1
|
van der Fels-Klerx HJ, van Asselt ED, van Leeuwen SPJ, Dorgelo FO, Hoek-van den Hil EF. Prioritization of chemical food safety hazards in the European feed supply chain. Compr Rev Food Sci Food Saf 2024; 23:e70025. [PMID: 39379291 DOI: 10.1111/1541-4337.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
Extensive monitoring programs of chemical hazards in the animal feed chain are in place, both organized by public and private organizations. The objective of this review was to prioritize chemical hazards for monitoring in the European animal feed supply chain. A step-wise approach was designed for the prioritization, based on: historical occurrence of the chemicals in animal feed ingredients and animal feeds (in relation to European guidance values or maximum limits in feed); information on transfer of the chemical to edible animal products, and; the extent of human dietary intake of the products and possible adverse human health effects of the chemical. Possible prioritization outcomes were: high (H), medium (M), or low (L) priority for monitoring, or classification not possible (NC) because of limited available data on the transfer of the chemical to edible animal tissues. The selection of chemicals included (with results in parentheses): dioxins and polychlorinated biphenyls (H); brominated flame retardants (H); per- and polyfluorinated alkyl substances (H); the heavy metals arsenic (H) and cadmium (H) as well as lead (M) and mercury (M); aflatoxins (H), ochratoxin A (NC), and other mycotoxins (L); pyrrolizidine alkaloids (H) and other plant toxins (NC); organochlorine pesticides (H) and other pesticides (L); pharmaceutically active substances (M); hormones (NC); polycyclic aromatic hydrocarbons (L), heat-induced processing contaminants (NC), and mineral oils (NC). Results of this study can be used to support risk-based monitoring by food safety authorities and feed-producing companies in Europe.
Collapse
Affiliation(s)
| | - E D van Asselt
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | - F O Dorgelo
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | |
Collapse
|
2
|
Gao J, Li X, Zheng Y, Qin Q, Chen D. Recent Advances in Sample Preparation and Chromatographic/Mass Spectrometric Techniques for Detecting Polycyclic Aromatic Hydrocarbons in Edible Oils: 2010 to Present. Foods 2024; 13:1714. [PMID: 38890942 PMCID: PMC11171805 DOI: 10.3390/foods13111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Polycyclic aromatic hydrocarbons are considered to be potentially genotoxic and carcinogenic to humans. For non-smoking populations, food is the main source of polycyclic aromatic hydrocarbons exposure. Due to their lipophilic nature, oils and fats rank among the food items with the highest polycyclic aromatic hydrocarbon content. Consequently, the detection of polycyclic aromatic hydrocarbons in edible oils is critical for the promotion of human health. This paper reviews sample pretreatment methods, such as liquid-phase-based extraction methods, adsorbent-based extraction methods, and the QuEChERS (quick, easy, cheap, effective, rugged, and safe) method, combined with detection techniques like mass spectrometry and chromatography-based techniques for accurate quantification of polycyclic aromatic hydrocarbons in edible oils since 2010. An overview on the advances of the methods discussed herein, along with a commentary addition of current challenges and prospects, will guide researchers to focus on developing more effective detection methods and control measures to reduce the potential risks and hazards posed by polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Jiayi Gao
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xingyue Li
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanyuan Zheng
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Qin
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Ingegno M, Zianni R, Della Rovere I, Chiappinelli A, Nardelli V, Casamassima F, Calitri A, Quinto M, Nardiello D, Iammarino M. Development of a highly sensitive method based on QuEChERS and GC-MS/MS for the determination of polycyclic aromatic hydrocarbons in infant foods. Front Nutr 2024; 11:1403541. [PMID: 38798769 PMCID: PMC11116592 DOI: 10.3389/fnut.2024.1403541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants that can be found in various food products, including those intended for infants. Due to their potential health risks, it is crucial to develop sensitive analytical methods for the accurate determination of PAHs in infant foods. This study describes the development and validation of a highly sensitive method for the quantification of European PAH markers, namely benzo[a]pyrene, benzo[a]anthracene, chrysene, and benzo[b]fluoranthene, using gas chromatography-tandem mass spectrometry (GC-MS/MS), in baby food samples. The first step was the optimization of the sample preparation procedure, performed using different methods based on the QuEChERS approach, also testing different extraction solvents. Several factors such as extraction efficiency, selectivity, and recovery were evaluated to choose the most effective procedure for sample preparation. Furthermore, the GC-MS/MS method was optimized, evaluating parameters such as linearity, sensitivity, accuracy, and robustness using spiked infant food samples. The method demonstrated excellent linearities with a correlation coefficient higher than 0.999 over a wide concentration range, and limits of detection and limits of quantification in the range 0.019-0.036 μg/kg and 0.06-0.11 μg/kg, respectively. Extraction recoveries were between 73.1 and 110.7%, with relative standard deviations always lower than 8%. These findings are compliant with the indications of the European Commission (Reg. 836/2011). To assess the applicability of the method to official control activities, a survey was conducted on commercially available infant food products. Four markers were determined in commercial samples belonging to different food categories for infants and young children. The outcome of this monitoring showed that PAH contamination, in all samples, was below the quantification limits. In conclusion, the developed GC-MS/MS method provides a highly sensitive and reliable approach for the determination of PAHs in baby foods. The optimized sample preparation, instrumental parameters, and validation results ensure accurate quantification of 4 PAHs even at trace levels. This method could contribute to the assessment of PAH exposure in infants and it could support regulatory efforts to ensure the safety and quality of infant food products with regular monitoring.
Collapse
Affiliation(s)
- Mariateresa Ingegno
- Struttura Complessa di Chimica, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Rosalia Zianni
- Struttura Complessa di Chimica, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Ines Della Rovere
- Struttura Complessa di Chimica, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Andrea Chiappinelli
- Struttura Complessa di Chimica, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Valeria Nardelli
- Struttura Complessa di Chimica, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Francesco Casamassima
- Struttura Complessa di Chimica, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Anna Calitri
- Struttura Complessa di Chimica, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Maurizio Quinto
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Donatella Nardiello
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Marco Iammarino
- Struttura Complessa di Chimica, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| |
Collapse
|
4
|
Eghbaljoo H, Rezvani Ghalhari M, Shariatifar N, Jahed Khaniki G, Molaee Aghaee E, Alizadeh Sani M, Mansouri E, Arabameri M. Analysis of polychlorinated biphenyls (PCBs) in edible oils using the QuEChERS/GC-MS method: A health risk assessment study. Heliyon 2023; 9:e21317. [PMID: 37954364 PMCID: PMC10632704 DOI: 10.1016/j.heliyon.2023.e21317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Population growth has made it difficult to provide safe food; because various toxic substances such as polychlorinated biphenyls (PCBs) can contaminate food products such as edible oils which have very high-rate consumption worldwide. Aims of study are to determine the concentration of PCBs in edible oil samples and to evaluate the carcinogenic risk of PCBs in them among Iranian people by Monte Calo Simulation (MCS). After finding the location of high customer hyper market in Tehran, 42 samples of 7 various types of edible oils were collected; then PCBs content of them measured using the modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction method and GC/MS technique. According to the findings the mean level of NDL-PCB in oil samples were ranged from 1.88 to 25.62 ng/g fat. Results of uncertainty analysis showed that among children the 95th percentile of Incremental Lifetime Cancer Risk (ILCR) were 7.80E-3, 5.37E-4, 5.37E-4, 2.00E-3, 1.59E-3, 13.9E-3 and 7.04E-4 for animal oil, corn oil, frying oil, olive oil, bran oil, sesame oil and sunflower oil, respectively. Also, the 95th percentile of ILCR among adults were 4.12E-2, 3.04E-3, 3.09E-3, 1.06E-2, 8.43E-3, 7.38E-3 and 3.74E-3 for animal oil, corn oil, frying oil, olive oil, bran oil, sesame oil and sunflower oil, respectively. The risk evaluation showed that in all edible oils the 95th percentile of simulated ILCR were more than 10-5, so it can be threatening health among both aging groups, although, the producers don't deliberately subject the users' lives to such danger, but high consumption rate and accumulation of PCBs in body tissues are contribute to increasing carcinogenic risk. Also, the 95th percentile of ILCR among adults were more than children, because the edible oil ingestion rate among adults was more than children.
Collapse
Affiliation(s)
- Hadi Eghbaljoo
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Jahed Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Molaee Aghaee
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Mansouri
- Department of Clinical Nutrition, Faculty of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Arabameri
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
5
|
Singh L, Agarwal T. Polycyclic aromatic hydrocarbons in cooked (tandoori) chicken and associated health risk. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:2380-2397. [PMID: 36802078 DOI: 10.1111/risa.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Tandoori cooking is a popular food preparation method in India involving a unique combination of grilling, baking, barbecuing, and roasting processes. This study determined the levels of 16 polycyclic aromatic hydrocarbons (PAHs) in tandoori chicken and assessed the associated health risk. The sum of 16 PAHs concentration ranged from 25.4 to 3733 μg/kg with an average of 440 ± 853 μg/kg. Analyzed samples demonstrated major contribution of 2, 3, and 4 ring PAHs. Diagnostic ratios identified combustion and high-temperature processes as the main source favoring PAHs generation in these samples. Benzo(a)pyrene equivalents and incremental lifetime cancer risk (ILCR) estimates for different population groups (boys, girls, adult males, adult females, elderly males, elderly females) associated with dietary intake of these products ranged from 6.88E-05 to 4.13E-03 and 1.63E-08 to 1.72E-06, respectively. Since the ILCR values fell within the safe limits (1E-06, i.e., nonsignificant), the consumption of tandoori chicken may be considered as safe. The study emphasizes the need for extensive studies on PAHs formation in tandoori food products.
Collapse
Affiliation(s)
- Lochan Singh
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Tripti Agarwal
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| |
Collapse
|
6
|
Zhang L, Li W, Wu S. Rapid Determination of Oxygenated and Parent Polycyclic Aromatic Hydrocarbons in Milk Using Supercritical Fluid Chromatography-Mass Spectrometry. Foods 2022; 11:foods11243980. [PMID: 36553722 PMCID: PMC9778578 DOI: 10.3390/foods11243980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Liquid milks are consumed worldwide in large amounts, especially by adolescents and infants. Thus, their health quality linked with polycyclic aromatic hydrocarbon (PAH) contamination has attracted great concern. This study developed a rapid and sensitive supercritical fluid chromatography (SFC)-MS method to determine two typical oxygenated PAHs (OPAHs) and EU 15+1PAHs except for benzo[k]fluoranthene (BkF) in three types of liquid milks: 10 ultra heat treated (UHT) milks, 8 pasteurized milks, and 4 extended-shelf-life pasteurized milks. The instrumental analysis was 15 min with a recovery of 67.66-118.46%, a precision of 1.45-14.68%, detection limits of 0.04-0.24 μg/kg, and quantification limits of 0.13-0.78 μg/kg. We found 9-fluorenone, anthraquinone, 15 EU priority PAHs, and benzo[a]pyrene toxic equivalent quantity (BaPeq) in the 22 milk samples, which were 0.32-1.56 μg/kg, 0.40-1.74 μg/kg, 0.57-8.48 μg/kg, and 0.01-17.42 μg/kg, respectively. The UHT milks and whole fat milks showed higher PAH concentrations than other investigated samples, where the maximum levels of BaP and PAH4 were 0.77 and 3.61 μg/kg, respectively. PAH4 dominantly contributed to the PAH8 concentration and was detected in 73% and 32% of samples at more than 1.0 and 2.0 μg/kg, respectively. The results suggest that raw milks should be strictly monitored and extensively investigated for PAH4 and BaP concentrations for future risk assessment, limitations, and dietary guidance.
Collapse
Affiliation(s)
| | | | - Shimin Wu
- Correspondence: ; Tel./Fax: +86-21-34205717
| |
Collapse
|
7
|
Selection of 12 vegetable oils influences the prevalence of polycyclic aromatic hydrocarbons, fatty acids, tocol homologs and total polar components during deep frying. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zhu Z, Xu Y, Huang T, Yu Y, Bassey AP, Huang M. The contamination, formation, determination and control of polycyclic aromatic hydrocarbons in meat products. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Tian Y, Xu Z, Liu Z, Si X, Zhang F, Jiang W. Fe 3O 4@SiO 2@VAN Nanoadsorbent Followed by GC-MS for the Determination of Polycyclic Aromatic Hydrocarbons at Ultra-Trace Levels in Environmental Water Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2921. [PMID: 36079959 PMCID: PMC9458231 DOI: 10.3390/nano12172921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In the present study, silica-coated magnetic nanoparticles functionalized with vancomycin (Fe3O4@SiO2@VAN) were synthesized. The Fe3O4@SiO2@VAN nanocomposite was used as a sorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) from environmental water, followed by GC-MS. The nanocomposite was characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and nitrogen sorption. Various experimental parameters were optimized, including extraction condition and desorption condition. Results show that Fe3O4@SiO2@VAN combined the advantages of nanomaterials and magnetic separation technology, showing excellent dispersibility and high selectivity for PAHs in environmental water sample. Under the optimal extraction conditions, an analytical method was established with the sensitive limit of detection (LOD) of 0.03-0.16 μg L-1. The method was successfully applied for the analysis of environmental water samples. The relative standard deviations (%) were in the range of 0.50-12.82%, and the extraction recovery (%) was in the range of 82.48% and 116.32%. MSPE-coupled gas chromatography-mass spectrometry quantification of PAHs is an accurate and repeatable method for the monitoring of PAH accumulation in environmental water samples. It also provides an effective strategy for the tracing and quantification of other environmental pollutants in complex samples.
Collapse
Affiliation(s)
- Yu Tian
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxi Si
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Fengmei Zhang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Wei Jiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| |
Collapse
|
10
|
Time-saving and accurate analysis of BaP, BaA, Chr and BbF in milks and oils by three-way fluorescence spectrometry. Food Chem 2022; 381:132309. [DOI: 10.1016/j.foodchem.2022.132309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/24/2021] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|
11
|
Disasters with oil spills in the oceans: Impacts on food safety and analytical control methods. Food Res Int 2022; 157:111366. [DOI: 10.1016/j.foodres.2022.111366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
|
12
|
Cai C, Chang G, Zhang N, Wang J, Wang L, Wu P, Yang D. Changes in PAH and 3-MCPDE contents at the various stages of Camellia oleifera seed oil refining. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
Polycyclic aromatic hydrocarbons (PAHs) and 3-chloropropanoldiol ester (3-MCPDE) were studied in camellia oil. It is important to study the changes in the content of PAHs and 3-MCPDE at different refining stages (from crude oil to the final refined oil product) to elucidate the influence of the refining procedures on their change.
Materials and Methods
The PAHs and 3-MCPDE in camellia oil from different refining stages (from crude oil to the product) of a plant were analysed by GC–MS and calculated by the internal standard method.
Results
The overall PAH content was 79.64±2.43 µg/kg in crude camellia oil. After refining treatment, the PAH content decreased to 18.75±0.55 µg/kg. The 3-MCPDE content increased during the refining process from 0 mg/kg in the crude oil to 4.62 mg/kg in the refined oil product.
Conclusions
This is the first study to simultaneously monitor changes in both the PAH and 3-MCPDE contents during the production of camellia oil. These results confirmed the effectiveness of the refining method on PAH removal and the increase in 3-MCPDE at high temperature. It is suggested that novel processing methods or refining parameters need further optimization to decrease the overall concentrations of PAHs and 3-MCPDE in camellia oil.
Collapse
|
13
|
Yasien S, Muntazir Iqbal M, Javed M, Iqbal S, Ahmad Z, Tamam N, Nadeem S, Elkaeed EB, Alzhrani RM, Awwad NS, Ibrahium HA, Alsaab HO. Quantification of Multi-class Pesticides in Stomach Contents and Milk by Gas Chromatography-Mass Spectrometry with Liquid Extraction Method. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
14
|
Duan L, An X, Pan X, Li R, Wang K, Guo L, Zhang B, Dong F, Xiang W, Wu X, Xu J, Zheng Y. Residual levels of five pesticides in peanut oil processing and chips frying. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2494-2499. [PMID: 34689325 DOI: 10.1002/jsfa.11590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pesticide contamination in oil crops and processed products is an important food safety concern. The study was aimed to investigate the pesticide residue changes in press processing of peanut oil and frying of chips. RESULTS Five pesticides - chlorpyrifos, deltamethrin, methoxyfenozide, azoxystrobin and propargite - which are often applied during growth period in peanut plants, were selected to investigate their residue changes in cold press processing of peanut oil and frying of potato chips. Results showed that the residues of the five pesticides were decreased by 3.1-42.6% during air-drying before oil pressing. The residues of chlorpyrifos, deltamethrin, methoxyfenozide and propargite in peanut oil were 2.05-3.63 times higher than that in peanut meal after cold pressing of the oil, except for azoxystrobin having a slightly lower residue in peanut oil, with 0.92 times that in peanut meal. The processing factors of the five pesticides in peanut oil ranged from 1.17 to 2.73 and were highly related to the log Kow of the pesticides. The higher the log Kow , the more easily was the pesticide partitioned in the peanut oil. Besides, as frying time increase during preparation of chips, the concentration of pesticides in peanut oil decreased gradually by 6.7-22.1% compared to the first frying. In addition, 0.47-11.06% of the pesticides were transferred to the chips through frying with contaminated oil. CONCLUSION This is first report showing that pesticides can transfer from contaminated oil to chips. There exists a potential dietary health risk by using pesticide-contaminated oil for frying chips. This work could provide basic data for accurate dietary risk assessment of pesticide residues in peanut oil and its frying products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifang Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaokang An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kuan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luyao Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Binbin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
López-Ruiz R, Marín-Sáez J, Prestes OD, Romero-González R, Garrido Frenich A. Critical Evaluation of Analytical Methods for the Determination of Anthropogenic Organic Contaminants in Edible Oils: An Overview of the Last Five Years. Crit Rev Anal Chem 2022; 53:1733-1747. [PMID: 35175888 DOI: 10.1080/10408347.2022.2040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Anthropogenic contaminants, as pesticides, polycyclic aromatic hydrocarbons (PAHs) and monochloropropanediols (MCPDs), have become important to be controlled in edible oils, since their regular occurrence. In fact, alerts from the Rapid Alert System for Food and Feed (RASFF) in oils normally include these compounds. From a critical point of view, tools used to control these compounds in the last 5 years will be discussed, including sample preparation, analysis and current regulations. Extraction and analysis methods will be discussed next, being liquid-liquid extraction (LLE) and QuEChERS, with or without clean-up step, as well as chromatographic methods coupled to different analyzers (mainly mass spectrometry), the most commonly used for extraction and analysis respectively. Occurrence in samples will also be reviewed and compared with the legal maximum residue limits (MRLs), observing that 4%, 20% and 60% of the analyzed samples exceed the legal limits for pesticides, MCPDs and PAHs respectively.
Collapse
Affiliation(s)
- Rosalía López-Ruiz
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
- Laboratory of Pesticide Residue Analysis (LARP), Chemistry Department, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Jesús Marín-Sáez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
| | - Osmar D Prestes
- Laboratory of Pesticide Residue Analysis (LARP), Chemistry Department, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Roberto Romero-González
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
| |
Collapse
|
16
|
Neves DA, Oliveira WDS, Petrarca MH, Rodrigues MI, Godoy HT. A multivariate approach to overcome chlorophyll interferences in the determination of polycyclic aromatic hydrocarbons in jambu (Acmella olerarea (L.) R.K. Jansen). J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Assessment of a specific sample cleanup for the multiresidue determination of veterinary drugs and pesticides in salmon using liquid chromatography/tandem mass spectrometry. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Han C, Hu B, Chen S, Wang N, Hou J, Jin N, Shen Y. Determination of Xinjunan pesticide residue in foodstuffs of plant origin by a modified QuEChERS method and ultra performance liquid chromatography-tandem mass spectrometry. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Zubkov IN, Nepomnyshchiy AP, Kondratyev VD, Sorokoumov PN, Sivak KV, Ramsay ES, Shishlyannikov SM. Adaptation of Pseudomonas helmanticensis to fat hydrolysates and SDS: fatty acid response and aggregate formation. J Microbiol 2021; 59:1104-1111. [PMID: 34697784 DOI: 10.1007/s12275-021-1214-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023]
Abstract
An essential part of designing any biotechnological process is examination of the physiological state of producer cells in different phases of cultivation. The main marker of a bacterial cell's state is its fatty acid (FA) profile, reflecting membrane lipid composition. Consideration of FA composition enables assessment of bacterial responses to cultivation conditions and helps biotechnologists understand the most significant factors impacting cellular metabolism. In this work, soil SDS-degrading Pseudomonas helmanticensis was studied at the fatty acid profile level, including analysis of rearrangement between planktonic and aggregated forms. The set of substrates included fat hydrolysates, SDS, and their mixtures with glucose. Such media are useful in bioplastic production since they can help incrementally lower overall costs. Conventional gas chromatography-mass spectrometry was used for FA analysis. Acridine orange-stained aggregates were observed by epifluorescence microscopy. The bacterium was shown to change fatty acid composition in the presence of hydrolyzed fats or SDS. These changes seem to be driven by the depletion of metabolizable substrates in the culture medium. Cell aggregation has also been found to be a defense strategy, particularly with anionic surfactant (SDS) exposure. It was shown that simple fluidity indices (such as saturated/unsaturated FA ratios) do not always sufficiently characterize a cell's physiological state, and morphological examination is essential in cases where complex carbon sources are used.
Collapse
Affiliation(s)
- Ilya N Zubkov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia.
| | - Anatoly P Nepomnyshchiy
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| | - Vadim D Kondratyev
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| | - Pavel N Sorokoumov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| | - Konstantin V Sivak
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, Saint Petersburg, 4197022, Russia
| | - Edward S Ramsay
- Smorodintsev Research Institute of Influenza, 15/17 Ulitsa Professora Popova, Saint Petersburg, 4197022, Russia
| | - Sergey M Shishlyannikov
- All-Russian Research Institute for Food Additives, Branch of V. M. Gorbatov Federal Research Center for Food Systems (RAS), 55 Liteyny Prospekt, Saint Petersburg, 191014, Russia
| |
Collapse
|
20
|
Yan K, Wu S, Gong G, Xin L, Ge Y. Simultaneous Determination of Typical Chlorinated, Oxygenated, and European Union Priority Polycyclic Aromatic Hydrocarbons in Milk Samples and Milk Powders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3923-3931. [PMID: 33780239 DOI: 10.1021/acs.jafc.1c00283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An increasing number of studies have suggested that PAH contamination in dairy products demands high concern. This study established an efficient determination method for the European Union 15 + 1 PAHs and four PAH derivatives in dairy samples using a QuEChERS method coupled with GC-QqQ-MS. The optimized method obtained a recovery of 63.38-109.17% with a precision of 3.82-15.62%, and the limit of detection and limit of quantification were 0.08-0.78 and 0.27-2.59 μg/kg, respectively. The validated method was then successfully applied to identify the 20 PAHs in 82 dairy samples, including 43 commercial milk samples and 39 milk powders. The total PAH concentrations ranged from 2.37 to 11.83 μg/kg, and benzo[a]pyrene was only quantified in one milk and one milk powder sample at 0.35 and 0.42 μg/kg, respectively. The concentrations of PAH4 in milk samples and milk powders were not quantified (nq)-3.99 and nq-4.51 μg/kg, respectively. The results confirmed the appreciable occurrence of PAHs in dairy products, especially in infant formula. The data in this study provide a scientific basis for assessment on origin tracing, dietary exposure, and health risk of PAHs and their derivatives.
Collapse
Affiliation(s)
- Kai Yan
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guangyi Gong
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Le Xin
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuxing Ge
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
21
|
Zhang Y, Chen X, Zhang Y. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to
in vivo
metabolic transformation. Compr Rev Food Sci Food Saf 2021; 20:1422-1456. [DOI: 10.1111/1541-4337.12705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/11/2020] [Accepted: 01/01/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| |
Collapse
|
22
|
Iqbal S, Iqbal MM, Javed M, Bahadur A, Yasien S, Hurr A, Ahmad N, Raheel M, Liu G. Modified QuEChERS extraction method followed by simultaneous quantitation of nine multi-class pesticides in human blood and urine by using GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122227. [PMID: 32603923 DOI: 10.1016/j.jchromb.2020.122227] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/19/2023]
Abstract
Organophosphate, carbamate and pyrethroid pesticides are the most common insecticides used worldwide. They may cause chronic poisoning in farmers and acute poisoning in homicidal or suicidal cases. The determination of trace levels of these pesticides in human blood and urine is very challenging. This study focuses on a simultaneous quantitation method that was developed and validated for multi-class nine pesticides belonging to organophosphate, carbamate and pyrethroid classes in human blood and urine. Target pesticides were extracted from blood and urine using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction method. Capillary column DB-35 ms (15 m × 0.25 mm, 0.25 µm) was used for chromatography with a 0.079 ml/min flow rate of carrier gas at constant pressure mode. Quantitation of sulfotep, phorate, carbofuran, chlorpyriphos, profenophos, triazophos, pyriproxyfen, lambda-cyhalothrin and permethrin was performed by mass spectrometer equipped with electron impact ionization source using selected ion monitoring (SIM) mode. The lower and upper limits of quantitation for all nine pesticides were 0.01 mg/L and 2.0 mg/dL respectively. The proposed method was proved to be simple, fast, sensitive, and robust. It has been applied to the analysis of 9 pesticides samples.
Collapse
Affiliation(s)
- Shahid Iqbal
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, Guangdong, China.
| | - Muhammad Muntazir Iqbal
- Department of Chemistry, School of Science, University of Management and Technology Lahore, Pakistan; Department of Toxicology, Punjab Forensic Science Agency Lahore, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology Lahore, Pakistan.
| | - Ali Bahadur
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, South Korea
| | - Sara Yasien
- University College of Pharmacy, University of The Punjab Lahore, Pakistan
| | - Amir Hurr
- Department of Toxicology, Punjab Forensic Science Agency Lahore, Pakistan
| | - Naveed Ahmad
- Department of Chemistry, School of Science, University of Management and Technology Lahore, Pakistan
| | - Muhammad Raheel
- Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Guocong Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, Guangdong, China.
| |
Collapse
|
23
|
Polycyclic aromatic hydrocarbons in edible oils and fatty foods: Occurrence, formation, analysis, change and control. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 93:59-112. [PMID: 32711866 DOI: 10.1016/bs.afnr.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous studies have demonstrated that dozens of polycyclic aromatic hydrocarbons (PAHs) are mutagenic, genotoxic and strongly carcinogenic. PAHs are found to be widely present in foods contaminated through multiple paths. Due to their lipophilic nature, these compounds easily accumulate in edible oils and fatty foods where they can range from no detection to over 2000μg/kg. Compared to precursor PAHs, researchers have seldom studied the presence of PAH derivatives, especially in food matrices. This chapter includes the physical and chemical characteristics of PAHs and their types, occurrence, sample pretreatment and instrumental determination methods, and their formation, change and control in edible oils and fatty foods. The occurrence and formation of PAH derivatives in foods are much less investigated compared to those of their precursor PAHs. Although the removal of matrix effects and accuracy remain difficult for current rapid determination methods, a prospective research direction of PAH analysis for large-scale screening is in demand. To date, physical absorption, chemical oxidation and biodegradation have been widely used in PAH removal techniques. Specific types of bacteria, fungi, and algae have also been used to degrade PAHs into harmless compounds. However, most of them can only degrade a range of LPAHs, such as naphthalene, anthracene and phenanthrene. Their ability to degrade HPAHs requires further study. Moreover, it is still a great challenge to maintain food nutrition and flavor during the PAH removal process using these methods.
Collapse
|