significant (P ≤ 0.05) reduction (1.93 ±0.59 log CFU/g) in Salmonella. All wash water samples were negative for Salmonella, except for 5 and 10 ppm of chlorine and the water control. Using PAA-SS with an organic load, yeast and mold populations were below the limit of detection (1.40 log CFU/g) and significantly (P ≤ 0.05) lower on diced tomatoes after 14 days of refrigerated storage compared with the other treatments (8.37 ± 0.08 log CFU/g), with SS at pH 1.8 (3.91 ± 0.93 log CFU/g) most effective against yeast and mold in the absence of an organic load. On the basis of these findings, the safety and shelf life of commercially washed diced tomatoes can be improved with PAA-SS. HIGHLIGHTS
Collapse
Affiliation(s)
- Chunyu Kang
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Natasha Sloniker
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Elliot T Ryser
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|