1
|
Miró-Colmenárez PJ, Illán-Marcos E, Díaz-Cruces E, Rocasolano MM, Martínez-Hernandez JM, Zamora-Ledezma E, Zamora-Ledezma C. Current Insights into Industrial Trans Fatty Acids Legal Frameworks and Health Challenges in the European Union and Spain. Foods 2024; 13:3845. [PMID: 39682917 DOI: 10.3390/foods13233845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
The presence of industrial trans-fatty acids (iTFAs) in processed foods poses significant public health concerns, necessitating comprehensive regulatory frameworks. In this study, the current legal landscape governing iTFA in the European Union and Spain is analyzed, with a particular focus on regulatory effectiveness and implementation challenges. The research methodology combines a systematic review of existing regulations, including EU Regulation No. 1169/2011 and Spanish Law 17/2011, with the analysis of the scientific literature on iTFA health impacts. The results reveal significant regulatory gaps, particularly in enforcement mechanisms and iTFA detection methods. Key challenges are also identified in the present study, including inconsistent compliance monitoring, varying analytical methods for iTFA detection, and contradictions between EU and Spanish regulatory frameworks. Additionally, in this work, the need for harmonized approaches to ultra-processed food regulation is emphasized. Further, the conclusion is that despite the current regulations providing a foundation for iTFA control, it is compulsory to enhance the monitoring systems, and clearer regulatory guidelines are necessary. These would contribute valuable insights for policymakers, food industry stakeholders, and public health professionals working towards effective iTFA regulation.
Collapse
Affiliation(s)
- Pablo Javier Miró-Colmenárez
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Esther Illán-Marcos
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Eliana Díaz-Cruces
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - María Méndez Rocasolano
- Law Ecotechnology and Innovation Keys for the 21st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - José Manuel Martínez-Hernandez
- Department of Nutrition and Food Technology, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ezequiel Zamora-Ledezma
- Ecosystem Functioning & Climate Change Team-FAGROCLIM, Faculty of Agriculture Engineering, Universidad Técnica de Manabí (UTM), Lodana 13132, Ecuador
| | - Camilo Zamora-Ledezma
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Cañada, 28691 Madrid, Spain
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
2
|
Okechukwu VO, Adelusi OA, Kappo AP, Njobeh PB, Mamo MA. Aflatoxins: Occurrence, biosynthesis, mechanism of action and effects, conventional/emerging detection techniques. Food Chem 2024; 436:137775. [PMID: 37866099 DOI: 10.1016/j.foodchem.2023.137775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Aflatoxins (AFs) are toxic secondary metabolites prevalent in various food and agricultural products, posing significant challenges to global food safety. The detection and quantification of AFs through high-precision analytical techniques are crucial in mitigating AF contamination levels and associated health risks. Variousmethods,including conventional and emerging techniques, have been developed for detecting and quantifyingAFsinfood samples. This review provides an in-depth analysis of the global occurrence of AF in food commodities, covering their biosynthesis, mode of action, and effects on humans and animals. Additionally, the review discusses different conventional strategies, including chromatographic and immunochemical approaches, for AF quantification and identification in food samples. Furthermore, emerging AF detection strategies, such as solid-state gas sensors and electronic nose technologies, along with their applications, limitations, and future perspectives, were reviewed. Sample purification, along with their respective advantages and limitations, are also discussed herein.
Collapse
Affiliation(s)
- Viola O Okechukwu
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Oluwasola A Adelusi
- Department of Biotechnology and Food Technology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Messai A Mamo
- Department of Chemical Sciences, PO Box 2028, Doornfontein Campus, University of Johannesburg, South Africa.
| |
Collapse
|
3
|
Jiang L, Zhao N, Xu M, Pei J, Lin Y, Yao Q, Hu M, Zhu C. Incidence trends of primary liver cancer in different geographical regions of China from 1978 to 2012 and projections to 2032: An age-period-cohort analysis. Int J Cancer 2024; 154:465-476. [PMID: 37707172 DOI: 10.1002/ijc.34724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
China accounted for 45.3% of new cases of primary liver cancer (PLC) worldwide in 2020. While variations in PLC incidence between different regions of China and decreasing incidence in overall China have been reported, incidence patterns have not been thoroughly explored by region. We examined the nearly status and temporal trends of PLC incidence in different geographical regions in China and project future trends. The age-standardized incidence rate (ASR) was estimated for 1978 to 2012 by different geographical regions and gender in China. Age-period-cohort model was adopted to evaluate age and birth cohort effects on the temporal trend of five registries of China (Hong Kong, Shanghai, Jiashan, Harbin and Zhongshan), Bayesian age-period-cohort model was adopted to project future trends for 2013 to 2032. PLC incidence in China exhibits marked geographical disparity, with the highest incidence in Southwest China, and gender differences being particularly pronounced in South China. While other registries exhibited decreasing trend, Zhongshan exhibited an increasing trend, with the cohort effect showing a marked upward trend for females born in 1916 to 1949 and males born in 1916 to 1962. During 2013 to 2032, the ASR appears to increase by 86.9% for men and 40.0% for women in Zhongshan, while the remaining registries will decline by around 50%. Since the high incidence of hepatitis B virus infection in early birth cohort, recent rise of nonviral risk factors and the severe aging of the Chinese population, it may be critical to tailor future prevention and control strategies for PLC to the distribution of risk factors in different geographical regions.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ningxuan Zhao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Minghan Xu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiao Pei
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yidie Lin
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiang Yao
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Meijing Hu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Cairong Zhu
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Yang F, Zhang L, Zhang Y, Zeng Y, Li Y, Zeng P. Culture-dependent and culture-independent approaches to reveal the aflatoxin B1-producing fungi in Pixian Doubanjiang, a typical condiment in Chinese cuisine. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
5
|
Feng L, Gu J, Guo L, Mu G, Tuo Y. Safety evaluation and application of lactic acid bacteria and yeast strains isolated from Sichuan broad bean paste. Food Sci Nutr 2023; 11:940-952. [PMID: 36789042 PMCID: PMC9922144 DOI: 10.1002/fsn3.3129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Broad bean paste is one of the most popular characteristic traditional fermented bean products in China, which is prepared by mixed fermentation of a variety of microorganisms, among which lactic acid bacteria and yeast played an important role in the improvement of the fermented broad bean paste quality. However, the traditional open-air fermentation of broad bean paste brought some risks of harmful microorganisms. In this study, the safety and fermentation ability of lactic acid bacteria and yeast strains isolated from traditional broad bean paste was evaluated. The results showed that the protease activity of the strain Lactobacillus plantarum DPUL-J5 (366.73 ± 9.00 U/L) and Pichia kudriavzevii DPUY-J5 (237.18 ± 10.93 U/L) were the highest. Both strains produced little biogenic amines, and did not exhibit α-hemolytic activity or antibiotic resistance for some of the antibiotics most used in human medicine. Furthermore, the broad bean paste fermentation involving DPUL-J5 and DPUY-J5 was beneficial for accumulating higher total acid (1.69 ± 0.01 g/100 g), amino-acid nitrogen (0.85 ± 0.03 g/100 g), and more volatile flavor compounds, meanwhile, reducing the levels of biogenic amines and aflatoxin B1. Therefore, this study provided a new strategy to improve the safety and quality of traditional broad bean paste.
Collapse
Affiliation(s)
- Lu Feng
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Jinhong Gu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Linjie Guo
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Guangqing Mu
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Yanfeng Tuo
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| |
Collapse
|
6
|
Zeng C, Xu C, Tian H, Shao K, Song Y, Yang X, Che Z, Huang Y. Determination of aflatoxin B1 in Pixian Douban based on aptamer magnetic solid-phase extraction. RSC Adv 2022; 12:19528-19536. [PMID: 35865604 PMCID: PMC9258682 DOI: 10.1039/d2ra02763a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Aflatoxin B1 (AFB1) is considered as the most prevalent and toxic mycotoxin in food, and is the indispensable index in the monitoring of Pixian Douban, a traditional chinese fermented bean paste from Sichuan. However, the effeciency of AFB1 detection in Pixian Douban is influenced by the traditional extraction, which is usually complex and time consuming. Therefore, an aptamer-based magnetic solid-phase extraction method was designed for the pretreatment of AFB1 in this sample, for which Fe3O4 was synthesized via the solvothermal method and then a Fe3O4@SiO2–NH2 with a core–shell structure was prepared, followed by an AFB1-aptamer attachment. The validation was performed via an enzyme-linked immunosorbent assay and compared with HPLC-MS/MS. The linearity range of this method was 0.5–2.0 ng mL −1 with R2 of 0.981, and recoveries of AFB1 ranged from 80.19% to 113.92% with RSDs below 7.28% with no significant differences compared to HPLC-MS/MS. The three-time reusability efficiencies of aptamer-MNPs were averaged at 78.24%. The results proved that aptamer-MNPs were high-performance adsorbents for extracting and enriching AFB1, facilitating quick and effective detection of AFB1 in Pixian DouBan samples. An aptamer-based magnetic solid-phase extraction method was designed for the pretreatment of AFB1 from a Pixian Douban sample. It was developed based on aptamer–Fe3O4@SiO2–NH2 with subsequent ELISA validation, showing an efficient result.![]()
Collapse
Affiliation(s)
- Chaoyi Zeng
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China .,Department of Food Biotechnology, Faculty of Biotechnology, Assumption University Bangkok 10240 Thailand
| | - Chi Xu
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China
| | - Hongyun Tian
- Shandong Institute of Food and Drug Control Jinan 250101 China
| | - Kun Shao
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China
| | - Yaning Song
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China
| | - Xiao Yang
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China
| | - Zhenming Che
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China .,Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute Yibin 644004 China
| | - Yukun Huang
- School of Food and Biological Engineering, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University Chengdu 610039 China .,Key Laboratory of Food Non Thermal Processing, Engineering Technology Research Center of Food Non Thermal Processing, Yibin Xihua University Research Institute Yibin 644004 China
| |
Collapse
|
7
|
ZHAO C, DONG L, ZHANG F, LUO Y, YANG Z, ZHANG X, LI Z. Screening and characterization of a salt-tolerant aflatoxin B1-degrading strain isolated from Doubanjiang, a Chinese typical red pepper paste. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Chi ZHAO
- Institute of Agro-products Processing Science and Technology, People’s Republic of China; College of Resources, Sichuan Agricultural University, People’s Republic of China
| | - Ling DONG
- Institute of Agro-products Processing Science and Technology, People’s Republic of China
| | - Fengju ZHANG
- Institute of Agro-products Processing Science and Technology, People’s Republic of China
| | - Yongliang LUO
- Agriculture, Rural and Forestry Bureau of Pidu District, People’s Republic of China
| | - Zebo YANG
- Institute of Agro-products Processing Science and Technology, People’s Republic of China
| | - Xiaoping ZHANG
- College of Resources, Sichuan Agricultural University, People’s Republic of China
| | - Zhihua LI
- Institute of Agro-products Processing Science and Technology, People’s Republic of China
| |
Collapse
|
8
|
Ding W, Ye X, Zhao X, Liu Y, Zhang M, Luo Y, Xiong Y, Liu Y, Che Z, Lin H, Huang J, Tang X. Fermentation characteristics of Pixian broad bean paste in closed system of gradient steady-state temperature field. Food Chem 2021; 374:131560. [PMID: 34848085 DOI: 10.1016/j.foodchem.2021.131560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/04/2022]
Abstract
A closed system of gradient steady-state temperature field (GSTF) was constructed to ferment Pixian broad bean paste (PBP). The contents of physicochemical factors and organic acids in the fermentation under GSTF (FG) were closer to those in the traditional fermentation (TF). The taste intensities of 8 free amino acids in the FG were higher than those in the constant temperature fermentation (CTF), but 14 in the TF showed the highest among the processes of FG, CTF and TF. The FG product had the most volatiles with 87, and its flavor properties were more stable. The FG produced great effects on the microbe evolutions especially improved the fungal diversity. Bacillus were identified as the core microbes in the FG while the roles of Staphylococcus, Lactobacillus and Pantoea were strengthened. The results indicated that the fermentation characteristics in the FG had been further improved compared with the CTF.
Collapse
Affiliation(s)
- Wenwu Ding
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Xiaoqing Ye
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiaoyan Zhao
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Sichuan Pixian Douban Company Limited, Chengdu 611730, China
| | - Yan Liu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Manna Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yifei Luo
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuanru Xiong
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yi Liu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhenming Che
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Hongbin Lin
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiaquan Huang
- Sichuan Pixian Douban Company Limited, Chengdu 611730, China
| | - Xiaoyu Tang
- Institute of Modern Agricultural Equipment, Xihua University, Chengdu 610039, China.
| |
Collapse
|
9
|
Chemical profiling and metabolic mechanism of Pixian doubanjiang, a famous condiment in Chinese cuisine. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Nazhand A, Durazzo A, Lucarini M, Souto EB, Santini A. Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. Foods 2020; 9:E644. [PMID: 32443392 PMCID: PMC7278662 DOI: 10.3390/foods9050644] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin contamination continues to be a food safety concern globally, with the most toxic being aflatoxins. On-farm aflatoxins, during food transit or storage, directly or indirectly result in the contamination of foods, which affects the liver, immune system and reproduction after infiltration into human beings and animals. There are numerous reports on aflatoxins focusing on achieving appropriate methods for quantification, precise detection and control in order to ensure consumer safety. In 2012, the International Agency for Research on Cancer (IARC) classified aflatoxins B1, B2, G1, G2, M1 and M2 as group 1 carcinogenic substances, which are a global human health concern. Consequently, this review article addresses aflatoxin chemical properties and biosynthetic processes; aflatoxin contamination in foods and feeds; health effects in human beings and animals due to aflatoxin exposure, as well as aflatoxin detection and detoxification methods.
Collapse
Affiliation(s)
- Amirhossein Nazhand
- Department of Biotechnology, Sari Agricultural Science and Natural Resource University, 9th km of Farah Abad Road, Mazandaran 48181-68984, Iran;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Eliana B. Souto
- Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, Polo III-Saúde, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|