1
|
Verma AK, Umaraw P, Kumar P, Mehta N, Sharma N, Kumar D, Sazili AQ, Lee S. Peptides From Animal and Fishery Byproducts: Uplifting the Functionality of Fifth Quarter. Food Sci Nutr 2025; 13:e70140. [PMID: 40255552 PMCID: PMC12006928 DOI: 10.1002/fsn3.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
The meat and fish sectors are primary sources of animal protein for human consumption. However, they also generate large volumes of byproducts and organic waste annually, posing major challenges in terms of sustainable disposal. These byproducts have the potential to be repurposed into high-value, low-volume products, such as bioactive peptides or hydrolysates. Various methods used for the recovery of bioactive peptides from meat byproducts are enzymatic hydrolysis, microbial fermentation, ultrasonic-assisted, pulsed electric field, high hydrostatic pressure, microwave-assisted, and subcritical water processing. These bioactive peptides possess various functional properties, including antioxidant, antimicrobial, and antihypertensive effects. Incorporating them into food products could enhance both the functionality and quality of these products. In light of growing consumer demand for natural, eco-friendly ingredients, as well as sustainable practices in food production and packaging, the generation and use of bioactive peptides and hydrolysates offer a promising strategy. This approach not only mitigates environmental challenges but also fosters the sustainable growth of the meat and fishery industries, ensuring long-term ecological and economic viability. This review explores new opportunities and avenues for utilizing animal and marine byproducts in producing bioactive peptides and their potential applications in meat products and processing techniques, thereby supporting the sustainable growth of the meat and fishery industries.
Collapse
Affiliation(s)
- Akhilesh Kumar Verma
- Department of Livestock Products Technology, College of Veterinary and Animal SciencesSardar Vallabhbhai Patel University of Agriculture and TechnologyMeerutUttar PradeshIndia
| | - Pramila Umaraw
- Department of Livestock Products Technology, College of Veterinary and Animal SciencesSardar Vallabhbhai Patel University of Agriculture and TechnologyMeerutUttar PradeshIndia
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary ScienceGuru Angad Dev Veterinary and Animal Sciences UniversityLudhianaPunjabIndia
| | - Nitin Mehta
- Department of Livestock Products Technology, College of Veterinary ScienceGuru Angad Dev Veterinary and Animal Sciences UniversityLudhianaPunjabIndia
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal HusbandrySher‐e‐Kashmir University of Agricultural Sciences and Technology of JammuRanbir Singh PuraUnion Territory of Jammu and KashmirIndia
| | - Devendra Kumar
- Division of Livestock Products TechnologyIndian Veterinary Research InstituteBareillyUttar PradeshIndia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of AgricultureUniversiti Putra MalaysiaSerdangMalaysia
- Halal Product Research InstituteUniversiti Putra MalaysiaSerdangMalaysia
| | - Sung‐Jin Lee
- Department of Applied Animal Science, College of Animal Life SciencesKangwon National UniversityChuncheonRepublic of Korea
| |
Collapse
|
2
|
Wang T, Yi Z, Liu X, Cai Y, Huang X, Fang J, Shen R, Lu W, Xiao Y, Zhuang W, Guo S. Multimodal detection and analysis of microplastics in human thrombi from multiple anatomically distinct sites. EBioMedicine 2024; 103:105118. [PMID: 38614011 PMCID: PMC11021838 DOI: 10.1016/j.ebiom.2024.105118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Microplastic (MP) pollution has emerged as a significant environmental concern worldwide. While extensive research has focused on their presence in marine organisms and ecosystems, their potential impact on human health, particularly on the circulatory system, remains understudied. This project aimed to identify and quantify the mass concentrations, polymer types, and physical properties of MPs in human thrombi surgically retrieved from both arterial and venous systems at three anatomically distinct sites, namely, cerebral arteries in the brain, coronary arteries in the heart, and deep veins in the lower extremities. Furthermore, this study aimed to investigate the potential association between the levels of MPs and disease severity. METHODS Thrombus samples were collected from 30 patients who underwent thrombectomy procedures due to ischaemic stroke (IS), myocardial infarction (MI), or deep vein thrombosis (DVT). Pyrolysis-gas chromatography mass spectrometry (Py-GC/MS) was employed to identify and quantify the mass concentrations of the MPs. Laser direct infrared (LDIR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the physical properties of the MPs. Demographic and clinical information were also examined. A rigorous quality control system was used to eliminate potential environmental contamination. FINDINGS MPs were detected by Py-GC/MS in 80% (24/30) of the thrombi obtained from patients with IS, MI, or DVT, with median concentrations of 61.75 μg/g, 141.80 μg/g, and 69.62 μg/g, respectively. Among the 10 target types of MP polymers, polyamide 66 (PA66), polyvinyl chloride (PVC), and polyethylene (PE) were identified. Further analyses suggested that higher concentrations of MPs may be associated with greater disease severity (adjusted β = 7.72, 95% CI: 2.01-13.43, p < 0.05). The level of D-dimer in the MP-detected group was significantly higher than that in the MP-undetected group (8.3 ± 1.5 μg/L vs 6.6 ± 0.5 μg/L, p < 0.001). Additionally, LDIR analysis showed that PE was dominant among the 15 types of identified MPs, accounting for 53.6% of all MPs, with a mean diameter of 35.6 μm. The shapes of the polymers detected using LDIR and SEM were found to be heterogeneous. INTERPRETATION This study presents both qualitative and quantitative evidence of the presence of MPs, and their mass concentrations, polymer types, and physical properties in thrombotic diseases through the use of multimodal detection methods. Higher concentrations of MPs may be associated with increased disease severity. Future research with a larger sample size is urgently needed to identify the sources of exposure and validate the observed trends in the study. FUNDING This study was funded by the SUMC Scientific Research Initiation Grant (SRIG, No. 009-510858038), Postdoctoral Research Initiation Grant (No. 202205230031-3), and the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (No. 2020LKSFG02C).
Collapse
Affiliation(s)
- Tingting Wang
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhiheng Yi
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoqiang Liu
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuxin Cai
- Intervention Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xianxi Huang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jingnian Fang
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ronghuai Shen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weikun Lu
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yingxiu Xiao
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weiduan Zhuang
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Shaowei Guo
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
3
|
Romani VP, Martins PC, da Rocha M, Bulhosa MCS, Kessler F, Martins VG. UV Radiation and Protein Hydrolysates in Bio-Based Films: Impacts on Properties and Italian Salami Preservation. Antioxidants (Basel) 2024; 13:517. [PMID: 38790622 PMCID: PMC11117594 DOI: 10.3390/antiox13050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
UV radiation was combined with the incorporation of fish protein hydrolysates to improve the performance of active bio-based films for food packaging. UV radiation was not used previously to enhance the packaging performance of blend films of starch/protein, and fish protein hydrolysates were not incorporated in bio-based polymer surfaces previously. Rice starch and fish proteins (from Whitemouth croaker muscle) were utilized to prepare films by the casting technique, which were UV-radiated under different exposure times (1, 5, and 10 min). The packaging performance of the films was determined according to the mechanical and barrier performance, solubility, and color. Fish protein hydrolysates (from Argentine croaker muscle) were then incorporated into the films (bulk structure or surface). The results showed that UV radiation for 1 min increased the tensile strength and modified the optical properties of films. It also altered the structure of the polymeric matrix, as demonstrated by the microstructure and thermal analysis, in agreement with the data obtained in packaging properties. The evaluation of antioxidant capacity through 2,2-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and reducing power indicated that incorporating fish protein hydrolysates either in the films' bulk structure or film surface promoted antioxidant properties; control films (produced with rice starch/fish proteins without hydrolysates) also presented antioxidant potential. According to the peroxide value and thiobarbituric acid reactive substance (TBARS) assays, control films and the films containing hydrolysates in their bulk structure or on the surface could prevent the lipid oxidation of Italian salami. Thus, combining UV radiation to shape the characteristics of bio-based materials with fish protein hydrolysates to reduce lipid oxidation contributes to the performance of active bio-based films for food packaging.
Collapse
Affiliation(s)
- Viviane Patrícia Romani
- Laboratory of Food Technology, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil (V.G.M.)
- Federal Institute of Paraná—Pitanga Campus, Pitanga 85200-000, PR, Brazil
| | - Paola Chaves Martins
- Laboratory of Food Technology, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil (V.G.M.)
| | - Meritaine da Rocha
- Laboratory of Food Technology, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil (V.G.M.)
| | - Maria Carolina Salum Bulhosa
- Laboratory of Applied and Technological Physical Chemistry, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Felipe Kessler
- Laboratory of Applied and Technological Physical Chemistry, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil (V.G.M.)
| |
Collapse
|
4
|
Kuchaiyaphum P, Chotichayapong C, Kajsanthia K, Saengsuwan N. Carboxymethyl cellulose/poly (vinyl alcohol) based active film incorporated with tamarind seed coat waste extract for food packaging application. Int J Biol Macromol 2024; 255:128203. [PMID: 37979741 DOI: 10.1016/j.ijbiomac.2023.128203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/29/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Incorporating a bioactive food waste extract into biodegradable polymers is a promising green approach to producing active films with antioxidant and antibacterial activity for food packaging. Active packaging films from carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) incorporated with tamarind seed coat waste extract (TS) were prepared by solvent casting method using citric acid as a crosslinking agent. The effect of TS content on the film properties was determined by measuring the optical, morphology, mechanical, water vapor transmission rate (WVTR), antioxidant, and antimicrobial attributes. The CMC/PVA-TS films were also tested on fresh pork. The addition of TS did not significantly affect the film structure and WVTR but it improved the mechanical and UV barrier properties. The films possessed antioxidant and antimicrobial ability against bacteria (S. aureus and E. coli). Thus, CMC/PVA packaging was successfully prepared, and the incorporation of TS enhanced the antioxidant and antimicrobial properties of the film, which extended the shelf-life of fresh pork.
Collapse
Affiliation(s)
- Pusita Kuchaiyaphum
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand.
| | - Chatrachatchaya Chotichayapong
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Kanlayanee Kajsanthia
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Nikorn Saengsuwan
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
5
|
Dong Y, Xie Y, Ma X, Yan L, Yu HY, Yang M, Abdalkarim SYH, Jia B. Multi-functional nanocellulose based nanocomposites for biodegradable food packaging: Hybridization, fabrication, key properties and application. Carbohydr Polym 2023; 321:121325. [PMID: 37739512 DOI: 10.1016/j.carbpol.2023.121325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Nowadays, non-degradable plastic packaging materials have caused serious environmental pollution, posing a threat to human health and development. Renewable eco-friendly nanocellulose hybrid (NCs-hybrid) composites as an ideal alternative to petroleum-based plastic food packaging have been extensively reported in recent years. NCs-hybrids include metal, metal oxides, organic frameworks (MOFs), plants, and active compounds. However, no review systematically summarizes the preparation, processing, and multi-functional applications of NCs-hybrid composites. In this review, the design and hybridization of various NCs-hybrids, the processing of multi-scale nanocomposites, and their key properties in food packaging applications were systematically explored for the first time. Moreover, the synergistic effects of various NCs-hybrids on several properties of composites, including mechanical, thermal, UV shielding, waterproofing, barrier, antimicrobial, antioxidant, biodegradation and sensing were reviewed in detailed. Then, the problems and advances in research on renewable NCs-hybrid composites are suggested for biodegradable food packaging applications. Finally, a future packaging material is proposed by using NCs-hybrids as nanofillers and endowing them with various properties, which are denoted as "PACKAGE" and characterized by "Property, Application, Cellulose, Keen, Antipollution, Green, Easy."
Collapse
Affiliation(s)
- Yanjuan Dong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Yao Xie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Xue Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Ling Yan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
| | - Mingchen Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Bowen Jia
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| |
Collapse
|
6
|
Sun B, Dang L, Bi Q, Li R, Gong Q, Wan Z, Xu S. Effect of Different Compatibilizers on the Mechanical, Flame Retardant, and Rheological Properties of Highly Filled Linear Low-Density Polyethylene/Magnesium Hydroxide Composites. Polymers (Basel) 2023; 15:4115. [PMID: 37896358 PMCID: PMC10611112 DOI: 10.3390/polym15204115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Maleic anhydride-modified homopolymerized polypropylene (PP-g-MAH) and maleic anhydride-modified polyolefin elastomer (POE-g-MAH) were used as bulking agents to improve the poor processing and mechanical properties of highly filled composites due to high filler content. In this study, a series of linear low-density polyethylene (LLDPE)/magnesium hydroxide (MH) composites were prepared by the melt blending method, and the effects of the compatibilizer on the mechanical properties, flame retardancy, and rheological behavior of the composites were investigated. The addition of the compatibilizer decreased the limiting oxygen index (LOI) values of the composites, but they were all greater than 30.00%, which belonged to the flame retardant grade. Mechanical property tests showed that the addition of the compatibilizer significantly increased the tensile and impact strengths of the LLDPE/60MH (MH addition of 60 wt%) composites. Specifically, the addition of 5 wt% POE-g-MAH increased 154.07% and 415.47% compared to the LLDPE/60MH composites, respectively. The rotational rheology test showed that the addition of the compatibilizer could effectively improve the processing flow properties of the composites. However, due to the hydrocarbon structure of the compatibilizer, its flame retardant properties were adversely affected. This study provides a strategy that can improve the processing and mechanical properties of highly filled composites.
Collapse
Affiliation(s)
- Beibei Sun
- School of Chemical Engineering, Qinghai University, Xining 810016, China; (B.S.); (Q.B.); (R.L.); (Q.G.); (Z.W.)
| | - Li Dang
- School of Chemical Engineering, Qinghai University, Xining 810016, China; (B.S.); (Q.B.); (R.L.); (Q.G.); (Z.W.)
| | - Qiuyan Bi
- School of Chemical Engineering, Qinghai University, Xining 810016, China; (B.S.); (Q.B.); (R.L.); (Q.G.); (Z.W.)
| | - Rujie Li
- School of Chemical Engineering, Qinghai University, Xining 810016, China; (B.S.); (Q.B.); (R.L.); (Q.G.); (Z.W.)
| | - Qiuhui Gong
- School of Chemical Engineering, Qinghai University, Xining 810016, China; (B.S.); (Q.B.); (R.L.); (Q.G.); (Z.W.)
| | - Zhihao Wan
- School of Chemical Engineering, Qinghai University, Xining 810016, China; (B.S.); (Q.B.); (R.L.); (Q.G.); (Z.W.)
| | - Shiai Xu
- School of Chemical Engineering, Qinghai University, Xining 810016, China; (B.S.); (Q.B.); (R.L.); (Q.G.); (Z.W.)
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Li X, Sha XM, Yang HS, Ren ZY, Tu ZC. Ultrasonic treatment regulates the properties of gelatin emulsion to obtain high-quality gelatin film. Food Chem X 2023; 18:100673. [PMID: 37091513 PMCID: PMC10119886 DOI: 10.1016/j.fochx.2023.100673] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Gelatin emulsion was an important process for preparing gelatin films. A gelatin film with water resistance and ductility could be prepared using gelatin emulsion, whereas the prepared gelatin film has several defects (e.g., low tensile strength and poor thermal stability). This study aimed to modify gelatin emulsion through ultrasonic treatment, then gelatin film was prepared by the modified gelatin emulsion. The results showed that: under the condition of ultrasonic treatment for 12 min at 400 w, zeta potential and viscosity of gelatin emulsion were the largest; thickness, water vapor permeability (WVP) and water solubility (WS) of corresponding gelatin film were the lowest, and the tensile strength (TS), elongation at break (EAB), denaturation temperature (Tm) and enthalpy value (ΔH) of corresponding gelatin film were the highest. The above result suggested that ultrasonic treatment can be used to prepare a gelatin film with better quality by regulating the properties of gelatin emulsion, and a certain correlation was found between the properties of gelatin emulsion and the properties of gelatin film.
Collapse
|
8
|
Venkatesan R, Alagumalai K, Kim SC. Preparation and Antimicrobial Characterization of Poly(butylene adipate- co-terephthalate)/Kaolin Clay Biocomposites. Polymers (Basel) 2023; 15:polym15071710. [PMID: 37050324 PMCID: PMC10097211 DOI: 10.3390/polym15071710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The biodegradable polymer poly(butylene adipate-co-terephthalate) (PBAT) starts decomposing at room temperature. Kaolin clay (KO) was dispersed and blended into PBAT composites using a solution-casting method. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to evaluate the structure and morphology of the composite materials. PBAT/kaolin clay composites were studied by thermogravimetric analysis (TGA). The PBAT composite loaded with 5.0 wt% kaolin clay shows the best characteristics. The biocomposites of PBAT/kaolin [PBC-5.0 (37.6MPa)] have a good tensile strength when compared to virgin PBAT (18.3MPa). The oxygen transmission rate (OTR), with ranges from 1080.2 to 311.7 (cc/m2/day), leads the KO content. By including 5.0 wt% kaolin 43.5 (g/m2/day), the water vapor transmission rate (WVTR) of the PBAT/kaolin composites was decreased. The pure PBAT must have a WVTR of 152.4 (g/m2/day). Gram-positive (S. aureus) and Gram-negative (E. coli) food-borne bacteria are significantly more resistant to the antimicrobial property of composites. The results show that PBAT/kaolin composites have great potential as food packaging materials due to their ability to decrease the growth of bacteria and improve the shelf life of packaged foods.
Collapse
Affiliation(s)
- Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
9
|
Inversion Theory Leveling as a New Methodological Approach to Antioxidant Thermodynamics: A Case Study on Phenol. Antioxidants (Basel) 2023; 12:antiox12020282. [PMID: 36829841 PMCID: PMC9952401 DOI: 10.3390/antiox12020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Antioxidants are various types of compounds that represent a link between biology and chemistry. With the development of theoretical and computational methods, antioxidants are now being studied theoretically. Here, a novel method is presented that aims to reduce the estimated wall times for DFT calculations that result in the same or higher degree of accuracy in the second derivatives over energy than is the case with the regular computational route (i.e., optimizing the reaction system at a lower model and then recalculating the energies at a higher level of theory) by applying the inversion of theory level to the universal chemical scavenger model, i.e., phenol. The resulting accuracy and wall time obtained with such a methodological setup strongly suggest that this methodology could be generally applied to antioxidant thermodynamics for some costly DFT methods with relative absolute deviation.
Collapse
|
10
|
The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation. Polymers (Basel) 2022; 14:polym14224947. [PMID: 36433073 PMCID: PMC9693208 DOI: 10.3390/polym14224947] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to develop a novel ultrathin fibrous membrane with a core-sheath structure as an antioxidant food packaging membrane. The core-sheath structure was prepared by coaxial electrospinning, and the release of active substances was regulated by its special structure. Ferulic acid (FA) was incorporated into the electrospun zein/polyethylene oxide ultrathin fibers to ensure their synergistic antioxidant properties. We found that the prepared ultrathin fibers had a good morphology and smooth surface. The internal structure of the fibers was stable, and the three materials that we used were compatible. For the different loading positions, it was observed that the core layer ferulic-acid-loaded fibers had a sustained action, while the sheath layer ferulic-acid-loaded fibers had a pre-burst action. Finally, apples were selected for packaging using fibrous membranes to simulate practical applications. The fibrous membrane was effective in reducing water loss and apple quality loss, as well as extending the shelf life. According to these experiments, the FA-loaded zein/PEO coaxial electrospinning fiber can be used as antioxidant food packaging and will also undergo more improvements in the future.
Collapse
|
11
|
Thermoplastic Starch Composites Reinforced with Functionalized POSS: Fabrication, Characterization, and Evolution of Mechanical, Thermal and Biological Activities. Antibiotics (Basel) 2022; 11:antibiotics11101425. [PMID: 36290082 PMCID: PMC9598116 DOI: 10.3390/antibiotics11101425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Rapid advancements in materials that offer the appropriate mechanical strength, barrier, and antimicrobial activity for food packaging are still confronted with significant challenges. In this study, a modest, environmentally friendly method was used to synthesize functionalized octakis(3-chloropropyl)octasilsesquioxane [fn-POSS] nanofiller. Composite films compared to the neat thermoplastic starch (TS) film, show improved thermal and mechanical properties. Tensile strength results improved from 7.8 MPa to 28.1 MPa (TS + 5.0 wt.% fn-POSS) with fn-POSS loading (neat TS). The barrier characteristics of TS/fn-POSS composites were increased by fn-POSS by offering penetrant molecules with a twisting pathway. Also, the rates of O2 and H2O transmission were decreased by 50.0 cc/m2/day and 48.1 g/m2/day in TS/fn-POSS composites. Based on an examination of its antimicrobial activity, the fn-POSS blended TS (TSP-5.0) film exhibits a favorable zone of inhibition against the bacterial pathogenic Staphylococcus aureus and Escherichia coli. The TS/fn-POSS (TSP-5.0) film lost 78.4% of its weight after 28 days in natural soil. New plastic materials used for packaging, especially food packaging, are typically not biodegradable, so the TS composite with 5.0 wt.% fn-POSS is therefore of definite interest. The incorporation of fn-POSS with TS composites can improve their characteristics, boost the use of nanoparticles in food packaging, and promote studies on biodegradable composites.
Collapse
|
12
|
Yao Z, Seong HJ, Jang YS. Environmental toxicity and decomposition of polyethylene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113933. [PMID: 35930840 DOI: 10.1016/j.ecoenv.2022.113933] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In the more than 100 years since the invention of plastics, various plastic polymers have been developed that exhibit different characteristics and have been widely used in production and life. In 2020 alone, nearly 400 million tons of plastics were produced globally. However, while plastic such as polyethylene brings us convenience, it also threatens environmental sustainability and human health. Due to insufficient recycling efficiency, millions of tons of polyethylene pollutants accumulate in terrestrial or marine environments each year. Polyethylene is elastic, chemically stable, and non-biodegradable, and the traditional disposal methods include landfilling and incineration. These methods are costly, unsustainable, and further increase the burden on the environment. Therefore, recent research has increasingly focused on the biodegradation of polyethylene. In this work, we briefly summarized polyethylene's properties and environmental toxicity. We also reviewed the recent advances in the biodegradation of polyethylene with a summary of traditional abiotic methods. Finally, we proposed a brief research direction in polyethylene study with the aspect of environmental toxicology and industrial applications of decomposition technology.
Collapse
Affiliation(s)
- Zhuang Yao
- Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon Jeong Seong
- Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Yu-Sin Jang
- Division of Applied Life Science (BK21), Department of Applied Life Chemistry, Institute of Agriculture & Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
13
|
Zhu K, Chen L, Chen C, Xie J. Preparation and characterization of polyethylene antifogging film and its application in lettuce packaging. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Min T, Zhou L, Sun X, Du H, Bian X, Zhu Z, Wen Y. Enzyme-responsive food packaging system based on pectin-coated poly (lactic acid) nanofiber films for controlled release of thymol. Food Res Int 2022; 157:111256. [DOI: 10.1016/j.foodres.2022.111256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/01/2022]
|
15
|
Czelej M, Garbacz K, Czernecki T, Wawrzykowski J, Waśko A. Protein Hydrolysates Derived from Animals and Plants—A Review of Production Methods and Antioxidant Activity. Foods 2022; 11:foods11131953. [PMID: 35804767 PMCID: PMC9266099 DOI: 10.3390/foods11131953] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
There is currently considerable interest on the use of animal, plant, and fungal sources in the production of bioactive peptides, as evidenced by the substantial body of research on the topic. Such sources provide cheap and environmentally friendly material as it often includes waste and by-products. Enzymatic hydrolysis is considered an efficient method of obtaining peptides capable of antioxidant activity. Those properties have been proven in terms of radical-scavenging capacity using the DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2-azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid)), hydroxyl and superoxide radical methods. Additionally, the reducing power, ferrous ion-chelating (FIC), ferric reducing antioxidant power (FRAP), and the ability of the protein hydrolysates to inhibit lipid peroxidation have also been explored. The results collected in this review clearly indicate that the substrate properties, as well as the conditions under which the hydrolysis reaction is carried out, affect the final antioxidant potential of the obtained peptides. This is mainly due to the structural properties of the obtained compounds such as size or amino acid sequences.
Collapse
Affiliation(s)
- Michał Czelej
- Biolive Innovation Sp. z o. o., 3 Dobrzańskiego Street, 20-262 Lublin, Poland;
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
- Correspondence:
| | - Katarzyna Garbacz
- Biolive Innovation Sp. z o. o., 3 Dobrzańskiego Street, 20-262 Lublin, Poland;
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka Street, 20-400 Lublin, Poland;
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| |
Collapse
|
16
|
Redfearn HN, Goddard JM. Antioxidant and dissociation behavior of polypropylene‐
graft
‐maleic anhydride. J Appl Polym Sci 2022. [DOI: 10.1002/app.52764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Julie M. Goddard
- Department of Food Science Cornell University Ithaca New York USA
| |
Collapse
|
17
|
Yu Z, Lu L, Lu L, Pan L, Qiu X, Tang Y. Development and antioxidation of metal ion chelating packaging film. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Demirci S, Sahiner N. Polyethyleneimine based Cerium(III) and Ce(NO3)3 metal-organic frameworks with blood compatible, antioxidant and antimicrobial properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Non-migrating active antibacterial packaging and its application in grass carp fillets. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Romani VP, Martins VG, Silva AS, Martins PC, Nogueira D, Carbonera N. Amazon‐sustainable‐flour from açaí seeds added to starch films to develop biopolymers for active food packaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.51579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Viviane P. Romani
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Brazil
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Vilásia G. Martins
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Ayla S. Silva
- Biocatalysis Laboratory, Catalysis, Biocatalysis and Chemical Processes Division National Institute of Technology, Ministry of Science, Technology, and Innovations Rio de Janeiro Brazil
| | - Paola C. Martins
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Daiane Nogueira
- Laboratory of Food Technology, School of Chemistry and Food Federal University of Rio Grande Rio Grande Brazil
| | - Nádia Carbonera
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Brazil
| |
Collapse
|
21
|
Zhou Y, Fletcher NF, Zhang N, Hassan J, Gilchrist MD. Enhancement of Antiviral Effect of Plastic Film against SARS-CoV-2: Combining Nanomaterials and Nanopatterns with Scalability for Mass Manufacturing. NANO LETTERS 2021; 21:10149-10156. [PMID: 34881894 PMCID: PMC8672428 DOI: 10.1021/acs.nanolett.1c02266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Direct contact with contaminated surfaces in frequently accessed areas is a confirmed transmission mode of SARS-CoV-2. To address this challenge, we have developed novel plastic films with enhanced effectiveness for deactivating the SARS-CoV-2 by means of nanomaterials combined with nanopatterns. Results prove that these functionalized films are able to deactivate SARS-CoV-2 by up to 2 orders of magnitude within the first hour compared to untreated films, thus reducing the likelihood of transmission. Nanopatterns can enhance the antiviral effectiveness by increasing the contact area between nanoparticles and virus. Significantly, the established process also considers the issue of scalability for mass manufacturing. A low-cost process for nanostructured antiviral films integrating ultrasonic atomization spray coating and thermal nanoimprinting lithography is proposed. A further in-depth investigation should consider the size, spacing, and shape of nanopillars, the type and concentration of nanoparticles, and the scale-up and integration of these processes with manufacturing for optimal antiviral effectiveness.
Collapse
Affiliation(s)
- Yuyang Zhou
- Centre
of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical
and Materials Engineering, University College
Dublin, Dublin D04 KW52, Ireland
- National
Engineering Laboratory for Modern Silk, College of Textile and Clothing
Engineering, Soochow University, Suzhou 215123, China
| | - Nicola F. Fletcher
- School
of Veterinary Medicine, University College
Dublin, Dublin D04 KW52, Ireland
- Conway
Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin D04 KW52, Ireland
| | - Nan Zhang
- Centre
of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical
and Materials Engineering, University College
Dublin, Dublin D04 KW52, Ireland
| | - Jaythoon Hassan
- National
Virus Reference Laboratory, University College
Dublin, Dublin D04 KW52, Ireland
| | - Michael D. Gilchrist
- Centre
of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical
and Materials Engineering, University College
Dublin, Dublin D04 KW52, Ireland
| |
Collapse
|
22
|
LakshmiBalasubramaniam S, Howell C, Tajvidi M, Skonberg D. Characterization of novel cellulose nanofibril and phenolic acid-based active and hydrophobic packaging films. Food Chem 2021; 374:131773. [PMID: 34915376 DOI: 10.1016/j.foodchem.2021.131773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/07/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022]
Abstract
Cellulose nanofibril (CNF) is a natural biodegradable biopolymer with excellent mechanical and barrier properties. However, it is susceptible to moisture-induced deterioration of its properties. Attachment of phenolic acids can improve its hydrophobicity and provide additional active functionalities such as antioxidant properties. In this study, CNF films were esterified to vanillic and syringic acid through two different reaction mechanisms. The films were investigated for evidence of modification, hydrophobicity, mechanical properties, crystallinity, thermal stability, and antioxidant properties. Results indicate that esterification with vanillic and syringic acids imparted antioxidant activity to CNF films, with a significantly higher ABTS+· scavenging activity (76 ± 18%) when compared to control CNF films (30 ± 6%). Similarly, esterification of phenolic acids significantly improved the hydrophobicity of the films with a water contact angle of 94 ± 3° when compared to control CNF films (46 ± 5°). Covalent attachment of phenolic acids can improve hydrophobicity while providing additional functionality to CNF important for food packaging applications.
Collapse
Affiliation(s)
| | - Caitlin Howell
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA
| | - Mehdi Tajvidi
- School of Forest Resources & Advanced Structures and Composite Center, University of Maine, Orono, ME 04469, USA
| | - Denise Skonberg
- Food Science and Human Nutrition, School of Food and Agriculture, University of Maine Orono, Maine 04469, USA.
| |
Collapse
|
23
|
Apak R, Calokerinos A, Gorinstein S, Segundo MA, Hibbert DB, Gülçin İ, Demirci Çekiç S, Güçlü K, Özyürek M, Çelik SE, Magalhães LM, Arancibia-Avila P. Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-0902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This project was aimed to identify the quenching chemistry of biologically important reactive oxygen and nitrogen species (ROS/RNS, including radicals), to show antioxidant action against reactive species through H‐atom and electron transfer reactions, and to evaluate the ROS/RNS scavenging activity of antioxidants with existing analytical methods while emphasizing the underlying chemical principles and advantages/disadvantages of these methods. In this report, we focused on the applications and impact of existing assays on potentiating future research and innovations to evolve better methods enabling a more comprehensive study of different aspects of antioxidants and to provide a vocabulary of terms related to antioxidants and scavengers for ROS/RNS. The main methods comprise the scavenging activity measurement of the hydroxyl radical (•OH), dioxide(•1–) (O2
•–: commonly known as the superoxide radical), dihydrogen dioxide (H2O2: commonly known as hydrogen peroxide), hydroxidochlorine (HOCl: commonly known as hypochlorous acid), dioxidooxidonitrate(1–) (ONOO−: commonly known as the peroxynitrite anion), and the peroxyl radical (ROO•). In spite of the diversity of methods, there is currently a great need to evaluate the scavenging activity of antioxidant compounds in vivo and in vitro. In addition, there are unsatisfactory methods frequently used, such as non-selective UV measurement of H2O2 scavenging, producing negative errors due to incomplete reaction of peroxide with flavonoids in the absence of transition metal ion catalysts. We also discussed the basic mechanisms of spectroscopic and electrochemical nanosensors for measuring ROS/RNS scavenging activity of antioxidants, together with leading trends and challenges and a wide range of applications. This project aids in the identification of reactive species and quantification of scavenging extents of antioxidants through various assays, makes the results comparable and more understandable, and brings a more rational basis to the evaluation of these assays and provides a critical evaluation of existing ROS/RNS scavenging assays to analytical, food chemical, and biomedical/clinical communities by emphasizing the need for developing more refined, rapid, simple, and low‐cost assays and thus opening the market for a wide range of analytical instruments, including reagent kits and sensors.
Collapse
Affiliation(s)
- Reşat Apak
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Antony Calokerinos
- Department of Chemistry , National and Kapodistrian University of Athens, School of Sciences , Panepistimiopolis, 15771 Athens , Greece
| | - Shela Gorinstein
- The Hebrew University, Hadassah Medical School, School of Pharmacy, The Institute for Drug Research , Jerusalem , Israel
| | - Marcela Alves Segundo
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - David Brynn Hibbert
- New South Wales University, School of Chemistry , Sydney , NSW 2052 , Australia
| | - İlhami Gülçin
- Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - Sema Demirci Çekiç
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Kubilay Güçlü
- Department of Chemistry , Adnan Menderes University, Faculty of Arts and Sciences , Aydın , Turkey
| | - Mustafa Özyürek
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Saliha Esin Çelik
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Luís M. Magalhães
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - Patricia Arancibia-Avila
- Departamento de Ciencias Básicas , Laboratorio de Ecofisiología y Microalgas, Universidad del Bio-Bio , Chillán , Chile
| |
Collapse
|
24
|
Development and Characterization of Bioactive Polypropylene Films for Food Packaging Applications. Polymers (Basel) 2021; 13:polym13203478. [PMID: 34685237 PMCID: PMC8538041 DOI: 10.3390/polym13203478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/26/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Bioactive polypropylene (PP) films with active agents) presence for food packaging application have been prepared and characterized. The novel modified PP films were obtained via PP/additives systems regranulation and cast extrusion. The influence of two types of plasticizers (natural agents as well as commercial synthetic product) and bioactive additives on final features, e.g., mechanical properties, was evaluated. Moreover, the biocidal activity of the films was determined. Due to their functional properties, they are developed as additives to packaging plastic materials such as polyolefins. The study results presented in our work may indirectly contribute to environmental protection by reducing food waste. The aim of the work was to obtain innovative, functional packaging materials with an ability to prolong the shelf life of food products. The best antimicrobial properties were observed for the sample based on 5 wt.% oregano oil (OO) and 5 wt.% cedar oil (OC) in PP matrix. A microbial test revealed that the system causes total reduction in the following microorganisms: B. subtilis, E. coli, S. aureus, P. putida, C. albicans, A. alternata, F. oxysporum.
Collapse
|
25
|
Yin Y, Jiang T, Hao Y, Zhang J, Li W, Hao Y, He W, Song Y, Feng Q, Ma W. Cascade catalytic nanoplatform based on ions interference strategy for calcium overload therapy and ferroptosis. Int J Pharm 2021; 606:120937. [PMID: 34310960 DOI: 10.1016/j.ijpharm.2021.120937] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023]
Abstract
Intracellular ions played prominent part in cell function and behavior. Disrupting intracellular ions homeostasis might switch ions signal from "regulating" to "destroying". Inspired by this, we introduced the ions interference strategy for tumor therapy. Herein, curcumin (CUR) and transferrin (Tf) co-loaded calcium peroxide nanoparticles (CaO2 NPs) were formulated. With tumor targeting ability, CaO2/Tf/CUR pinpointed tumor cells and then instantaneously decomposed in acidic lysosomes, concurrently accompanying with the release of Ca2+ and CUR, as well as the production of H2O2. Then H2O2 not only damaged structure of Tf to release Fe3+, but also was converted to hydroxyl radicals via ferric ions mediated Fenton reaction for ferroptosis. In addition, the released Ca2+ and CUR induced Ca2+ overload via exogenous and endogenous calcium ions accumulation, respectively, further activating mitochondria apoptosis signaling pathway for cell injury. Therefore, based on calcium and ferric ions interference strategy, the cascade catalytic CaO2/Tf/CUR offered synergistic combination of ferroptosis, Ca2+ overload therapy and chemotherapy, which held a great promise in cancer treatment.
Collapse
Affiliation(s)
- Yanyan Yin
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Tianyao Jiang
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yutong Hao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ji Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Wen Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yongwei Hao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Wei He
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yu Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Weiwei Ma
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
26
|
Herskovitz JE, Goddard JM. Antioxidant functionalization of biomaterials via reactive extrusion. J Appl Polym Sci 2021. [DOI: 10.1002/app.50591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Julie M. Goddard
- Department of Food Science Cornell University Ithaca New York USA
| |
Collapse
|
27
|
Development of antioxidant active PVA films with plant extract of Caesalpinia ferrea Martius. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Sani MA, Azizi-Lalabadi M, Tavassoli M, Mohammadi K, McClements DJ. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1331. [PMID: 34070054 PMCID: PMC8158105 DOI: 10.3390/nano11051331] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Interest in the development of smart and active biodegradable packaging materials is increasing as food manufacturers try to improve the sustainability and environmental impact of their products, while still maintaining their quality and safety. Active packaging materials contain components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or oxygen barriers. Smart packaging materials contain sensing components that provide an indication of changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart sensor may give a measurable color change in response to a deterioration in food quality. This article reviews recent advances in the development of active and smart biodegradable packaging materials in the food industry. Moreover, studies on the application of these packaging materials to monitor the freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable products. Finally, the potential challenges associated with the application of these eco-friendly packaging materials in the food industry are discussed, as well as potential future directions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran;
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran;
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | | |
Collapse
|
29
|
Photografting of conducting polymer onto polymeric substrate as non-migratory antioxidant packaging. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Xylan-Derived Light Conversion Nanocomposite Film. Polymers (Basel) 2020; 12:polym12081779. [PMID: 32784908 PMCID: PMC7464716 DOI: 10.3390/polym12081779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
A new type of sustainable light conversion nanocomposite film was fabricated by using carboxymethyl xylan as matrix and xylan-derived carbon dots (CDs) as both light conversion regents and nano reinforcements. The results demonstrate that CDs can not only significantly enhance the mechanical strength of the nanocomposite film because of chemical reaction between CDs and carboxymethyl xylan, but also impart the film with excellent optical properties. With 1.92 wt% CDs, the tensile strength and elastic modulus of the film are increased by 114.3% and 90.7%, respectively. Moreover, the film has typical excitation and emission spectra, enabling the efficient absorption of UV and the conversion of UV to blue light. This xylan-derived light conversion nanocomposite film is expected to be used in agricultural planting and food packaging.
Collapse
|
31
|
Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. Int J Biol Macromol 2020; 153:207-214. [DOI: 10.1016/j.ijbiomac.2020.02.250] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/22/2020] [Indexed: 11/20/2022]
|
32
|
Herskovitz JE, Goddard JM. Reactive Extrusion of Nonmigratory Antioxidant Poly(lactic acid) Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2164-2173. [PMID: 31985224 DOI: 10.1021/acs.jafc.9b06776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reactive extrusion of bio-derived active packaging offers a new approach to address converging concerns over environmental contamination and food waste. Herein, metal-chelating nitrilotriacetic acid (NTA) ligands were grafted onto poly(lactic acid) (PLA) by reactive extrusion to produce metal-chelating PLA (PLA-g-NTA). Radical grafting was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy with the introduction of secondary alkyl stretches (2919 and 2860 cm-1) and by X-ray photoelectron spectroscopy (XPS) with an increase in the atomic percentage of nitrogen. Compared to films prepared from native, granular PLA (gPLA), PLA-g-NTA films had lower contact angles and hysteresis values (86.35° ± 2.49 and 31.89° ± 2.27 to 79.91° ± 1.58 and 21.79° ± 1.72, respectively), supporting the surface orientation of the NTA ligands. The PLA-g-NTA films exhibited a significant antioxidant character with a radical scavenging capacity of 0.675 ± 0.026 nmol Trolox(eq)/cm2 and an iron chelation capacity of 54.09 ± 9.36 nmol/cm2. PLA-g-NTA films delayed ascorbic acid degradation, retaining ∼45% ascorbic acid over the 9-day study compared to <20% for control PLA. This research makes significant advances in translating active packaging technologies to bio-derived materials using scalable, commercially translatable synthesis methods.
Collapse
Affiliation(s)
- Joshua E Herskovitz
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| | - Julie M Goddard
- Department of Food Science , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
33
|
Chen Y, Liu X, Sun X, Zhang J, Mi Y, Li Q, Guo Z. Synthesis and Antioxidant Activity of Cationic 1,2,3-Triazole Functionalized Starch Derivatives. Polymers (Basel) 2020; 12:E112. [PMID: 31948022 PMCID: PMC7023368 DOI: 10.3390/polym12010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, starch was chemically modified to improve its antioxidant activity. Five novel cationic 1,2,3-triazole functionalized starch derivatives were synthesized by using "click" reaction and N-alkylation. A convenient method for pre-azidation of starch was developed. The structures of the derivatives were analyzed using FTIR and 1H NMR. The radicals scavenging abilities of the derivatives against hydroxyl radicals, DPPH radicals, and superoxide radicals were tested in vitro in order to evaluate their antioxidant activity. Results revealed that all the cationic starch derivatives (2a-2e), as well as the precursor starch derivatives (1a-1e), had significantly improved antioxidant activity compared to native starch. In particular, the scavenging ability of the derivatives against superoxide radicals was extremely strong. The improved antioxidant activity benefited from the enhanced solubility and the added positive charges. The biocompatibility of the cationic derivatives was confirmed by the low hemolytic rate (<2%). The obtained derivatives in this study have great potential as antioxidant materials that can be applied in the fields of food and biomedicine.
Collapse
Affiliation(s)
- Yuan Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China (X.L.)
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiguang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China (X.L.)
| | - Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|