1
|
Wang W, Zheng C, Yang B, Li W, Huang F, Liu C. Effect of radio frequency pretreatment on the component of rapeseed and its product: Comparative study with microwave pretreatment under different oil extraction methods. Food Chem 2025; 474:143167. [PMID: 39923506 DOI: 10.1016/j.foodchem.2025.143167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Radio frequency (RF) is an emerging technology for rapeseed pretreatment, offering a comparison to the established microwave (MW) technique. This study investigated the effects of RF and MW pretreatment combined with different oil extraction methods on the oil yield, quality characteristics and lipid concomitant contents of rapeseed and its products. Results indicated that RF combined with pressing extraction yielded the highest tocopherol and canolol contents in rapeseed oil (839.6 and 1316.4 mg/kg, 8.0 % and 7.9 times higher than the control, respectively), and MW combined with supercritical carbon dioxide fluid extraction yielded the highest phytosterol content (8402.0 mg/kg, 16.6 % higher than the control). These results indicate the effectiveness of RF as a novel pretreatment method for rapeseed and its potentially greater advantage than MW. Results also imply that RF could contribute to sustainable and efficient oil extraction processes in the future food industry owing to its high efficiency and energy-saving capability.
Collapse
Affiliation(s)
- Weijun Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds processing,Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Chang Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds processing,Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Bo Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds processing,Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Wenlin Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds processing,Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds processing,Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China
| | - Changsheng Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds processing,Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan 430062, China.
| |
Collapse
|
2
|
Liu Y, Ma J, Liu Z, Wang S, Chen L. An accurate approach to predict Salmonella Enteritidis PT 30 survival based on dynamic thermal resistance during hot air assisted radio frequency pasteurization of in-shell walnuts. Int J Food Microbiol 2025; 437:111216. [PMID: 40286759 DOI: 10.1016/j.ijfoodmicro.2025.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/24/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
A significant variation between experimental and predicted log reductions of Salmonella at a constant water activity level has been previously found during a simultaneous hot air assisted radio frequency (HARF) pasteurization and drying of low-moisture foods (LMFs). However, how the dynamic thermal resistance of Salmonella changes with the changing temperature and water activity during HARF is unclear. Thermal inactivation kinetics of Salmonella Enteritidis PT 30 (S. enteritidis PT 30) in walnut shell powder and on in-shell walnuts were investigated under three temperatures and water activities. The dynamic thermal resistance (D-value) of S. enteritidis PT 30 in walnut shell powder and on in-shell walnuts were quantitatively described by modified Bigelow models during simultaneous HARF pasteurization and drying. The survival of S. enteritidis PT 30 was predicted and validated based on the dynamic thermal resistance on in-shell walnuts during HARF pasteurization. The results showed that the D-values of S. enteritidis PT 30 on in-shell walnuts were significantly (P < 0.05) higher than those in walnut shell powder at different temperatures and water activities, indicating a need to determine the thermal resistance parameters based on real-case pasteurization scenarios. The dynamic thermal resistance of S. enteritidis PT 30 in walnut shell powder and on in-shell walnuts first decreased and then increased during the simultaneous HARF pasteurization and drying. The experimental log reduction (2.06 ± 0.08) of S. enteritidis PT 30 on in-shell walnuts was close to the predicted value (2.07) during the simultaneous HARF pasteurization and drying. Predicting microbial survival based on the dynamic thermal resistance of S. enteritidis PT 30 on in-shell walnuts is more accurate and reliable than that based on the static one. The developed model and proposed approach are valuable and crucial for the commercialization of simultaneous RF pasteurization and drying processes of LMFs.
Collapse
Affiliation(s)
- Yu Liu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jincheng Ma
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhipeng Liu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
| | - Long Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
3
|
Khattra AK, Wason S, Thompson K, Mauromoustakos A, Subbiah J, Acuff JC. Bootstrapping for Estimating the Conservative Kill Ratio of the Surrogate to the Pathogen for Use in Thermal Process Validation at the Industrial Scale. J Food Prot 2024; 87:100264. [PMID: 38493872 DOI: 10.1016/j.jfp.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
A surrogate is commonly used for process validations. The industry often uses the target log cycle reduction for the test (LCRTest) microorganism (surrogate) to be equal to the desired log cycle reduction for the target (LCRTarget) microorganism (pathogen). When the surrogate is too conservative with far greater resistance than the pathogen, the food may be overprocessed with quality and cost consequences. In aseptic processing, the Institute for Thermal Processing Specialists recommends using relative resistance (DTarget)/(DTest) to calculate LCRTest (product of LCRTarget and relative resistance). This method uses the mean values of DTarget and DTest and does not consider the estimating variability. We defined kill ratio (KR) as the inverse of relative resistance.The industry uses an extremely conservative KR of 1 in the validation of food processes for low-moisture foods, which ensures an adequate reduction of LCRTest, but can result in quality degradation. This study suggests an approach based on bootstrap sampling to determine conservative KR, leading to practical recommendations considering experimental and biological variability in food matrices. Previously collected thermal inactivation kinetics data of Salmonella spp. (target organism) and Enterococcus faecium (test organism) in Non-Fat Dried Milk (NFDM) and Whole Milk Powder (WMP) at 85, 90, and 95°C were used to calculate the mean KR. Bootstrapping was performed on mean inactivation rates to get a distribution of 1000 bootstrap KR values for each of the treatments. Based on minimum temperatures used in the industrial process and acceptable level of risk (e.g., 1, 5, or 10% of samples that would not achieve LCRTest), a conservative KR value can be estimated. Consistently, KR increased with temperature and KR for WMP was higher than NFDM. Food industries may use this framework based on the minimum processing temperature and acceptable level of risk for process validations to minimize quality degradation.
Collapse
Affiliation(s)
- Arshpreet Kaur Khattra
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| | - Surabhi Wason
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| | - Kevin Thompson
- Center for Agricultural Data Analytics, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| | - Andy Mauromoustakos
- Center for Agricultural Data Analytics, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| | - Jennifer C Acuff
- Food Microbiology & Safety, Department of Food Science, University of Arkansas, N206, 2650 N. Young Ave., Fayetteville, AR 72704, USA.
| |
Collapse
|
4
|
Yang G, Xu J, Xu Y, Guan X, Ramaswamy HS, Lyng JG, Li R, Wang S. Recent developments in applications of physical fields for microbial decontamination and enhancing nutritional properties of germinated edible seeds and sprouts: a review. Crit Rev Food Sci Nutr 2023; 64:12638-12669. [PMID: 37712259 DOI: 10.1080/10408398.2023.2255671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Germinated edible seeds and sprouts have attracted consumers because of their nutritional values and health benefits. To ensure the microbial safety of the seed and sprout, emerging processing methods involving physical fields (PFs), having the characteristics of high efficiency and environmental safety, are increasingly proposed as effective decontamination processing technologies. This review summarizes recent progress on the application of PFs to germinating edible seeds, including their impact on microbial decontamination and nutritional quality and the associated influencing mechanisms in germination. The effectiveness, application scope, and limitation of the various physical techniques, including ultrasound, microwave, radio frequency, infrared heating, irradiation, pulsed light, plasma, and high-pressure processing, are symmetrically reviewed. Good application potential for improving seed germination and sprout growth is also described for promoting the accumulation of bioactive compounds in sprouts, and subsequently enhancing the antioxidant capacity under favorable PFs processing conditions. Moreover, the challenges and future directions of PFs in the application to germinated edible seeds are finally proposed. This review also attempts to provide an in-depth understanding of the effects of PFs on microbial safety and changes in nutritional properties of germinating edible seeds and a theoretical reference for the future development of PFs in processing safe sprouted seeds.
Collapse
Affiliation(s)
- Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, Canada
| | - James G Lyng
- Institute of Food and Health, University College Dublin, Belfield, Ireland
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Liu Y, Tong T, Han R, Zhang Y, Li F, Shi H, Jiao Y. Effect of different arrangements of globe particles on radio frequency heating uniformity: Using black pepper as an example. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Effect of storage on microbial reductions after gaseous chlorine dioxide treatment of black peppercorns, cumin seeds, and dried basil leaves. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Sharma P, Xiao HW, Zhang Q, Sutar P. Intermittent high-power short-time microwave-vacuum treatment combined with steam impingement for effective microbial decontamination of black pepper (Piper nigrum). J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Pilot-Scale Radio Frequency-Assisted Pasteurization of Chili Powders Prepacked by Different Packaging Films. SUSTAINABILITY 2022. [DOI: 10.3390/su14159132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Radio frequency (RF) can penetrate most packaging films and has the advantages of pasteurizing prepackaged low-moisture foods and avoiding secondary contamination. The suitable films for prepacking chili powders and the corresponding pasteurization process are unclear. This study aimed to select a suitable film for prepackaging chili powders, optimize the parameters of RF heating prepackaged chili powders, and evaluate the effects of RF-assisted pasteurization on the quality of chili powders. The results showed that the non-woven fabric (NWF) is suitable for prepackaging chili powders by evaluating the influence of RF heating on packaging films (appearance, sealing performance, mechanical properties.). Using NWF, chili powders inoculated with Salmonella enterica Enteritidis PT 30 still achieved 6.81 ± 0.64 log CFU/g reduction, treated by RF heating at an average temperature of 67.06 °C for 7.5 min with an electrode gap of 110 mm, held for 12.5 min at a hot-air convection oven. The pasteurization process had no significant (p > 0.05) effect on the quality (appearance, volatile, and capsaicin) of chili powders. The results indicated that chili powders packed with NWF could still be effectively pasteurized by RF-assisted hot air. This study proposed a viable approach to avoid secondary contamination by adding packaging before pasteurization.
Collapse
|
9
|
Morasi RM, Rall VLM, Dantas STA, Alonso VPP, Silva NCC. Salmonella spp. in low water activity food: Occurrence, survival mechanisms, and thermoresistance. J Food Sci 2022; 87:2310-2323. [PMID: 35478321 DOI: 10.1111/1750-3841.16152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/17/2023]
Abstract
The occurrence of disease outbreaks involving low-water-activity (aw ) foods has gained increased prominence due in part to the fact that reducing free water in these foods is normally a measure that controls the growth and multiplication of pathogenic microorganisms. Salmonella, one of the main bacteria involved in these outbreaks, represents a major public health problem worldwide and in Brazil, which highlights the importance of good manufacturing and handling practices for food quality. The virulence of this pathogen, associated with its high ability to persist in the environment, makes Salmonella one of the main challenges for the food industry. The objectives of this article are to present the general characteristics, virulence, thermoresistance, control, and relevance of Salmonella in foodborne diseases, and describe the so-called low-water-activity foods and the salmonellosis outbreaks involving them.
Collapse
Affiliation(s)
- Rafaela Martins Morasi
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Vera Lúcia Mores Rall
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Stéfani Thais Alves Dantas
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Vanessa Pereira Perez Alonso
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
Tong T, Wang P, Shi H, Li F, Jiao Y. Radio frequency inactivation of E. coli O157: H7 and Salmonella Typhimurium ATCC 14028 in black pepper (piper nigrum) kernels: Thermal inactivation kinetic study and quality evaluation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Guan X, Lin B, Xu Y, Yang G, Xu J, Zhang S, Li R, Wang S. Recent developments in pasteurising seeds and their products using radio frequency heating: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiangyu Guan
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Biying Lin
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Gaoji Yang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Shuang Zhang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Department of Biological Systems Engineering Washington State University Pullman WA 99164‐6120 USA
| | - Rui Li
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering Northwest A&F University Yangling Shaanxi 712100 China
- Department of Biological Systems Engineering Washington State University Pullman WA 99164‐6120 USA
| |
Collapse
|
12
|
Yu Z, Li L, Wang Z. Dielectric properties of calamansi (Citrus microcarpa) under high-temperature treatment. J Food Sci 2021; 86:5375-5384. [PMID: 34796504 DOI: 10.1111/1750-3841.15973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
High-temperature treatment of fruit is a developing way of decreasing nutrient loss and preventing decay. Its effect on calamansi (Citrus microcarpa) has not yet been reported. This study aims to study the effects of high-temperature treatment via dielectric properties. The results show that high-temperature treatment of calamansi suppresses the dielectric constant between 200 MHz and 20 GHz and alters loss factor between 200 MHz and 10 GHz. Storage at room temperature can affect loss factor between 4.5 and 10 GHz. These results may indicate that the dehydration process first affects the loss factor from 4.5 to 10 GHz, and then from 200 MHz to 4.5 GHz. This study may be favorable for evaluating calamansi's quality during storage and transportation. Moreover, the loss factor under 10 GHz is promising as an index for monitoring the water deficit and for assessing the adopted pre-treatment on calamansi. PRACTICAL APPLICATION: The quality inspector can use nondestructive examination ways to measure the dielectric property for evaluating Citrus microcarpa's quality and storage time after harvest. Moreover, the adopted pre-treatment may be speculated.
Collapse
Affiliation(s)
- Zhongliang Yu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Lili Li
- College of Heath Science and Environment Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Zhizhong Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Wei X, Verma T, Danao MGC, Ponder MA, Subbiah J. Gaseous chlorine dioxide technology for improving microbial safety of spices. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Challenges of dry hazelnut shell surface for radio frequency pasteurization of inshell hazelnuts. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Effect of radio frequency processing on physical, chemical, rheological and bread-baking properties of white and whole wheat flour. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Wei X, Agarwal S, Subbiah J. Heating of milk powders at low water activity to 95°C for 15 minutes using hot air-assisted radio frequency processing achieved pasteurization. J Dairy Sci 2021; 104:9607-9616. [PMID: 34176627 DOI: 10.3168/jds.2021-20449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022]
Abstract
Salmonella persistence in milk powders has caused several multistate foodborne disease outbreaks. Therefore, ways to deliver effective thermal treatment need to be identified and validated to ensure the microbial safety of milk powders. In this study, a process of hot air-assisted radio frequency (HARF) followed by holding at high temperatures in a convective oven was developed for pasteurization of milk powders. Heating times were compared between HARF and a convection oven for heating milk powders to a pasteurization temperature, and HARF has been shown to considerably reduce the come-up time. Whole milk powder (WMP) and nonfat dry milk (NFDM) were inoculated with a 5-serotype Salmonella cocktail and equilibrated to a water activity of 0.10 to simulate the worst case for the microbial challenge study. After heating the sample to 95°C using HARF, followed by 10 and 15 min of holding in the oven, more than 5 log reduction of Salmonella was achieved in WMP and NFDM. This study validated a HARF-assisted thermal process for pasteurization of milk powder based on previously collected microbial inactivation kinetics data and provides valuable insights to process developers to ensure microbial safety of milk powder. This HARF process may be implemented in the dairy industry to enhance the microbial safety of milk powders.
Collapse
Affiliation(s)
- Xinyao Wei
- Department of Food Science and Technology, University of Nebraska, Lincoln 68588
| | | | - Jeyamkondan Subbiah
- Department of Food Science and Technology, University of Nebraska, Lincoln 68588; Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville 72704.
| |
Collapse
|
17
|
Cheng T, Tang J, Yang R, Xie Y, Chen L, Wang S. Methods to obtain thermal inactivation data for pathogen control in low-moisture foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Wei X, Chen L, Chaves BD, Ponder MA, Subbiah J. Modeling the effect of temperature and relative humidity on the ethylene oxide fumigation of Salmonella and Enterococcus faecium in whole black peppercorn. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Wei X, Vasquez S, Thippareddi H, Subbiah J. Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella in ground black pepper at different water activities. Int J Food Microbiol 2021; 344:109114. [PMID: 33652336 DOI: 10.1016/j.ijfoodmicro.2021.109114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
Thermal inactivation kinetics of Salmonella in low moisture foods are necessary for developing proper thermal processing parameters for pasteurization. The effect of water activity on thermal inactivation kinetics of Salmonella and Enterococcus faecium NRRL B-2354 in ground black pepper has not been studied previously. Identification of a suitable surrogate assists in conducting in-plant process validations. Ground black pepper was inoculated with a 5-serotype Salmonella cocktail or E. faecium NRRL B-2354, equilibrated to water activities of 0.25, 0.45 or 0.65 in a humidity-controlled chamber, and isothermally treated at different temperatures. The survivor data were used for fitting the log-linear models to obtain the D and z-values of Salmonella and E. faecium in ground black pepper. Modified Bigelow models were developed to evaluate the effects of temperature and water activity on the thermal inactivation kinetics of Salmonella and E. faecium. Water activity and temperature showed significant negative effects on the thermal resistance of Salmonella and E. faecium in ground black pepper. For example, significantly higher D values of Salmonella were observed at water activity of 0.45 (D70°C = 20.5 min and D75°C = 7.8 min) compared to water activity of 0.65 (D70°C = 3.9 min and D75°C = 2.0 min). D-values of E. faecium were significantly higher than those of Salmonella at all three water activities, indicating that E. faecium is a suitable surrogate for Salmonella in thermal processing validation.
Collapse
Affiliation(s)
- Xinyao Wei
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| | - Sabrina Vasquez
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| | | | - Jeyamkondan Subbiah
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA; Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA.
| |
Collapse
|
20
|
Chen L, Wei X, Chaves BD, Jones D, Ponder MA, Subbiah J. Inactivation of Salmonella enterica and Enterococcus faecium NRRL B2354 on cumin seeds using gaseous ethylene oxide. Food Microbiol 2020; 94:103656. [PMID: 33279081 DOI: 10.1016/j.fm.2020.103656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
The objectives of this study were to investigate the effects of processing parameters (relative humidity (RH), temperature, and exposure time) on the ethylene oxide (EtO) microbial inactivation of Salmonella spp. and to evaluate Enterococcus faecium NRRL B2354 as a suitable surrogate for Salmonella inactivation on cumin seeds. Five grams of cumin seeds inoculated with either Salmonella or E. faecium were treated with EtO at different temperatures (46, 53, and 60 °C) and RH (30, 40, and 50%) levels for different exposure time to investigate the effects of process parameters on the microbial inactivation. The Weibull model fit the survival data of both bacteria with a shape parameter p < 1, which showed a tailing effect with concave shape indicating that the sensitive cells were inactivated first, and the sturdy ones survived at low RH treatment conditions. In general, the log reductions of both bacteria on cumin seeds increased with the increasing RH and temperature for EtO treatment. RH is a critical factor for successful EtO inactivation treatment. RH must be higher than 40% to implement a successful and efficient EtO decontamination of cumin seeds. E. faecium consistently showed lower log reductions than those of Salmonella under all EtO treatment conditions investigated in this study, demonstrating that E. faecium is a suitable surrogate for Salmonella. Twenty minutes of EtO treatment at 50% RH achieved ~5 log reductions of both bacteria at all three temperatures. A response surface model was developed to predict the log reductions of both bacteria under different treatment conditions and the contour plots representing log reductions were created. Inactivation is positively correlated to temperature and RH. Therefore, a higher temperature is required to achieve the desired log reduction at lower RH and vice versa. The developed response surface model is a valuable tool for the spice industry in identifying the possible combinations of EtO process parameters (temperature, RH, and exposure time) required to achieve a desired microbial reduction of Salmonella for ensuring microbial food safety of spices.
Collapse
Affiliation(s)
- Long Chen
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Xinyao Wei
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Byron D Chaves
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - David Jones
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Monica A Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Jeyamkondan Subbiah
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Food Science, University of Arkansas, Fayetteville, AR, 72704, USA.
| |
Collapse
|