1
|
David M, Berghian-Grosan C, Magdas DA. Honey Differentiation Using Infrared and Raman Spectroscopy Analysis and the Employment of Machine-Learning-Based Authentication Models. Foods 2025; 14:1032. [PMID: 40232079 PMCID: PMC11941707 DOI: 10.3390/foods14061032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Due to rising concerns regarding the adulteration and mislabeling of honey, new directives at the European level encourage researchers to develop reliable honey authentication models based on rapid and cost-effective analytical techniques, such as vibrational spectroscopies. The present study discusses the identification of the main vibrational bands of the FT-Raman and ATR-IR spectra of the most consumed honey varieties in Transylvania: acacia, honeydew, and rapeseed, exposing the ways the spectral fingerprint differs based on the honey's varietal-dependent composition. Additionally, a pilot study on honey authentication describes a new methodology of processing the combined vibrational data with the most efficient machine learning algorithms. By employing the proposed methodology, the developed model was capable of distinguishing honey produced in a narrow geographical region (Transylvania) with an accuracy of 85.2% and 93.8% on training and testing datasets when the Trilayered Neural Network algorithm was applied to the combined IR and Raman data. Moreover, acacia honey was differentiated against fifteen other sources with a 87% accuracy on training and testing datasets. The proposed methodology proved efficiency and can be further employed for label control and food safety enhancement.
Collapse
Affiliation(s)
- Maria David
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania; (M.D.); (C.B.-G.)
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Camelia Berghian-Grosan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania; (M.D.); (C.B.-G.)
| | - Dana Alina Magdas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania; (M.D.); (C.B.-G.)
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Fernando I, Fei J, Cahoon S, Close DC. A review of the emerging technologies and systems to mitigate food fraud in supply chains. Crit Rev Food Sci Nutr 2024:1-28. [PMID: 39356551 DOI: 10.1080/10408398.2024.2405840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Food fraud has serious consequences including reputational damage to businesses, health and safety risks and lack of consumer confidence. New technologies targeted at ensuring food authenticity has emerged and however, the penetration and diffusion of sophisticated analytical technologies are faced with challenges in the industry. This review is focused on investigating the emerging technologies and strategies for mitigating food fraud and exploring the key barriers to their application. The review discusses three key areas of focus for food fraud mitigation that include systematic approaches, analytical techniques and package-level anti-counterfeiting technologies. A notable gap exists in converting laboratory based sophisticated technologies and tools in high-paced, live industrial applications. New frontiers such as handheld laser-induced breakdown spectroscopy (LIBS) and smart-phone spectroscopy have emerged for rapid food authentication. Multifunctional devices with hyphenating sensing mechanisms together with deep learning strategies to compare food fingerprints can be a great leap forward in the industry. Combination of different technologies such as spectroscopy and separation techniques will also be superior where quantification of adulterants are preferred. With the advancement of automation these technologies will be able to be deployed as in-line scanning devices in industrial settings to detect food fraud across multiple points in food supply chains.
Collapse
Affiliation(s)
- Indika Fernando
- Australian Maritime College (AMC), University of Tasmania, Newnham, TAS, Australia
| | - Jiangang Fei
- Australian Maritime College (AMC), University of Tasmania, Newnham, TAS, Australia
| | - Stephen Cahoon
- Australian Maritime College (AMC), University of Tasmania, Newnham, TAS, Australia
| | - Dugald C Close
- Tasmanian Institute of Agriculture (TIA), University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
3
|
Shehata M, Dodd S, Mosca S, Matousek P, Parmar B, Kevei Z, Anastasiadi M. Application of Spatial Offset Raman Spectroscopy (SORS) and Machine Learning for Sugar Syrup Adulteration Detection in UK Honey. Foods 2024; 13:2425. [PMID: 39123616 PMCID: PMC11312281 DOI: 10.3390/foods13152425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Honey authentication is a complex process which traditionally requires costly and time-consuming analytical techniques not readily available to the producers. This study aimed to develop non-invasive sensor methods coupled with a multivariate data analysis to detect the type and percentage of exogenous sugar adulteration in UK honeys. Through-container spatial offset Raman spectroscopy (SORS) was employed on 17 different types of natural honeys produced in the UK over a season. These samples were then spiked with rice and sugar beet syrups at the levels of 10%, 20%, 30%, and 50% w/w. The data acquired were used to construct prediction models for 14 types of honey with similar Raman fingerprints using different algorithms, namely PLS-DA, XGBoost, and Random Forest, with the aim to detect the level of adulteration per type of sugar syrup. The best-performing algorithm for classification was Random Forest, with only 1% of the pure honeys misclassified as adulterated and <3.5% of adulterated honey samples misclassified as pure. Random Forest was further employed to create a classification model which successfully classified samples according to the type of adulterant (rice or sugar beet) and the adulteration level. In addition, SORS spectra were collected from 27 samples of heather honey (24 Calluna vulgaris and 3 Erica cinerea) produced in the UK and corresponding subsamples spiked with high fructose sugar cane syrup, and an exploratory data analysis with PCA and a classification with Random Forest were performed, both showing clear separation between the pure and adulterated samples at medium (40%) and high (60%) adulteration levels and a 90% success at low adulteration levels (20%). The results of this study demonstrate the potential of SORS in combination with machine learning to be applied for the authentication of honey samples and the detection of exogenous sugars in the form of sugar syrups. A major advantage of the SORS technique is that it is a rapid, non-invasive method deployable in the field with potential application at all stages of the supply chain.
Collapse
Affiliation(s)
- Mennatullah Shehata
- Centre for Soil, Agrifood and Biosciences, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, UK
| | - Sophie Dodd
- Centre for Soil, Agrifood and Biosciences, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, UK
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI Harwell Campus, Didcot OX11 0QX, UK
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI Harwell Campus, Didcot OX11 0QX, UK
| | - Bhavna Parmar
- Food Standards Agency, Clive House, 70 Petty France, Westminster, London SW1H 9EX, UK
| | - Zoltan Kevei
- Centre for Soil, Agrifood and Biosciences, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, UK
| | - Maria Anastasiadi
- Centre for Soil, Agrifood and Biosciences, Cranfield University, College Road, Cranfield, Bedford MK43 0AL, UK
| |
Collapse
|
4
|
Vinothkanna A, Dar OI, Liu Z, Jia AQ. Advanced detection tools in food fraud: A systematic review for holistic and rational detection method based on research and patents. Food Chem 2024; 446:138893. [PMID: 38432137 DOI: 10.1016/j.foodchem.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Modern food chain supply management necessitates the dire need for mitigating food fraud and adulterations. This holistic review addresses different advanced detection technologies coupled with chemometrics to identify various types of adulterated foods. The data on research, patent and systematic review analyses (2018-2023) revealed both destructive and non-destructive methods to demarcate a rational approach for food fraud detection in various countries. These intricate hygiene standards and AI-based technology are also summarized for further prospective research. Chemometrics or AI-based techniques for extensive food fraud detection are demanded. A systematic assessment reveals that various methods to detect food fraud involving multiple substances need to be simple, expeditious, precise, cost-effective, eco-friendly and non-intrusive. The scrutiny resulted in 39 relevant experimental data sets answering key questions. However, additional research is necessitated for an affirmative conclusion in food fraud detection system with modern AI and machine learning approaches.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- School of Life and Health Sciences, Hainan University, Haikou 570228, China; Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| | - Owias Iqbal Dar
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
5
|
Zhang Z, Li Y, Zhao S, Qie M, Bai L, Gao Z, Liang K, Zhao Y. Rapid analysis technologies with chemometrics for food authenticity field: A review. Curr Res Food Sci 2024; 8:100676. [PMID: 38303999 PMCID: PMC10830540 DOI: 10.1016/j.crfs.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
In recent years, the problem of food adulteration has become increasingly rampant, seriously hindering the development of food production, consumption, and management. The common analytical methods used to determine food authenticity present challenges, such as complicated analysis processes and time-consuming procedures, necessitating the development of rapid, efficient analysis technology for food authentication. Spectroscopic techniques, ambient ionization mass spectrometry (AIMS), electronic sensors, and DNA-based technology have gradually been applied for food authentication due to advantages such as rapid analysis and simple operation. This paper summarizes the current research on rapid food authenticity analysis technology from three perspectives, including breeds or species determination, quality fraud detection, and geographical origin identification, and introduces chemometrics method adapted to rapid analysis techniques. It aims to promote the development of rapid analysis technology in the food authenticity field.
Collapse
Affiliation(s)
- Zixuan Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjie Qie
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Bai
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhiwei Gao
- Hangzhou Nutritome Biotech Co., Ltd., Hangzhou, China
| | - Kehong Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang XH, Gu HW, Liu RJ, Qing XD, Nie JF. A comprehensive review of the current trends and recent advancements on the authenticity of honey. Food Chem X 2023; 19:100850. [PMID: 37780275 PMCID: PMC10534224 DOI: 10.1016/j.fochx.2023.100850] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 10/03/2023] Open
Abstract
The authenticity of honey currently poses challenges to food quality control, thus requiring continuous modernization and improvement of related analytical methodologies. This review provides a comprehensively overview of honey authenticity challenges and related analytical methods. Firstly, direct and indirect methods of honey adulteration were described in detail, commenting the existing challenges in current detection methods and market supervision approaches. As an important part, the integrated metabolomic workflow involving sample processing procedures, instrumental analysis techniques, and chemometric tools in honey authenticity studies were discussed, with a focus on their advantages, disadvantages, and scopes. Among them, various improved microscale extraction methods, combined with hyphenated instrumental analysis techniques and chemometric data processing tools, have broad application potential in honey authenticity research. The future of honey authenticity determination will involve the use of simplified and portable methods, which will enable on-site rapid detection and transfer detection technologies from the laboratory to the industry.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang, China
| | - Hui-Wen Gu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Ren-Jun Liu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xiang-Dong Qing
- Hunan Provincial Key Laboratory of Dark Tea and Jin-hua, College of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Jin-Fang Nie
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
7
|
Kharbach M, Alaoui Mansouri M, Taabouz M, Yu H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods 2023; 12:2753. [PMID: 37509845 PMCID: PMC10379817 DOI: 10.3390/foods12142753] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
In today's era of increased food consumption, consumers have become more demanding in terms of safety and the quality of products they consume. As a result, food authorities are closely monitoring the food industry to ensure that products meet the required standards of quality. The analysis of food properties encompasses various aspects, including chemical and physical descriptions, sensory assessments, authenticity, traceability, processing, crop production, storage conditions, and microbial and contaminant levels. Traditionally, the analysis of food properties has relied on conventional analytical techniques. However, these methods often involve destructive processes, which are laborious, time-consuming, expensive, and environmentally harmful. In contrast, advanced spectroscopic techniques offer a promising alternative. Spectroscopic methods such as hyperspectral and multispectral imaging, NMR, Raman, IR, UV, visible, fluorescence, and X-ray-based methods provide rapid, non-destructive, cost-effective, and environmentally friendly means of food analysis. Nevertheless, interpreting spectroscopy data, whether in the form of signals (fingerprints) or images, can be complex without the assistance of statistical and innovative chemometric approaches. These approaches involve various steps such as pre-processing, exploratory analysis, variable selection, regression, classification, and data integration. They are essential for extracting relevant information and effectively handling the complexity of spectroscopic data. This review aims to address, discuss, and examine recent studies on advanced spectroscopic techniques and chemometric tools in the context of food product applications and analysis trends. Furthermore, it focuses on the practical aspects of spectral data handling, model construction, data interpretation, and the general utilization of statistical and chemometric methods for both qualitative and quantitative analysis. By exploring the advancements in spectroscopic techniques and their integration with chemometric tools, this review provides valuable insights into the potential applications and future directions of these analytical approaches in the food industry. It emphasizes the importance of efficient data handling, model development, and practical implementation of statistical and chemometric methods in the field of food analysis.
Collapse
Affiliation(s)
- Mourad Kharbach
- Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland
- Department of Computer Sciences, University of Helsinki, 00560 Helsinki, Finland
| | - Mohammed Alaoui Mansouri
- Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, 90014 Oulu, Finland
| | - Mohammed Taabouz
- Biopharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V in Rabat, Rabat BP 6203, Morocco
| | - Huiwen Yu
- Shenzhen Hospital, Southern Medical University, Shenzhen 518005, China
- Chemometrics group, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| |
Collapse
|
8
|
Li J, Zhang L, Zhu F, Song Y, Yu K, Zhao Y. Rapid qualitative detection of titanium dioxide adulteration in persimmon icing using portable Raman spectrometer and Machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122221. [PMID: 36549243 DOI: 10.1016/j.saa.2022.122221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Persimmon icing is the white crystalline powder that adheres to the surface of persimmon cakes when the sugar in the persimmon spills over during processing, which is considered the essence of persimmon. Titanium dioxide is a food additive that is commonly added to the surface of persimmon cakes to impersonate high-quality persimmon cakes. However, excessive titanium dioxide can be harmful to humans, so a quick method is needed to identify persimmon cakes as adulterated. Raman spectroscopy with distinctive advantages of water-insensitivity, real-time, field-deployable, label-free, and fingerprinting-identification has been rapidly developed and used in food quality assurance and safety monitoring. In this study, we investigated Raman spectroscopy integrated with machine learning to assess titanium dioxide adulteration in dried persimmon icing. The adaptive iterative reweighting partial least squares (air-PLS) algorithm as an effective algorithm was used to remove fluorescent background signals in raw Raman spectroscopy. Principal components analysis (PCA) was employed to analyze the spectral data and determine the class memberships, and results showed that 99.9% of information could be explained by PC-1 and PC-2. Compared with extreme learning machine (ELM), support vector machine (SVM), back propagation artificial neural network (BP-ANN), and random forest (RF) models, one-dimensional stack auto encoder convolutional neural network (1D-SAE-CNN) could provide the highest detection accuracy of 0.9825, precision of 0.9824, recall of 0.9825, and f1-score of 0.9824. This study shows that Raman spectroscopy coupled with 1D-SAE-CNN is a promising method to detect titanium dioxide adulteration in persimmon icing.
Collapse
Affiliation(s)
- Junmeng Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengle Zhu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yuling Song
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China
| | - Keqiang Yu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Vaitiekūnaitė D, Dodoo D, Snitka V. Traceability of bilberries (Vaccinium myrtillus L.) of the Baltic-Nordic region using surface-enhanced Raman spectroscopy (SERS): DFT simulation-based DNA analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122192. [PMID: 36493623 DOI: 10.1016/j.saa.2022.122192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Food traceability is a major issue in the industry. We investigated whether bilberries (Vaccinium myrtillus L.) from 4 different locations within the Baltic-Nordic region could be effectively differentiated using surface-enhanced Raman scattering (SERS) based spectral data and chemometric analyses. Furthermore, we aimed to determine if nucleobase (adenine and cytosine) methylation could be responsible for any observed variation. Our experiment was successful in that both principal component (PCA) and discriminant function analyses (DFA) showed differentiation between bilberry DNA from all 4 geographical regions. Density functional theory (DFT) based simulations allowed us to analyze whether DNA's spectral data dissimilarities may be due to nucleobase methylation. Although results were inconclusive on this, our investigation provides valuable data on simulated versus experimental DNA and DNA component spectra. Further research will be directed towards understanding what other epigenetic changes could be responsible for the observed DNA variation as well as determining the optimal parameters for using DFT simulations in upcoming projects.
Collapse
Affiliation(s)
- Dorotėja Vaitiekūnaitė
- Lithuanian Research Centre for Agriculture and Forestry, Laboratory of Forest Plant Biotechnology Institute of Forestry, Liepu st. 1, LT-53101 Girionys, Lithuania.
| | - Daniel Dodoo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia.
| | - Valentinas Snitka
- Research Center for Microsystems and Nanotechnology, Kaunas University of Technology, Studentu str. 65, LT-51369 Kaunas, Lithuania.
| |
Collapse
|
10
|
Limm W, Karunathilaka SR, Mossoba MM. Fourier transform infrared spectroscopy and chemometrics for the rapid screening of economically motivated adulteration of honey spiked with corn or rice syrup. J Food Prot 2023; 86:100054. [PMID: 37005034 DOI: 10.1016/j.jfp.2023.100054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
Due to its high price, increased consumption, and limited production, honey has been a main target for economically motivated adulteration (EMA). An approach combining Fourier-Transform infrared spectroscopy (FTIR) and chemometrics was evaluated to develop a rapid screening tool to detect potential EMA of honey with either rice or corn syrup. A single-class soft independent modeling of class analogy (SIMCA) model was developed using a diverse set of commercial honey products and an authentic set of honey samples collected at four different U.S. Department of Agriculture (USDA) honey sample collection locations. The SIMCA model was externally validated with a set of calibration-independent authentic honey, typical commercial honey control samples, and those spiked with rice and corn syrups in the 1-16% concentration range. The authentic honey and typical commercial honey test samples were correctly predicted with an 88.3% classification rate. High accuracy was found in predicting the rice and corn syrup spiked samples above the 7% concentration range, yielding 97.6% and 94.8% correct classification rates, respectively. This study demonstrated the potential for a rapid and accurate infrared and chemometrics method that can be used to rapidly screen for either rice or corn adulterants in honey in less than 5 min.
Collapse
Affiliation(s)
- William Limm
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, 5001 Campus Drive, College Park, MD 20740, USA.
| | - Sanjeewa R Karunathilaka
- University of Maryland, Joint Institute for Food Safety and Applied Nutrition, 2134 Patapsco Building, College Park, MD 20742, USA
| | - Magdi M Mossoba
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, 5001 Campus Drive, College Park, MD 20740, USA
| |
Collapse
|
11
|
Raman Spectroscopy for Food Quality Assurance and Safety Monitoring: A Review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
|
13
|
Pattern Recognition Approach for the Screening of Potential Adulteration of Traditional and Bourbon Barrel-Aged Maple Syrups by Spectral Fingerprinting and Classical Methods. Foods 2022; 11:foods11152211. [PMID: 35892796 PMCID: PMC9367714 DOI: 10.3390/foods11152211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
This study aims to generate predictive models based on mid-infrared and Raman spectral fingerprints to characterize unique compositional traits of traditional and bourbon barrel (BBL)-aged maple syrups, allowing for fast product authentication and detection of potential ingredient tampering. Traditional (n = 23) and BBL-aged (n = 17) maple syrup samples were provided by a local maple syrup farm, purchased from local grocery stores in Columbus, Ohio, and an online vendor. A portable FT-IR spectrometer with a triple-reflection diamond ATR and a compact benchtop Raman system (1064 nm laser) were used for spectra collection. Samples were characterized by chromatography (HPLC and GC-MS), refractometry, and Folin-Ciocalteu methods. We found the incidence of adulteration in 15% (6 out of 40) of samples that exhibited unusual sugar and/or volatile profiles. The unique spectral patterns combined with soft independent modeling of class analogy (SIMCA) identified all adulterated samples, providing a non-destructive and fast authentication of BBL and regular maple syrups and discriminated potential maple syrup adulterants. Both systems, combined with partial least squares regression (PLSR), showed good predictions for the total ˚Brix and sucrose contents of all samples.
Collapse
|
14
|
Wu X, Xu B, Ma R, Niu Y, Gao S, Liu H, Zhang Y. Identification and quantification of adulterated honey by Raman spectroscopy combined with convolutional neural network and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121133. [PMID: 35299093 DOI: 10.1016/j.saa.2022.121133] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this study, Raman spectroscopy combined with convolutional neural network (CNN) and chemometrics was used to achieve the identification and quantification of honey samples adulterated with high fructose corn syrup, rice syrup, maltose syrup and blended syrup, respectively. The shallow CNNs utilized to analyze honey mixed with single-variety syrup classified samples into four categories by the adulteration concentration with more than 97% accuracy, and the general CNN model for simultaneously detecting honey adulterated with any type of syrup obtained an accuracy of 94.79%. The established CNNs had the best performance compared with several chemometric classification algorithms. In addition, partial least square regression (PLS) successfully predicted the purity of honey mixed with single syrup, while coefficients of determination and root mean square errors of prediction were greater than 0.98 and less than 3.50, respectively. Therefore, the proposed methods based on Raman spectra have important practical significance for food safety and quality control of honey products.
Collapse
Affiliation(s)
- Xijun Wu
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004 China
| | - Baoran Xu
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004 China.
| | - Renqi Ma
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004 China
| | - Yudong Niu
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004 China
| | - Shibo Gao
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004 China
| | - Hailong Liu
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004 China
| | - Yungang Zhang
- Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004 China
| |
Collapse
|
15
|
Information theory and machine learning authentication of flaxseed oil using portable and handheld vibrational spectroscopy sensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Portable spectroscopy for high throughput food authenticity screening: Advancements in technology and integration into digital traceability systems. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Shen S, Yang Y, Wang J, Chen X, Liu T, Zhuo Q. [Analysis of differences between unifloral honeys from different botanical origins based on non-targeted metabolomics by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry]. Se Pu 2021; 39:291-300. [PMID: 34227310 PMCID: PMC9403802 DOI: 10.3724/sp.j.1123.2020.06029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
不同的蜜源植物具有结构多样的次生代谢产物。该研究以8种不同蜜源单花蜜(洋槐蜜、枣花蜜、荆条蜜、椴树蜜、荞麦蜜、麦卢卡蜜、枸杞蜜、益母草蜜)为研究对象,建立了基于超高效液相色谱-四极杆飞行时间质谱技术(UPLC-Q-TOF-MSE)的非靶向代谢组学方法,考察了不同蜜源中次生代谢产物的差异。该研究采用固相萃取前处理方法和UPLC-Q-TOF-MSE方法,获得不同蜜源单花蜜的植物代谢组信息,并构建了多变量统计分析模型,对不同来源的单花蜜进行模式识别和差异分析,发现洋槐蜜、枣花蜜、荆条蜜、椴树蜜、荞麦蜜、麦卢卡蜜相互间存在不同程度的显著差异。结合模型的变量重要性投影、方差分析与最大差异倍数值,根据精确前体离子和碎片离子质量信息检索Chemspider、HMDB数据库,该研究筛选并鉴定出32个代谢差异化合物,其中黄酮类化合物18个、酚酸类化合物7个、苯苷与萜苷类化合物6个、甾体类化合物1个;研究发现麦卢卡蜜和荞麦蜜以黄酮类化合物为主要差异代谢物,荆条蜜中酚酸类化合物为特征性表达,苯苷与萜苷类化合物主要为椴树蜜的特征代谢物。该研究从植物代谢组学角度初步揭示了不同单花蜜的代谢产物差异性以及特征化合物,为基于化学分析技术的蜂蜜溯源识别与质量评价提供了有效的研究策略。
Collapse
Affiliation(s)
- Shi Shen
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing 100050, China
| | - Yi Yang
- Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Jingbo Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing 100050, China
| | - Xi Chen
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing 100050, China
| | - Tingting Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing 100050, China
| | - Qin Zhuo
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Key Laboratory of Trace Element Nutrition, National Health Commission of the People's Republic of China, Beijing 100050, China
| |
Collapse
|
18
|
Sotiropoulou NS, Xagoraris M, Revelou PK, Kaparakou E, Kanakis C, Pappas C, Tarantilis P. The Use of SPME-GC-MS IR and Raman Techniques for Botanical and Geographical Authentication and Detection of Adulteration of Honey. Foods 2021; 10:foods10071671. [PMID: 34359541 PMCID: PMC8303172 DOI: 10.3390/foods10071671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this review is to describe the chromatographic, spectrometric, and spectroscopic techniques applied to honey for the determination of botanical and geographical origin and detection of adulteration. Based on the volatile profile of honey and using Solid Phase microextraction-Gas chromatography-Mass spectrometry (SPME-GC-MS) analytical technique, botanical and geographical characterization of honey can be successfully determined. In addition, the use of vibrational spectroscopic techniques, in particular, infrared (IR) and Raman spectroscopy, are discussed as a tool for the detection of honey adulteration and verification of its botanical and geographical origin. Manipulation of the obtained data regarding all the above-mentioned techniques was performed using chemometric analysis. This article reviews the literature between 2007 and 2020.
Collapse
|
19
|
Silva B, Costa ACO, Tchewonpi SS, Bönick J, Huschek G, Gonzaga LV, Fett R, Baldermann S, Rawel HM. Comparative quantification and differentiation of bracatinga (Mimosa scabrella Bentham) honeydew honey proteins using targeted peptide markers identified by high-resolution mass spectrometry. Food Res Int 2021; 141:109991. [PMID: 33641949 DOI: 10.1016/j.foodres.2020.109991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Honey traceability is an important topic, especially for honeydew honeys, due to the increased incidence of adulteration. This study aimed to establish specific markers to quantify proteins in honey. A proteomics strategy to identify marker peptides from bracatinga honeydew honey was therefore developed. The proteomics approach was based on initial untargeted identification of honey proteins and peptides by LC-ESI-Triple-TOF-MS/MS, which identified the major royal jelly proteins (MRJP) presence. Afterwards, the peptides were selected by the in silico digestion. The marker peptides were quantified by the developed targeted LC-QqQ-MS/MS method, which provided good linearity and specificity, besides recoveries between 92 and 100% to quantify peptides from bracatinga honeydew honey. The uniqueness and high response in mass spectrometry were backed by further complementary protein analysis (SDS-PAGE). The selected marker peptides EALPHVPIFDR (MRJP 1), ILGANVK (MRJP 2), TFVTIER (MRJP 3), QNIDVVAR (MRJP 4), FINNDYNFNEVNFR (MRJP 5) and LLQPYPDWSWTK (MRJP 7), quantified by LC-QqQ-MS/MS, highlighted that the content of QNIDVVAR from MRJP 4 could be used to differentiate bracatinga honeydew honey from floral honeys (p < 0.05) as a potential marker for its authentication. Finally, principal components analysis highlighted the QNIDVVAR content as a good descriptor of the analyzed bracatinga honeydew honey samples.
Collapse
Affiliation(s)
- Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany
| | | | - Sorel Sagu Tchewonpi
- Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany
| | - Josephine Bönick
- IGV - Institut für Getreideverarbeitung GmbH, Nuthetal OT Bergholz-Rehbrücke, Germany
| | - Gerd Huschek
- IGV - Institut für Getreideverarbeitung GmbH, Nuthetal OT Bergholz-Rehbrücke, Germany
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Susanne Baldermann
- Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany; Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Harshadrai M Rawel
- Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany.
| |
Collapse
|
20
|
Aykas DP, Menevseoglu A. A rapid method to detect green pea and peanut adulteration in pistachio by using portable FT-MIR and FT-NIR spectroscopy combined with chemometrics. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Yao S, Aykas DP, Rodriguez-Saona L. Rapid Authentication of Potato Chip Oil by Vibrational Spectroscopy Combined with Pattern Recognition Analysis. Foods 2020; 10:foods10010042. [PMID: 33375655 PMCID: PMC7824477 DOI: 10.3390/foods10010042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to develop a rapid technique to authenticate potato chip frying oils using vibrational spectroscopy signatures in combination with pattern recognition analysis. Potato chip samples (n = 118) were collected from local grocery stores, and the oil was extracted by a hydraulic press and characterized by fatty acid profile determined by gas chromatography equipped with a flame ionization detector (GC-FID). Spectral data was collected by a handheld Raman system (1064 nm) and a miniature near-infrared (NIR) sensor, further being analyzed by SIMCA (Soft Independent Model of Class Analogies) and PLSR (Partial Least Square Regression) to develop classification algorithms and predict the fatty acid profile. Supervised classification by SIMCA predicted the samples with a 100% sensitivity based on the validation data. The PLSR showed a strong correlation (Rval > 0.97) and a low standard error of prediction (SEP = 1.08-3.55%) for palmitic acid, oleic acid, and linoleic acid. 11% of potato chips (n = 13) indicated a single oil in the label with a mislabeling problem. Our data supported that the new generation of portable vibrational spectroscopy devices provided an effective tool for rapid in-situ identification of oil type of potato chips in the market and for surveillance of accurate labeling of the products.
Collapse
Affiliation(s)
- Siyu Yao
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA; (S.Y.); (D.P.A.)
| | - Didem Peren Aykas
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA; (S.Y.); (D.P.A.)
- Department of Food Engineering, Faculty of Engineering, Adnan Menderes University, Aydin 09100, Turkey
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA; (S.Y.); (D.P.A.)
- Correspondence: ; Tel.: +1-614-292-3339
| |
Collapse
|
22
|
In Situ Monitoring of Sugar Content in Breakfast Cereals Using a Novel FT-NIR Spectrometer. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This research demonstrates simultaneous predictions of individual and total sugars in breakfast cereals using a novel, handheld near-infrared (NIR) spectroscopic sensor. This miniaturized, battery-operated unit based on Fourier Transform (FT)-NIR was used to collect spectra from both ground and intact breakfast cereal samples, followed by real-time wireless data transfer to a commercial tablet for chemometric processing. A total of 164 breakfast cereal samples (60 store-bought and 104 provided by a snack food company) were tested. Reference analysis for the individual (sucrose, glucose, and fructose) and total sugar contents used high-performance liquid chromatography (HPLC). Chemometric prediction models were generated using partial least square regression (PLSR) by combining the HPLC reference analysis data and FT-NIR spectra, and associated calibration models were externally validated through an independent data set. These multivariate models showed excellent correlation (Rpre ≥ 0.93) and low standard error of prediction (SEP ≤ 2.4 g/100 g) between the predicted and the measured sugar values. Analysis results from the FT-NIR data, confirmed by the reference techniques, showed that eight store-bought cereal samples out of 60 (13%) were not compliant with the total sugar content declaration. The results suggest that the FT-NIR prototype can provide reliable analysis for the snack food manufacturers for on-site analysis.
Collapse
|
23
|
|
24
|
Hassoun A, Måge I, Schmidt WF, Temiz HT, Li L, Kim HY, Nilsen H, Biancolillo A, Aït-Kaddour A, Sikorski M, Sikorska E, Grassi S, Cozzolino D. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020; 9:E1069. [PMID: 32781687 PMCID: PMC7466239 DOI: 10.3390/foods9081069] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022] Open
Abstract
Animal origin food products, including fish and seafood, meat and poultry, milk and dairy foods, and other related products play significant roles in human nutrition. However, fraud in this food sector frequently occurs, leading to negative economic impacts on consumers and potential risks to public health and the environment. Therefore, the development of analytical techniques that can rapidly detect fraud and verify the authenticity of such products is of paramount importance. Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular, and protein-based techniques, among others, have been frequently used to identify animal species, production methods, provenance, and processing of food products. Although these conventional methods are accurate and reliable, they are destructive, time-consuming, and can only be employed at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have emerged in recent years as invaluable tools to overcome most of the limitations associated with traditional measurements. The number of scientific studies reporting on various authenticity issues investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy has increased substantially over the past few years, indicating the tremendous potential of these techniques in the fight against food fraud. It is the aim of the present manuscript to review the state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect fraud in food products of animal origin, with particular attention paid to spectroscopic measurements coupled with chemometric analysis. The opportunities and challenges surrounding the use of spectroscopic techniques and possible future directions will also be discussed.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Ingrid Måge
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Walter F. Schmidt
- United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705-2325, USA;
| | - Havva Tümay Temiz
- Department of Food Engineering, Bingol University, 12000 Bingol, Turkey;
| | - Li Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea;
| | - Heidi Nilsen
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, Muninbakken 9-13, 9291 Tromsø, Norway; (I.M.); (H.N.)
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L’Aquila, 67100 Via Vetoio, Coppito, L’Aquila, Italy;
| | | | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Ewa Sikorska
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, via Celoria, 2, 20133 Milano, Italy;
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia;
| |
Collapse
|