1
|
Abu-Aqil G, Adawi S, Huleihel M. Early and swift identification of fungal-infection using infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125101. [PMID: 39276467 DOI: 10.1016/j.saa.2024.125101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Fungal pathogens pose significant threats to agricultural crops and food products, leading to economic losses, compromised food quality, and health hazards. Early detection is crucial for effective control and treatment. This study explores Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy for rapid fungal detection in bread. Using a machine learning algorithm (Random Forest), FTIR-ATR accurately distinguished between pure and infected bread samples, achieving 86% overall accuracy and 84% accuracy in identifying specific fungi like Rhizopus and Aspergillus on the first day of infection. These findings highlight FTIR-ATR's potential for early fungal infection detection, promising improved food quality and reduced economic losses through timely intervention.
Collapse
Affiliation(s)
- George Abu-Aqil
- Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Samar Adawi
- Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Mahmoud Huleihel
- Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
2
|
Stringari A, Polo A, Rizzello CG, Arora K, Racinelli F, Ampollini M, Gobbetti M, Di Cagno R. Successful combination of lactic acid bacteria and yeast fermentation and enzymatic treatment to re-cycle industrial bread by-products for bread making. N Biotechnol 2024; 84:S1871-6784(24)00556-9. [PMID: 39551233 DOI: 10.1016/j.nbt.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Bread industry generates significant amounts of by-products which are discarded every day with relevant economic and environmental repercussions, despite they still contain high concentrations of potentially exploitable nutrients. Aiming to develop new sustainable solutions, this study explored the synergistic application of enzymatic treatment and sourdough fermentation to re-cycle industrial bread by-products for new sourdough bread making. Lactiplantibacillus plantarum SD69.B2 and Saccharomyces cerevisiae SD69.E3 were used as starters, while α-amylase, amyloglucosidase and protease were assessed for their ability to hydrolyze starch and proteins, providing more available carbon and nitrogen sources for the microorganisms. The bread waste-based sourdoughs made by combining protease and L. plantarum SD69.B2 alone or in combination with S. cerevisiae SD69.E3 were selected based on acidification and growth kinetics, and their biochemical, amino acid, and peptide profiles were also characterized demonstrating promising properties. Therefore, they were used, at different percentages, for bread making. Although a slightly acidic pH and a low leavening power, due to the denatured proteins and gelatinized starch in the bread by-products, the texture and sensory analyses of new breads revealed better textural attributes, smell, acidic taste, and overall acceptability compared to the control. The possible reasons behind such features were discussed. The overall results demonstrated that the approach proposed in this study was effective to valorize bread by-products, and it represents a starting point to develop strategies responding to the current perspective of circular economy in food industry.
Collapse
Affiliation(s)
- Alessandro Stringari
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy.
| | - Andrea Polo
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| | | | - Kashika Arora
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy.
| | | | | | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, 39100 Bolzano, Italy; International Center on Food Fermentation, 39100 Bolzano, Italy.
| |
Collapse
|
3
|
Asadi Touranlou F, Hashemi M, Ghavami V, Tavakoly Sany SB. Concentration of polycyclic aromatic hydrocarbons (PAHs) in bread and health risk assessment across the globe: A systematic review and meta-analysis. Compr Rev Food Sci Food Saf 2024; 23:e13411. [PMID: 39245919 DOI: 10.1111/1541-4337.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/30/2024] [Indexed: 09/10/2024]
Abstract
Although bread is the principal food in most countries, polycyclic aromatic hydrocarbons (PAHs) may be present and pose a potential risk to consumers. The aim of this review is to provide a comprehensive report on the concentration and health risks associated with PAHs in bread around the world. Various databases, such as Scopus, PubMed, Science Direct, and Google Scholar, were searched from their beginnings until December 2023 for this systematic review, which included 34 potentially relevant articles with data relating to 1057 bread samples. Utilizing a multilevel regression modeling approach, the study evaluated various factors such as fuel type, bread type, and geographical location. Following the initial evaluation, in 26.47% and 20.28% of all studies, the levels of Bap and PAH4 were higher than the permissible limit values, respectively. Based on the isomer ratios, 55.88% of the studies associated the presence of PAHs in bread samples with pyrogenic/coal combustion sources. According to the carcinogenic risk results, bread consumers in all studies have been exposed to moderate or high levels of carcinogenicity. The most significant risk levels are associated with the consumption of bread in Egypt, Kuwait, Iran, and India. Moreover, meta-regression analysis demonstrated significantly higher toxicity equivalent quotient and cancer risk mean values in bread baked using fossil fuels compared to other sources (p < .05). The high concentrations of PAHs, especially Benzo[a]pyrene, in bread pose a serious public health risk. Stringent regulations and monitoring are crucial to reduce contamination. Further research is necessary to develop safe processing methods to remove PAHs in bread.
Collapse
Affiliation(s)
- Fateme Asadi Touranlou
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Ghavami
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health, Safety, Environment Management, School of Health Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Chou K, Liu J, Lu X, Hsiao HI. Quantitative microbial spoilage risk assessment of Aspergillus niger in white bread reveal that retail storage temperature and mold contamination during factory cooling are the main factors to influence spoilage. Food Microbiol 2024; 119:104443. [PMID: 38225048 DOI: 10.1016/j.fm.2023.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
The present study developed a model for effectively assessing the risk of spoilage caused by Aspergillus niger to identify key control measures employed in bakery supply chains. A white bread supply chain comprising a processing plant and two retail stores in Taiwan was selected in this study. Time-temperature profiles were collected at each processing step in summer and winter. Visual mycelium diameter predictions were validated using a time-lapse camera. Six what-if scenarios were proposed. The mean risk of A. niger contamination per package sold by retailer A was 0.052 in summer and 0.036 in winter, and that for retailer B was 0.037 in summer and 0.022 in winter. Sensitivity analysis revealed that retail storage time, retail temperature, and mold prevalence during factory cooling were the main influencing factors. The what-if scenarios revealed that reducing the retail environmental temperature by 1 °C in summer (from 23.97 °C to 22.97 °C) and winter (from 23.28 °C to 22.28 °C) resulted in a reduction in spoilage risk of 47.0% and 34.7%, respectively. These results indicate that food companies should establish a quantitative microbial risk assessment model that uses real data to evaluate microbial spoilage in food products that can support decision-making processes.
Collapse
Affiliation(s)
- Kelvin Chou
- Department of Food Science, National Taiwan Ocean University, Taiwan
| | - Jinxin Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Taiwan.
| |
Collapse
|
5
|
Verni M, Wang Y, Clement H, Koirala P, Rizzello CG, Coda R. Antifungal peptides from faba bean flour fermented by Levilactobacillus brevis AM7 improve the shelf-life of composite faba-wheat bread. Int J Food Microbiol 2023; 407:110403. [PMID: 37748395 DOI: 10.1016/j.ijfoodmicro.2023.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Michela Verni
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Yaqin Wang
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Heliciane Clement
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Prabin Koirala
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland; Helsinki Institute of Sustainability Science, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Gigante V, Aliotta L, Ascrizzi R, Pistelli L, Zinnai A, Batoni G, Coltelli MB, Lazzeri A. Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review. Polymers (Basel) 2023; 15:4700. [PMID: 38139951 PMCID: PMC10747240 DOI: 10.3390/polym15244700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Sustainable packaging has been steadily gaining prominence within the food industry, with biobased materials emerging as a promising substitute for conventional petroleum-derived plastics. This review is dedicated to the examination of innovative biobased materials in the context of bread packaging. It aims to furnish a comprehensive survey of recent discoveries, fundamental properties, and potential applications. Commencing with an examination of the challenges posed by various bread types and the imperative of extending shelf life, the review underscores the beneficial role of biopolymers as internal coatings or external layers in preserving product freshness while upholding structural integrity. Furthermore, the introduction of biocomposites, resulting from the amalgamation of biopolymers with active biomolecules, fortifies barrier properties, thus shielding bread from moisture, oxygen, and external influences. The review also addresses the associated challenges and opportunities in utilizing biobased materials for bread packaging, accentuating the ongoing requirement for research and innovation to create advanced materials that ensure product integrity while diminishing the environmental footprint.
Collapse
Affiliation(s)
- Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
| | - Laura Pistelli
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy;
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| |
Collapse
|
7
|
Redistribution of surplus bread particles into the food supply chain. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Identification of postbaking mold contamination through onsite monitoring of baking factory environment: A case study of bakery company in Taiwan. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Montemurro M, Salvatori G, Alfano S, Martinelli A, Verni M, Pontonio E, Villano M, Rizzello CG. Exploitation of wasted bread as substrate for polyhydroxyalkanoates production through the use of Haloferax mediterranei and seawater. Front Microbiol 2022; 13:1000962. [PMID: 36212839 PMCID: PMC9534330 DOI: 10.3389/fmicb.2022.1000962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
The use of the halophile microorganism Haloferax mediterranei, able to synthesize poly(hydroxybutyrate-hydroxyvalerate) (PHBV), is considered as a promising tool for the industrial production of bioplastic through bioprocessing. A consistent supplementation of the growth substrate in carbohydrates and minerals is overall necessary to allow its PHBV production. In this work, wasted bread was used as substrate for bioplastic production by microbial fermentation. Instead of the consistent and expensive minerals supplement required for Hfx. mediterranei DSM1411 growth, microfiltered seawater was added to the wasted bread-derived substrate. The suitable ratio of wasted bread homogenate and seawater, corresponding to 40:60, was selected. The addition of proteases and amylase to the bread homogenate promoted the microbial growth but it did not correspond to the increase of bioplastic production by the microorganism, that reach, under the experimental conditions, 1.53 g/L. An extraction procedure of the PHBV from cells, based on repeated washing with water, followed or not by a purification through ethanol precipitation, was applied instead of the conventional extraction with chloroform. Yield of PHBV obtained using the different extraction methods were 21.6 ± 3.6 (standard extraction/purification procedure with CHCl3:H2O mixture), 24.8 ± 3.0 (water-based extraction), and 19.8 ± 3.3 mg PHAs/g of wasted bread (water-based extraction followed by ethanol purification). Slightly higher hydroxyvalerate content (12.95 vs 10.78%, w/w) was found in PHBV obtained through the water-based extraction compared to the conventional one, moreover, the former was characterized by purity of 100% (w/w). Results demonstrated the suitability of wasted bread, supplemented with seawater, to be used as substrate for bioplastic production through fermentation. Results moreover demonstrated that a solvent-free extraction, exclusively based on osmotic shock, could be used to recover the bioplastic from cells.
Collapse
Affiliation(s)
- Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Gaia Salvatori
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Sara Alfano
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Rome, Italy
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- *Correspondence: Carlo Giuseppe Rizzello,
| |
Collapse
|
10
|
Păcularu-Burada B, Ceoromila (Cantaragiu) AM, Vasile MA, Bahrim GE. Novel insights into different kefir grains usefulness as valuable multiple starter cultures to achieve bioactive gluten-free sourdoughs. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Optimization of a Simultaneous Enzymatic Hydrolysis to Obtain a High-Glucose Slurry from Bread Waste. Foods 2022; 11:foods11121793. [PMID: 35741990 PMCID: PMC9222351 DOI: 10.3390/foods11121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Bread and bakery products are among the most discarded food products in the world. This work aims to investigate the potential use of wasted bread to obtain a high-glucose slurry. Simultaneous hydrolysis of wasted bread using α-amylase and glucoamylase was carried out performing liquefaction and saccharification at the same time. This process was compared with a traditional sequential hydrolysis. Temperature and pH conditions were optimized using a response surface design determining viscosity, reducing sugars and glucose concentration during the enzymatic processes. The optimal conditions of pH and temperature in the saccharification stage and the simultaneous hydrolysis were pretty similar. Results show that the slurry produced with simultaneous process had a similar glucose yield at 2 h, and at 4 h a yield higher than that obtained by the sequential method of 4 h and could reduce time and energy.
Collapse
|
12
|
Liu A, Xu R, Zhang S, Wang Y, Hu B, Ao X, Li Q, Li J, Hu K, Yang Y, Liu S. Antifungal Mechanisms and Application of Lactic Acid Bacteria in Bakery Products: A Review. Front Microbiol 2022; 13:924398. [PMID: 35783382 PMCID: PMC9244174 DOI: 10.3389/fmicb.2022.924398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bakery products are nutritious, but they are susceptible to fungal contamination, which leads to a decline in quality and safety. Chemical preservatives are often used to extend the shelf-life of bakery products, but long-term consumption of these preservatives may increase the risk of chronic diseases. Consumers increasingly demand food with fewer chemical preservatives. The application of lactic acid bacteria (LAB) as a novel biological preservative not only prolongs the shelf-life of bakery products but also improves the baking properties of bakery products. This review summarizes different types and action mechanisms of antifungal compounds produced by LAB, factors affecting the production of antifungal compounds, and the effects of antifungal LAB on bakery products, providing a reference for future applications of antifungal LAB in bakery products.
Collapse
|
13
|
Antibacterial and antifungal activity of kenaf seed peptides and their effect on microbiological safety and physicochemical properties of some food models. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Latex peptidases produce peptides capable of delaying fungal growth in bread. Food Chem 2022; 373:131410. [PMID: 34710691 DOI: 10.1016/j.foodchem.2021.131410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 01/17/2023]
Abstract
Antimicrobial peptides (AMPs) have been reported to be promising alternatives to chemical preservatives. Thus, this study aimed to characterise AMPs generated from the hydrolysis of wheat gluten proteins using latex peptidases of Calotropis procera, Cryptostegia grandiflora, and Carica papaya. The three hydrolysates (obtained after 16 h at 37 °C, using a 1: 25 enzyme: substrate ratio) inhibited the growth of Aspergillus niger, A. chevalieri, Trichoderma reesei, Pythium oligandrum, Penicillium sp., and Lasiodiplodia sp. by 60-90%, and delayed fungal growth on bread by 3 days when used at 0.3 g/kg. Moreover, the specific volume and expansion factor of bread were not affected by the hydrolysates. Of 28 peptides identified, four were synthesised and exhibited activity against Penicillium sp. Fluorescence and scanning electron microscopy suggested that the peptides damaged the fungal plasma membrane. Bioinformatics analysis showed that no peptide was toxic and that the antigenic ones had cleavage sites for trypsin or pepsin.
Collapse
|
15
|
Bread Sourdough Lactic Acid Bacteria—Technological, Antimicrobial, Toxin-Degrading, Immune System-, and Faecal Microbiota-Modelling Biological Agents for the Preparation of Food, Nutraceuticals and Feed. Foods 2022; 11:foods11030452. [PMID: 35159602 PMCID: PMC8834576 DOI: 10.3390/foods11030452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
This review intends to highlight the fact that bread sourdough is a very promising source of technological, antimicrobial, toxin-degrading, immune system-, and faecal microbiota-modelling biological agents for the preparation of food, nutraceuticals, and feed, which has great potential at industrial biotechnology scale. There are many applications of sourdough lactic acid bacteria (LAB), which are the main microorganisms in spontaneous sourdough. In addition to their application as pure technological strains in the food and feed industries, taking into consideration the specific properties of these microorganisms (antimicrobial, antifungal, immuno-, and microbiota-modulating, etc.), they are used as valuable ingredients in higher-value food as well as nutraceutical formulations. Additionally, a very promising application of LAB is their use in combination with plant- and/or animal-based ingredients to increase the functional properties of the whole combination due to different mechanisms of action, as well as desirable symbiotic activity. In addition to traditional foods prepared using sourdough microorganisms (bread, biscuits, meat products, dairy, beverages, etc.), they could find application in the preparation of added-value ingredients for the food, nutraceutical, and feed industries. Finally, this mini-review gives a brief introduction to the possible applications of sourdough LAB in the food, feed, and nutraceutical industries.
Collapse
|
16
|
Reuse of Wasted Bread as Soil Amendment: Bioprocessing, Effects on Alkaline Soil and Escarole ( Cichorium endivia) Production. Foods 2022; 11:foods11020189. [PMID: 35053921 PMCID: PMC8774946 DOI: 10.3390/foods11020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
In an era characterized by land degradation, climate change, and a growing population, ensuring high-yield productions with limited resources is of utmost importance. In this context, the use of novel soil amendments and the exploitation of plant growth-promoting microorganisms potential are considered promising tools for developing a more sustainable primary production. This study aimed at investigating the potential of bread, which represents a large portion of the global food waste, to be used as an organic soil amendment. A bioprocessed wasted bread, obtained by an enzymatic treatment coupled with fermentation, together with unprocessed wasted bread were used as amendments in a pot trial. An integrated analytical plan aimed at assessing (i) the modification of the physicochemical properties of a typical Mediterranean alkaline agricultural soil, and (ii) the plant growth-promoting effect on escarole (Cichorium endivia var. Cuartana), used as indicator crop, was carried out. Compared to the unamended soils, the use of biomasses raised the soil organic carbon content (up to 37%) and total nitrogen content (up to 40%). Moreover, the lower pH and the higher organic acid content, especially in bioprocessed wasted bread, determined a major availability of Mn, Fe, and Cu in amended soils. The escaroles from pots amended with raw and bioprocessed bread had a number of leaves, 1.7- and 1.4-fold higher than plants cultivated on unamended pots, respectively, showing no apparent phytotoxicity and thus confirming the possible re-utilization of such residual biomasses as agriculture amendments.
Collapse
|
17
|
Mishra B, Mishra AK, Kumar S, Mandal SK, NSV L, Kumar V, Baek KH, Mohanta YK. Antifungal Metabolites as Food Bio-Preservative: Innovation, Outlook, and Challenges. Metabolites 2021; 12:12. [PMID: 35050134 PMCID: PMC8778586 DOI: 10.3390/metabo12010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Perishable food spoilage caused by fungi is a major cause of discomfort for food producers. Food sensory abnormalities range from aesthetic degeneration to significant aroma, color, or consistency alterations due to this spoilage. Bio-preservation is the use of natural or controlled bacteria or antimicrobials to enhance the quality and safety of food. It has the ability to harmonize and rationalize the required safety requirements with conventional preservation methods and food production safety and quality demands. Even though synthetic preservatives could fix such issues, there is indeed a significant social need for "clean label" foods. As a result, consumers are now seeking foods that are healthier, less processed, and safer. The implementation of antifungal compounds has gotten a lot of attention in recent decades. As a result, the identification and characterization of such antifungal agents has made promising advances. The present state of information on antifungal molecules, their modes of activity, connections with specific target fungi varieties, and uses in food production systems are summarized in this review.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Sanjay Kumar
- Department of Biotechnology, National Institute of Technology, Tadepalligudem, Andhra Pradesh 534101, India;
| | - Sanjeeb Kumar Mandal
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Lakshmayya NSV
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India; (B.M.); (S.K.M.); (L.N.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
- Department of Orthopedics Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (A.K.M.); (V.K.)
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| |
Collapse
|
18
|
Goel S, Singh M, Grewal S, Razzaq A, Wani SH. Wheat Proteins: A Valuable Resources to Improve Nutritional Value of Bread. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.769681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Triticum aestivum, commonly known as bread wheat, is one of the most cultivated crops globally. Due to its increasing demand, wheat is the source of many nutritious products including bread, pasta, and noodles containing different types of seed storage proteins. Wheat seed storage proteins largely control the type and quality of any wheat product. Among various unique wheat products, bread is the most consumed product around the world due to its fast availability as compared to other traditional food commodities. The production of highly nutritious and superior quality bread is always a matter of concern because of its increasing industrial demand. Therefore, new and more advanced technologies are currently being applied to improve and enrich the bread, having increased fortified nutrients, gluten-free, highly stable with enhanced shelf-life, and long-lasting. This review focused on bread proteins with improving wheat qualities and nutritional properties using modern technologies. We also describe the recent innovations in processing technologies to improve various quality traits of wheat bread. We also highlight some modern forms of bread that are utilized in different industries for various purposes and future directions.
Collapse
|
19
|
Verni M, Vekka A, Immonen M, Katina K, Rizzello CG, Coda R. Biosynthesis of γ-aminobutyric acid by lactic acid bacteria in surplus bread and its use in bread making. J Appl Microbiol 2021; 133:76-90. [PMID: 34687568 PMCID: PMC9544796 DOI: 10.1111/jam.15332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023]
Abstract
AIMS The aim of this study was to investigate the effectiveness of bread as substrate for γ-aminobutyric acid (GABA) biosynthesis, establishing a valorization strategy for surplus bread, repurposing it within the food chain. METHODS AND RESULTS Surplus bread was fermented by lactic acid bacteria (LAB) to produce GABA. Pediococcus pentosaceus F01, Levilactobacillus brevis MRS4, Lactiplantibacillus plantarum H64 and C48 were selected among 33 LAB strains for the ability to synthesize GABA. Four fermentation experiments were set up using surplus bread as such, added of amylolytic and proteolytic enzymes, modifying the pH or mixed with wheat bran. Enzyme-treated slurries led to the release of glucose (up to 20 mg g-1 ) and free amino acid, whereas the addition of wheat bran (30% of bread weight) yielded the highest GABA content (circa 800 mg kg-1 of dry weight) and was the most suitable substrate for LAB growth. The selected slurry was ultimately used as an ingredient in bread making causing an increase in free amino acids. CONCLUSIONS Besides the high GABA concentration (148 mg kg-1 dough), the experimental bread developed in this study was characterized by good nutritional properties, highlighting the efficacy of tailored bioprocessing technologies as means to mitigate food wastage. SIGNIFICANCE AND IMPACT OF STUDY Our results represent a proof of concept of effective strategies to repurpose food industry side streams.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Vekka
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| | - Mikko Immonen
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| | - Kati Katina
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| | | | - Rossana Coda
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland.,Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Immonen M, Maina NH, Coda R, Katina K. The molecular state of gelatinized starch in surplus bread affects bread recycling potential. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Statistical Approach to Potentially Enhance the Postbiotication of Gluten-Free Sourdough. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fermented products are permanently under the attention of scientists and consumers, both due to nutritional importance and health promoting effects. The fermented functional foods contribute to a more balanced diet and increase the immune responses (among many other health effects) with positive implications for quality of life. In this sense, improving the sourdough’s fermentation to boost the biotic (postbiotic and paraprobiotic) properties of the sourdough-based products has positive impacts on the nutritional and functional properties of the final baked products. These enhanced sourdoughs can be obtained in controlled fermentation conditions and used as sourdough bread improvers or novel bioingredients. In this context, our work aimed to optimize, using statistical tools, a gluten-free sourdough based on chickpea, quinoa, and buckwheat fermentation with selected lactic acid bacteria (LAB) to enhance its postbiotic properties. The most important biotechnological parameters were selected by Plackett–Burman Design (PBD) and then Response Surface Methodology (RSM) was applied to evaluate the interactions between the selected factors to maximize the gluten-free sourdough’s properties. As a result, the optimized fermented sourdough had antimicrobial activity with inhibition ratios between 71 and 100% against the Aspergillus niger, Aspergillus flavus, Penicillium spp. molds and against the Bacillus spp endospore-forming Gram-positive rods. The optimized variant showed a total titratable acidity (TTA) of 40.2 mL NaOH 0.1N. Finally, the high-performance liquid chromatography (HPLC) analysis highlighted a heterofermentative profile for the organic acids from the optimized sourdough. Among flavonoids and polyphenols, the level of caffeic and vanillic acids increased after lactic acid fermentation. The comparison between the optimized sourdough and the control evidenced significant differences in the metabolite profiles, thus highlighting its potential postbiotication effect.
Collapse
|
22
|
Schettino R, Pontonio E, Gobbetti M, Rizzello CG. Extension of the Shelf-Life of Fresh Pasta Using Chickpea Flour Fermented with Selected Lactic Acid Bacteria. Microorganisms 2020; 8:E1322. [PMID: 32872647 PMCID: PMC7564801 DOI: 10.3390/microorganisms8091322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Fresh pasta is subjected to rapid spoilage, mainly due to the metabolic activity of bacteria, yeasts, and especially molds, which negatively affect the sensorial characteristics and the safety of the product. In this work, chickpea flour was fermented with selected lactic acid bacteria, characterized in terms of the antifungal activity, and used to fortify fresh semolina pasta. Pasta was characterized and subjected to a long period of storage after being artificially inoculated with Penicillium roqueforti. Conventional fresh semolina pasta, produced with or without calcium propionate addition, was used as a reference. The water/salt-soluble extract from chickpea sourdough exhibited antifungal activity towards a large spectrum of molds. Its purification led to the identification of ten potentially active peptides. Besides the high content of dietary fibers (4.37%) and proteins (11.20%), nutritional improvements, such as the decrease of the antinutritional factors concentration and the starch hydrolysis index (25% lower than the control) and the increase of the protein digestibility (36% higher than the control), were achieved in fresh pasta fortified with the chickpea sourdough. Inhibition of the indicator mold growth during a 40-day storage period was more effective than in pasta added to calcium propionate.
Collapse
Affiliation(s)
- Rosa Schettino
- Department of Soil, Plant and Food Sciences, University of Bari, 70125 Bari, Italy; (R.S.); (E.P.)
| | - Erica Pontonio
- Department of Soil, Plant and Food Sciences, University of Bari, 70125 Bari, Italy; (R.S.); (E.P.)
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bolzano, Italy;
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Sciences, University of Bari, 70125 Bari, Italy; (R.S.); (E.P.)
| |
Collapse
|