1
|
Jiang X, Siddique A, Chen L, Zhu L, Zhou H, Na L, Jia C, Li Y, Yue M. Genomic and resistome analysis of Salmonella enterica isolates from retail markets in Yichun city, China. One Health 2025; 20:100967. [PMID: 39906162 PMCID: PMC11791297 DOI: 10.1016/j.onehlt.2025.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 02/06/2025] Open
Abstract
Nontyphoidal Salmonella (NTS) causes global outbreaks of foodborne disease. The main source of Salmonella for humans is animal-borne foods; however, the monitoring of Salmonella in the food chain via genomic platforms was limited in China. This study evaluated the prevalence, resistome, and virulome diversity of Salmonella strains identified from pork, retail environment, aquatic products, and poultry eggs of retail markets in Yichun city, Jiangxi province. The overall incidence of Salmonella was 9.4 %, with a higher contamination rate observed in pork at 13.5 %, followed by the retail environment at 7.69 %. The genomic analysis of the isolates revealed a total of fifteen distinct serovars, with serovar Enteritidis being the most prevalent (64.3 %). The phenotypic resistance analysis conducted by the broth microdilution method, revealed that 81.12 % of the isolates exhibited multidrug resistance (MDR), with high resistance to trimethoprim/sulphonamides (100 %), followed by tetracycline (99.3 %) and streptomycin (99.3 %). Genotypic analysis of antimicrobial resistance identified 80 antimicrobial-resistant genes (ARGs), with mdf(A), aph(3')-Ib, tet(A), dfrA12, floR, bla TEM-1B , qnrS3, and sul2, conferring resistance to different antimicrobial classes, being the predominant ARGs. Additionally, forty ESBL genes, particularly critical genes such as bla CTX-M and bla NDM-1, were also identified in Salmonella isolates. The IncR, IncFIB (K), and IncX1 plasmid replicons were widely prevalent and served as significant reservoirs of horizontally acquired foreign genes. Moreover, key virulence genes such as cdtB, lpf and sef were also detected, in addition to Salmonella pathogenicity islands SPI-1 and SPI-2. This study reveals the prevalence of multidrug-resistant and virulent strains of Salmonella serovars in the markets of Yichuan city, posing a risk of human infections. The gained knowledge provided essential baseline information that may be utilized for regular tracking of MDR Salmonella transmission in the food chain to minimize potential future outbreaks.
Collapse
Affiliation(s)
- Xiaowu Jiang
- College of Medicine, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
- Jiangxi Provincial Key Laboratory of Active Component of Natural Drugs, Poster-Doctoral Research Center, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| | - Abubakar Siddique
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Li Chen
- College of Medicine, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| | - Lexin Zhu
- College of Medicine, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| | - Haiyang Zhou
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Li Na
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Chenghao Jia
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Yan Li
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Lu Z, Zheng Y, Wu S, Lin X, Ma H, Xu X, Chen S, Huang J, Gao Z, Wang G, Sun S. Antimicrobial Resistance Genes and Clonal Relationships of Duck-Derived Salmonella in Shandong Province, China in 2023. Microorganisms 2024; 12:2619. [PMID: 39770821 PMCID: PMC11678682 DOI: 10.3390/microorganisms12122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Salmonella is a major threat to both human and animal health. However, the diversity and antibiotic resistance of animal-derived Salmonella and their association with human infections remain largely unexplored. In this study, Salmonella strains were isolated, identified, and sequenced from dead embryos and cloacal swab samples obtained from 278 large-scale duck farms in 11 cities in Shandong Province. The results show that a total of 57 Salmonella strains were isolated, with the dominant sequence types (ST) being ST17 (15/57) and ST19 (9/57), while the dominant serotypes were S. Indiana (15/57) and S. Typhimurium (11/57). Furthermore, genomic analysis has revealed the presence of prevalent antibiotic resistance genes (ARGs), which are often associated with co-transfer mechanisms. Over 52.63% of the strains were observed to carry two or more ARGs, especially one Salmonella strain that carried twenty-eight distinct ARGs. Furthermore, core genome multilocus sequence typing analysis (cgMLST) indicated that the 57 Salmonella strains may have a close relationship, which could be clonally transmitted among different cities. The results demonstrated a close relationship between the Salmonella strains identified in diverse geographical regions, suggesting that these strains may have been widely disseminated through clonal transmission. The mutation analysis reveals significant mutations at parC (T57S), gyrA (S83F), parC (S80R), gyrA (D87N), and gyrA (S83Y). These findings emphasize the necessity for monitoring and controlling Salmonella infections in animals, as they may serve as a reservoir for ARGs with the potential to affect human health or even be the source of pathogens that infect humans.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Shandong Provincial Key Laboratory of Zoonoses, College of Animal Medicine, Shandong Agricultural University, Tai’an 271002, China; (Z.L.); (S.W.); (J.H.)
| | - Yue Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271002, China; (Y.Z.); (Z.G.)
| | - Shaopeng Wu
- Shandong Provincial Key Laboratory of Zoonoses, College of Animal Medicine, Shandong Agricultural University, Tai’an 271002, China; (Z.L.); (S.W.); (J.H.)
| | - Xiaoyue Lin
- Shandong Provincial Center for Animal Disease Control, Jinan 250100, China; (X.L.); (H.M.); (X.X.); (S.C.)
| | - Huiling Ma
- Shandong Provincial Center for Animal Disease Control, Jinan 250100, China; (X.L.); (H.M.); (X.X.); (S.C.)
| | - Xiaofei Xu
- Shandong Provincial Center for Animal Disease Control, Jinan 250100, China; (X.L.); (H.M.); (X.X.); (S.C.)
| | - Shumin Chen
- Shandong Provincial Center for Animal Disease Control, Jinan 250100, China; (X.L.); (H.M.); (X.X.); (S.C.)
| | - Jiaqi Huang
- Shandong Provincial Key Laboratory of Zoonoses, College of Animal Medicine, Shandong Agricultural University, Tai’an 271002, China; (Z.L.); (S.W.); (J.H.)
| | - Zheng Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271002, China; (Y.Z.); (Z.G.)
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control, Jinan 250100, China; (X.L.); (H.M.); (X.X.); (S.C.)
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Zoonoses, College of Animal Medicine, Shandong Agricultural University, Tai’an 271002, China; (Z.L.); (S.W.); (J.H.)
| |
Collapse
|
3
|
Maggio F, Lauteri C, Rossi C, Ferri G, Serio A, Vergara A, Paparella A. Combined effect of Tetracycline compounds and essential oils on antimicrobial resistant Salmonella enterica isolated from the swine food chain. Front Microbiol 2024; 15:1439286. [PMID: 39741589 PMCID: PMC11687403 DOI: 10.3389/fmicb.2024.1439286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025] Open
Abstract
Antimicrobial resistance (AMR) poses risks for food stakeholders because of the spread of resistant microbes and potential foodborne diseases. In example, pigs may carry Salmonella strains, which can infect humans through contaminated food preparations. Due to their antibacterial properties and capacity to modulate bacterial drug resistance, essential oils (EOs) are attracting interest as prospective substitutes for synthetic antimicrobials which can help to reverse microbial resistance. Hence, the present study evaluates the antimicrobial effectiveness of the combination of tetracycline (Tc) compounds and Coridothymus capitatus (CC), Thymus capitatus L. (TC), and Thymus serpyllum (TS) EOs on 11 tetracycline-resistant Salmonella enterica strains isolated from the swine food chain. The kind of interaction between Tc and EOs was evaluated by Fractional Inhibitory Concentration Index (FICI), while the composition of the EOs phytocomplex was linked to Tc antibacterial activity by Principal Component Analysis (PCA). Interestingly, the EOs increased the strains susceptibility to Tc, inhibiting their growth despite the antimicrobial resistance. In most cases, synergistic and commutative effects were detected, as the combination of EOs and Tc compounds resulted in a noticeable decrease in the concentration (from 256 to 4 μg/mL) necessary to inhibit the strains. Thymol, carvacrol, linalool, sabinene, and other EO terpenoid components were revealed as the molecules working in concert with the Tc drug to increase the susceptibility of S. enterica strains to the treatment. Comprehending which molecules of the EOs phytocomplex, beside the main compounds, affect bacterial inhibition, might help to develop a tailor-made approach related to counteract the resistance of specific strains to different antibiotics.
Collapse
Affiliation(s)
- Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Carlotta Lauteri
- Department of Veterinary Medicine, University of Teramo, Piano d’Accio, Teramo, Italy
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Gianluigi Ferri
- Department of Veterinary Medicine, University of Teramo, Piano d’Accio, Teramo, Italy
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alberto Vergara
- Department of Veterinary Medicine, University of Teramo, Piano d’Accio, Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
4
|
Xu Y, Yu Z, Wu S, Song M, Cui L, Sun S, Wu J. Pathogenicity of Multidrug-Resistant Salmonella typhimurium Isolated from Ducks. Microorganisms 2024; 12:1359. [PMID: 39065127 PMCID: PMC11279134 DOI: 10.3390/microorganisms12071359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Salmonella typhimurium (S. typhimurium) is one of the most common Salmonella serotypes in epidemiological surveys of poultry farms in recent years. It causes growth retardation, mortality, and significant economic losses. The extensive use of antibiotics has led to the emergence of multi-drug resistance (MDR) in Salmonella, which has become a significant global problem and long-term challenge. In this study, we investigated the prevalence and features of S. typhimurium strains in duck embryos and cloacal swabs from large-scale duck farms in Shandong, China, including drug resistance and virulence genes and the pathogenicity of an S. typhimurium strain by animal experiment. The results demonstrated that a total of 8 S. typhimurium strains were isolated from 13,621 samples. The drug resistance results showed that three of the eight S. typhimurium strains were MDR with the dominant resistance profile of CTX-DX-CTR-TE-AMX-AMP-CAZ. In particular, the virulence genes invA, hilA, pefA, rck, and sefA showed high positive rates. Based on the analysis of the biological characteristics of bacterial biofilm formation and mobility, a strain of S. typhimurium with the strongest biofilm formation ability, designated 22SD07, was selected for animal infection experiments with broiler ducklings. The results of animal experiments demonstrated that infection with 22SD07 reduced body weight and bursa index but increased heart and liver indexes compared to the control group. Histological examination revealed desquamation of the intestinal villous epithelium, the presence of large aggregates of lymphocytes, and a decrease in goblet cells following infection. Furthermore, the expression of IL-10 was significantly increased in the liver at 3 dpi, while TNF-α was significantly increased in the spleen at 7 dpi. The above results indicate that S. typhimurium may pose a potential threat to human health through the food chain. This helps us to understand the frequency and characteristics of S. typhimurium in duck farms and emphasizes the urgent need to strengthen and implement effective continuous monitoring to control its infection and transmission.
Collapse
Affiliation(s)
- Yulin Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Zhitong Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Shaopeng Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Mengze Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Lulu Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
5
|
Cossi MVC, Polveiro RC, Yamatogi RS, Camargo AC, Nero LA. Multi-locus sequence typing, antimicrobials resistance and virulence profiles of Salmonella enterica isolated from bovine carcasses in Minas Gerais state, Brazil. Braz J Microbiol 2024; 55:1773-1781. [PMID: 38702536 PMCID: PMC11153481 DOI: 10.1007/s42770-024-01341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
The aim of this study was to identify virulence and antimicrobial resistance profiles and determine the sequence type (ST) by multilocus sequence typing (MLST) of Salmonella enterica isolates from bovine carcasses from slaughterhouse located in Minas Gerais state, Brazil, and its relationship with bovine isolates obtained on the American continent based on sequence type profile. The MLST results were compared with all Salmonella STs associated with cattle on American continent, and a multi-locus sequence tree (MS tree) was built. Among the 17 S. enterica isolates, five ST profiles identified, and ST10 were the most frequent, grouping seven (41.2%) isolates. The isolates presented 11 different profiles of virulence genes, and six different antibiotics resistance profiles. The survey on Enterobase platform showed 333 Salmonella STs from American continent, grouped into four different clusters. Most of the isolates in the present study (13/17), were concentrated in a single cluster (L4) composed by 74 STs. As a conclusion, five different STs were identified, with ST10 being the most common. The isolates showed great diversity of virulence genes and antibiotics resistance profiles. Most of the isolates of this study were grouped into a single cluster composed by 74 STs formed by bovine isolates obtained on the American continent.
Collapse
Affiliation(s)
| | - Richard Costa Polveiro
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Ricardo Seiti Yamatogi
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Anderson Carlos Camargo
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| |
Collapse
|
6
|
Chu Y, Wang D, Hao W, Sun R, Sun J, Liu Y, Liao X. Prevalence, antibiotic resistance, virulence genes and molecular characteristics of Salmonella isolated from ducks and wild geese in China. Food Microbiol 2024; 118:104423. [PMID: 38049277 DOI: 10.1016/j.fm.2023.104423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023]
Abstract
Salmonella is a major foodborne pathogen and the cause of significant morbidity and mortality via consumption of contaminated meat and meat-products. The prevalence of Salmonella in ducks and wild geese in China are poorly characterized and these sources represent a potential pool that could be transferred to farm-reared fowl. In this study, we isolated 335 (18.3%) Salmonella from 1830 samples and identified 24 serotypes and most prevalent were Salmonella Indiana, Salmonella Kentucky and Salmonella Typhimurium. Whole genome sequencing revealed the presence of the dominant sequence types ST17, ST198 and ST19 for these three serotypes, respectively. In addition, these isolates were most likely clonally spread across different regions while S. Kentucky also crossed the species barrier. The majority of the Salmonella isolates possessed β-lactam and fluoroquinolone resistance and these were consistent with antibiotic resistance gene profiles. We also identified 8 plasmid replicon types and all isolates possessed virulence genes and the numbers were greatest for S. Enteritidis and S. Typhimurium isolates. This study provides novel insights concerning the epidemiology of Salmonella in ducks and wild geese and provides basic data for public health screening and management.
Collapse
Affiliation(s)
- Ying Chu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dong Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weihua Hao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ruanyang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yahong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaoping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Zhou L, Ye Q, Zhou Q, Wang J, Li G, Xiang J, Huang J, Zhao Y, Zheng T, Zuo H, Li S. Antimicrobial resistance and genomic investigation of Salmonella isolated from retail foods in Guizhou, China. Front Microbiol 2024; 15:1345045. [PMID: 38510999 PMCID: PMC10951074 DOI: 10.3389/fmicb.2024.1345045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Salmonella is a major foodborne pathogen worldwide that causes severe morbidity and mortality. It is mainly caused by consuming contaminated food, with retail food considered the primary source. Methods In Guizhou, China, 102 Salmonella strains isolated from 2016 to 2021 underwent phenotypic antimicrobial resistance testing and whole-genome sequencing (WGS) to understand Salmonella diversity, including serotypes, sequencing types (STs), antimicrobial genes, virulence genes, plasmid types, multi-locus sequence types (MLST), and core genome MLST (cgMLST). Results and discussion S.Typhimurium was the dominant serotype, and O:4(B) was the leading serogroup. The most prevalent genotype was ST40. Phenotypic antimicrobial resistance identified 66.7% of the sampled isolates as multi-drug resistant (MDR). S.Enteritidis (n = 7), S.Typhimurium (n = 1), S.Indiana (n = 1), S.Kentucky (n = 1), S.Uganda (n = 1), all of which were MDR, were resistant to Colistin. Resistance rates varied significantly across different strains and food types, particularly meat products exhibiting higher resistance. Notably, significant increases in resistance were observed from 2016 to 2021 for the following: ≥ 1 resistant (P = 0.001), MDR (P = 0.001), ampicillin (P = 0.001), tetracycline (P < 0.001), chloramphenicol (P = 0.030), and trimethoprim/sulfamethoxazole (P = 0.003). The marked escalation in drug resistance over the recent years, coupled with the varying resistance rates among food sources, underscores the growing public health concern. Our findings highlight the need for a coordinated approach to effectively monitor and respond to Salmonella infections in Guizhou, China.
Collapse
Affiliation(s)
- Li Zhou
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Qian Ye
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qian Zhou
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Jian Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Guanqiao Li
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jingshu Xiang
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Jingyu Huang
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Yuanyuan Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tianli Zheng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Shijun Li
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| |
Collapse
|
8
|
Conceição S, Queiroga MC, Laranjo M. Antimicrobial Resistance in Bacteria from Meat and Meat Products: A One Health Perspective. Microorganisms 2023; 11:2581. [PMID: 37894239 PMCID: PMC10609446 DOI: 10.3390/microorganisms11102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
According to the 2030 Agenda of the United Nations, one of the sustainable development goals is to ensure sustainable consumption and production patterns. The need to ensure food safety includes, other than microbiological hazards, concerns with antimicrobial-resistant (AMR) bacteria. The emergence of resistant bacteria in the food industry is essentially due to the abusive, and sometimes incorrect, administration of antimicrobials. Although not allowed in Europe, antimicrobials are often administered to promote animal growth. Each time antimicrobials are used, a selective pressure is applied to AMR bacteria. Moreover, AMR genes can be transmitted to humans through the consumption of meat-harbouring-resistant bacteria, which highlights the One Health dimension of antimicrobial resistance. Furthermore, the appropriate use of antimicrobials to ensure efficacy and the best possible outcome for the treatment of infections is regulated through the recommendations of antimicrobial stewardship. The present manuscript aims to give the current state of the art about the transmission of AMR bacteria, particularly methicillin-resistant S. aureus, ESBL-producing Enterobacteriaceae, and vancomycin-resistant Enterococcus spp., along with other ESKAPE bacteria, from animals to humans through the consumption of meat and meat products, with emphasis on pork meat and pork meat products, which are considered the most consumed worldwide.
Collapse
Affiliation(s)
- Sara Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
| | - Maria Cristina Queiroga
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Marta Laranjo
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
9
|
Mkangara M. Prevention and Control of Human Salmonella enterica Infections: An Implication in Food Safety. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8899596. [PMID: 37727836 PMCID: PMC10506869 DOI: 10.1155/2023/8899596] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Salmonella is a foodborne zoonotic pathogen causing diarrhoeal disease to humans after consuming contaminated water, animal, and plant products. The bacterium is the third leading cause of human death among diarrhoeal diseases worldwide. Therefore, human salmonellosis is of public health concern demanding integrated interventions against the causative agent, Salmonella enterica. The prevention of salmonellosis in humans is intricate due to several factors, including an immune-stable individual infected with S. enterica continuing to shed live bacteria without showing any clinical signs. Similarly, the asymptomatic Salmonella animals are the source of salmonellosis in humans after consuming contaminated food products. Furthermore, the contaminated products of plant and animal origin are a menace in food industries due to Salmonella biofilms, which enhance colonization, persistence, and survival of bacteria on equipment. The contaminated food products resulting from bacteria on equipment offset the economic competition of food industries and partner institutions in international business. The most worldwide prevalent broad-range Salmonella serovars affecting humans are Salmonella Typhimurium and Salmonella Enteritidis, and poultry products, among others, are the primary source of infection. The broader range of Salmonella serovars creates concern over multiple strategies for preventing and controlling Salmonella contamination in foods to enhance food safety for humans. Among the strategies for preventing and controlling Salmonella spread in animal and plant products include biosecurity measures, isolation and quarantine, epidemiological surveillance, farming systems, herbs and spices, and vaccination. Other measures are the application of phages, probiotics, prebiotics, and nanoparticles reduced and capped with antimicrobial agents. Therefore, Salmonella-free products, such as beef, pork, poultry meat, eggs, milk, and plant foods, such as vegetables and fruits, will prevent humans from Salmonella infection. This review explains Salmonella infection in humans caused by consuming contaminated foods and the interventions against Salmonella contamination in foods to enhance food safety and quality for humans.
Collapse
Affiliation(s)
- Mwanaisha Mkangara
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P.O. Box 2958, Dar es Salaam, Tanzania
| |
Collapse
|
10
|
Wang W, Yi Z, Cai W, Ma J, Yang H, Zhou M, Xiao X. Differences in Bacterial Communities of Retail Raw Pork in Different Market Types in Hangzhou, China. Foods 2023; 12:3357. [PMID: 37761065 PMCID: PMC10529276 DOI: 10.3390/foods12183357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Pork is widely consumed globally, and pigs' microbiota can potentially harbor foodborne pathogens. Contaminated pork in retail markets poses significant implications for food quality and safety. However, limited studies have compared pork microbiomes in various marketing environments. In this study, we utilized traditional microbial culture methods and high-throughput 16S rRNA sequencing to assess pathogen contamination and bacterial diversity in raw pork samples purchased from farmers' markets and two types of supermarkets (upscale and ordinary) in Hangzhou, China. Traditional microbial plate cultures identified E. coli and Salmonella spp. in 32.1% (27/84) and 15.5% (13/84) of the collected pork samples, respectively. Moreover, 12 out of 13 Salmonella strains were found in farmers' markets. The MIC results indicated a high prevalence of MDR strains, accounting for 51.9% in E. coli and 53.8% in Salmonella. The prevalence of NaClO tolerant strains was 33.3% and 92.3% for E. coli and Salmonella, respectively. Sequencing results indicated significantly higher microbial diversity in farmers' market samples compared to supermarket samples. Farmers' market pork samples exhibited a greater abundance of Acinetobacter, while Pseudomonas and Brochothrix were predominant in supermarket samples. The total abundance of pathogenic and spoilage bacteria was also higher for the farmers' market samples. Cross-contamination during market trading was evident through a high correlation between bacterial abundance in pork from different stalls within the same farmers' market. PICRUSt2 analysis identified significant differences in the average proportions of genes for carbohydrate, energy, and lipid metabolism from the farmers' markets, suggesting an exacerbation of microbial metabolic activity and increased perishability of pork in this environment. In conclusion, this study revealed variations in the characteristics of raw pork bacterial contamination across different types of retail stores, as well as differences in the composition and diversity of their respective bacterial communities.
Collapse
Affiliation(s)
- Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Zhengkai Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Wei Cai
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China;
| | - Jiele Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China;
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; (W.W.); (Z.Y.); (J.M.); (H.Y.)
| |
Collapse
|
11
|
Wang W, Li T, Chen J, Ye Y. Inhibition of Salmonella Enteritidis by Essential Oil Components and the Effect of Storage on the Quality of Chicken. Foods 2023; 12:2560. [PMID: 37444298 PMCID: PMC10341335 DOI: 10.3390/foods12132560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
This research investigates the antibacterial potential of plant essential oil components including thymol, carvacrol, citral, cinnamaldehyde, limonene, and β-pinene against Salmonella Enteritidis (S. Enteritidis). Through the determination of minimum inhibitory concentration, three kinds of natural antibacterial agents with the best inhibitory effect on S. Enteritidis were determined, namely thymol (128 μg/mL), carvacrol (256 μg/mL), and cinnamaldehyde (128 μg/mL). Physical, chemical, microbial, and sensory characteristics were regularly monitored on days 0, 2, 4, and 6. The findings of this study reveal that both thymol at MIC of 128 μg/mL and carvacrol at MIC of 256 μg/mL not only maintained the sensory quality of chicken, but also decreased the pH, moisture content, and TVB-N value. Additionally, thymol, carvacrol and cinnamaldehyde successfully inhibited the formation of S. Enteritidis biofilm, thereby minimizing the number of S. Enteritidis and the total aerobic plate count in chicken. Hence, thymol, carvacrol, and cinnamaldehyde have more effective inhibitory activities against S. Enteritidis, which can effectively prevent the spoilage of chicken and reduce the loss of its functional components.
Collapse
Affiliation(s)
- Wu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (J.C.); (Y.Y.)
| | | | | | | |
Collapse
|
12
|
Tang B, Siddique A, Jia C, Ed-Dra A, Wu J, Lin H, Yue M. Genome-based risk assessment for foodborne Salmonella enterica from food animals in China: A One Health perspective. Int J Food Microbiol 2023; 390:110120. [PMID: 36758302 DOI: 10.1016/j.ijfoodmicro.2023.110120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Salmonella is one of the most common causes of foodborne bacterial disease. Animal-borne foods are considered the primary sources of Salmonella transmission to humans. However, genomic assessment of antimicrobial resistance (AMR) and virulence of Salmonella based on One Health approach remains obscure in China. For this reason, we analyzed the whole genome sequencing data of 134 Salmonella isolates recovered from different animal and meat samples in China. The 134 Salmonella were isolated from 2819 samples (4.75 %) representing various sources (pig, chicken, duck, goose, and meat) from five Chinese provinces (Zhejiang, Guangdong, Jiangxi, Hunan, and Qinghai). AMR was evaluated by the broth dilution method using 13 different antimicrobial agents, and results showed that 85.82 % (115/134) of isolates were resistant to three or more antimicrobial classes and were considered multidrug-resistant (MDR). Twelve sequence types (STs) were detected, with a dominance of ST469 (29.85 %, 40/134). The prediction of virulence genes showed the detection of cdtB gene encoding typhoid toxins in one isolate of S. Muenster recovered from chicken, while virulence genes associated with type III secretion systems were detected in all isolates. Furthermore, plasmid-type prediction showed the abundance of IncFII(S) (13/134; 9.7 %) and IncFIB(S) (12/134; 8.95 %) in the studied isolates. Together, this study demonstrated the ability to use whole-genome sequencing (WGS) as a cost-effective method to provide comprehensive knowledge about foodborne Salmonella isolates in One Health surveillance approach.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Abubakar Siddique
- Hainan Institute of Zhejiang University, Sanya 572025, China; Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Chenhao Jia
- Hainan Institute of Zhejiang University, Sanya 572025, China; Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Jing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya 572025, China; Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Elbediwi M, Tang Y, Yue M. Genomic characterization of ESBL-producing Salmonella Thompson isolates harboring mcr-9 from dead chick embryos in China. Vet Microbiol 2023; 278:109634. [PMID: 36610099 DOI: 10.1016/j.vetmic.2022.109634] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The emergence and dissemination of the extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae harbouring antimicrobial resistance (AMR) genes has diminished the potential options for treating multidrug-resistant (MDR) bacterial infections. Until now, numerous studies reported the spreading of critical plasmid-borne AMR genes from different sources worldwide. While the knowledge on the occurrence of the plasmid-borne AMR genes, especially mcr genes in the dead chick embryos, remains obscure. A retrospective study was conducted to detect the presence of the mcr genes in forty-five Salmonella enterica isolates recovered from 2139 dead chick embryo samples, from breeding chicken hatcheries in Henan, China. Using multiplex PCR, we found only four isolates out of the forty-five were mcr-9-positive. These four isolates were found to be MDR, ESBL- producing and showed resistance to 10 antimicrobial drugs. Additionally, mcr-9 harbouring plasmids were successfully transferred into Escherichia coli (E. coli) J53 by conjugation and the mcr-9 gene was confirmed by PCR. We also found that the transconjugants exhibited higher MICs for ampicillin, gentamycin and colistin than the recipient. Whole-genome sequence analysis showed that the four isolates belonged to Salmonella Thompson ST26 and harboured IncHI2 plasmid replicon. Furthermore, the mcr-9 harbouring plasmids were reconstructed using in silico tools and found to be carried other AMR genes (blaDHA-1 and qnrB4). The studied isolates carried the typical virulence factors from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), in addition to pef and csg operons which are important in host adhesion and biofilm formation. The mgtC gene, which is involved in phagocytosis, has also been identified. Together, the increase in the phenotypic resistance of the transconjugants and the plasmid in silico reconstruction analysis confirmed that the corresponding resistance genes might be located together on the same plasmid. To track the potential phylogenomic relations of our detected ESBL S. Thompson isolates, we constructed a phylogenomic tree with available ESBL S. Thompson genomes (n = 26) that were reported worldwide. The studied isolates were independently clustered together with four other Chinese isolates of food origin in one clade, providing strong evidence of a potential recent and wide dissemination of ESBL S. Thompson across the food chain in China. In conclusion, we report the detection of four highly virulent ESBL-producing S. Thompson ST26 isolates harbouring mcr-9 gene obtained from dead chick embryos in Henan, China.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.
| | - Yanting Tang
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Guo L, Xiao T, Wu L, Li Y, Duan X, Liu W, Liu K, Jin W, Ren H, Sun J, Liu Y, Liao X, Zhao Y. Comprehensive profiling of serotypes, antimicrobial resistance and virulence of Salmonella isolates from food animals in China, 2015-2021. Front Microbiol 2023; 14:1133241. [PMID: 37082181 PMCID: PMC10110913 DOI: 10.3389/fmicb.2023.1133241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction Salmonella is a ubiquitous foodborne pathogen and mainly transmitted to human farm-to-fork chain through contaminated foods of animal origin. Methods In this study, we investigated the serotypes, antimicrobial resistance and virulence of Salmonella from China. Results A total of 617 Salmonella isolates were collected from 4 major food animal species across 23 provi nces in China from 2015-2021. Highest Salmonella prevalence were observed in Guangdong (44.4%) and Sandong (23.7%). Chickens (43.0%) was shown to be the major source of Salmonella contamination, followed by pigs (34.5%) and ducks (18.5%). The number of Salmonella increased significantly from 5.51% to 27.23% during 2015-2020. S. Derby (17.3%), S. Enteritidis (13.1%) and S. Typhimurium (11.4%) were the most common serotypes among 41 serotypes identifiedin this study. Antibiotic susceptibility testing showing that the majority of the Salmonella isolates were resistant to neomycin (99.7%), tetracycline (98.1%), ampicillin (97.4%), sulfadiazine/trimethoprim (97.1%), nalidixic acid (89.1%), doxycycline (83.1%), ceftria xone (70.3%), spectinomycin (67.7%), florfenicol (60.0%), cefotaxime (52.0%) and lomefloxacin (59.8%). The rates of resistance to multiple antibiotics in S. Derby and S.Typhimurium were higher than that in S. Enteritidis. However, the rate of resistance to fosfomycin were observed from higher to lower by S. Derby, S. Enteritidis, and S. Typhimurium. Biofilm formation ability analysis found that 88.49%of the Salmonella were able to produce biofilms, of which 236 Salmonella isolates were strong biofilm producer. Among the 26 types of antibiotics resistance genes (ARGs) were identified in this study, 4 ARGs (tetB,sul2,aadA2, and aph(3')-IIa) were highly prevalent. In addition, 5 β-lactam resistance genes (bla TEM, bla SHV, bla CMY-2, bla CTX-M, and bla OXA) and 7 quinolone resistance genes (oqxA, oqxB, qnrB, qnrC, qnrD, qnrS, and qeqA) were detected among these isolates. 12 out of 17 virulence genes selected in this study were commonly presented in the chromosomes of tested isolate, with a detection rate of over 80%, including misL, spiA, stn, pagC, iroN, fim, msgA, sopB, prgH, sitC, ttrC, spaN. Discussion This study provided a systematical updating on surveillance on prevalence of Salmonella from food animals in China, shedding the light on continued vigilance for Salmonella in food animals.
Collapse
Affiliation(s)
- Lili Guo
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Bolin Biotechnology Co., Qingdao, China
| | - Tianan Xiao
- Guangdong Veterinary Medicine and Feed Supervision Institute, Guangzhou, China
| | - Liqin Wu
- Guangdong Veterinary Medicine and Feed Supervision Institute, Guangzhou, China
| | - Yan Li
- Qingdao Municipal Center for Animal Disease Control and Prevention, Qingdao, China
| | - Xiaoxiao Duan
- Qingdao Municipal Center for Animal Disease Control and Prevention, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Kaidi Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenjie Jin
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yahong Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoping Liao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Xiaoping Liao,
| | - Yongda Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Yongda Zhao,
| |
Collapse
|
15
|
Li Y, Ed-Dra A, Tang B, Kang X, Müller A, Kehrenberg C, Jia C, Pan H, Yang H, Yue M. Higher tolerance of predominant Salmonella serovars circulating in the antibiotic-free feed farms to environmental stresses. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129476. [PMID: 35809365 DOI: 10.1016/j.jhazmat.2022.129476] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
To counteract the dramatic increase in antibiotic-resistant bacterial pathogens, many countries, including China, have banned the use of antibiotic-supplemented feed for farming animals. However, the exact consequences of this policy have not been systematically evaluated. Therefore, Salmonella isolates from farms that ceased using antibiotics 1-5 years ago were compared with isolates from farms that continue to use antimicrobials as growth promotors. Here, we used whole-genome sequencing combined with in-depth phenotypic assays to investigate the ecology, epidemiology, and persistence of multi-drug resistant (MDR) Salmonella from animal farms during the withdrawal of antibiotic growth promotors. Our results showed that the prevalence of Salmonella was significantly lower in antibiotic-free feed (AFF) farms compared to conventional-feed (CF) farms, even though all isolates obtained from AFF farms were MDR (>5 classes) and belonged to well-recognized predominant serovars. The additional phylogenomic analysis combined with principal component analysis showed high similarity between the predominant serovars in AFF and CF farms. This result raised questions regarding the environmental persistence capabilities of MDR strain despite AFF policy. To address this question, a representative panel of 20 isolates was subjected to disadvantageous environmental stress assays. These results showed that the predominant serovars in AFF and CF farms were more tolerant to stress conditions than other serovars. Collectively, our findings suggest that AFF helps eliminate only specific MDR serovars, and future guiding policies would benefit by identifying predominant Salmonella clones in problematic farms to determine the use of AFF and additional targeted interventions.
Collapse
Affiliation(s)
- Yan Li
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China; Hainan Institute of Zhejiang University, Sanya, China.
| | | | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Xiamei Kang
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China.
| | - Anja Müller
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany.
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany.
| | - Chenghao Jia
- Hainan Institute of Zhejiang University, Sanya, China.
| | - Hang Pan
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China.
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China; Hainan Institute of Zhejiang University, Sanya, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Chen J, Ed-Dra A, Zhou H, Wu B, Zhang Y, Yue M. Antimicrobial resistance and genomic investigation of non-typhoidal Salmonella isolated from outpatients in Shaoxing city, China. Front Public Health 2022; 10:988317. [PMID: 36176509 PMCID: PMC9513250 DOI: 10.3389/fpubh.2022.988317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Human non-typhoidal salmonellosis is among the leading cause of morbidity and mortality worldwide, resulting in huge economic losses and threatening the public health systems. To date, epidemiological characteristics of non-typhoidal Salmonella (NTS) implicated in human salmonellosis in China are still obscure. Herein, we investigate the antimicrobial resistance and genomic features of NTS isolated from outpatients in Shaoxing city in 2020. Eighty-seven Salmonella isolates were recovered and tested against 28 different antimicrobial agents, representing 12 categories. The results showed high resistance to cefazolin (86.21%), streptomycin (81.61%), ampicillin (77.01%), ampicillin-sulbactam (74.71%), doxycycline (72.41%), tetracycline (71.26%), and levofloxacin (70.11%). Moreover, 83.91% of isolates were resistant to ≥3 categories, which were considered multi-drug resistant (MDR). Whole-genome sequencing (WGS) combined with bioinformatic analysis was used to predict serovars, MLST types, plasmid replicons, antimicrobial resistance genes, and virulence genes, in addition to the construction of phylogenomic to determine the epidemiological relatedness between isolates. Fifteen serovars and 16 STs were identified, with the dominance of S. I 4, [5], 12:i:- ST34 (25.29%), S. Enteritidis ST11 (22.99%), and S. Typhimurium ST19. Additionally, 50 resistance genes representing ten categories were detected with a high prevalence of aac(6')-Iaa (100%), bla TEM-1B (65.52%), and tet(A) (52.87%), encoding resistance to aminoglycosides, β-lactams, and tetracyclines, respectively; in addition to chromosomic mutations affecting gyrA gene. Moreover, we showed the detection of 18 different plasmids with the dominance of IncFIB(S) and IncFII(S) (39.08%). Interestingly, all isolates harbor the typical virulence genes implicated in the virulence mechanisms of Salmonella, while one isolate of S. Jangwani contains the cdtB gene encoding typhoid toxin production. Furthermore, the phylogenomic analysis showed that all isolates of the same serovar are very close to each other and clustered together in the same clade. Together, we showed a high incidence of MDR among the studied isolates which is alarming for public health services and is a major threat to the currently available treatments to deal with human salmonellosis; hence, efforts should be gathered to further introduce WGS in routinely monitoring of AMR Salmonella in the medical field in order to enhance the effectiveness of surveillance systems and to limit the spread of MDR clones.
Collapse
Affiliation(s)
- Jiancai Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Haiyang Zhou
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yunyi Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,*Correspondence: Yunyi Zhang
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China,Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Min Yue
| |
Collapse
|
17
|
Teng KTY, Aerts M, Jaspers S, Ugarte-Ruiz M, Moreno MA, Saez JL, Collado S, de Frutos C, Dominguez L, Alvarez J. Patterns of antimicrobial resistance in Salmonella isolates from fattening pigs in Spain. BMC Vet Res 2022; 18:333. [PMID: 36057710 PMCID: PMC9440507 DOI: 10.1186/s12917-022-03377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Swine are considered a major source of foodborne salmonellosis, a public health issue further complicated by the circulation of multidrug-resistant Salmonella strains that threaten the safety of the food chain. The current study aimed to identify patterns that can help to understand the epidemiology of antimicrobial resistance (AMR) in Salmonella in pigs in Spain through the application of several multivariate statistical methods to data from the AMR national surveillance programs from 2001 to 2017. Results A total of 1,318 pig Salmonella isolates belonging to 63 different serotypes were isolated and their AMR profiles were determined. Tetracycline resistance across provinces in Spain was the highest among all antimicrobials and ranged from 66.7% to 95.8%, followed by sulfamethoxazole resistance (range: 42.5% − 77.8%), streptomycin resistance (range: 45.7% − 76.7%), ampicillin resistance (range: 24.3% − 66.7%, with a lower percentage of resistance in the South-East of Spain), and chloramphenicol resistance (range: 8.5% − 41.1%). A significant increase in the percentage of resistant isolates to chloramphenicol, sulfamethoxazole, ampicillin and trimethoprim from 2013 to 2017 was observed. Bayesian network analysis showed the existence of dependencies between resistance to antimicrobials of the same but also different families, with chloramphenicol and sulfamethoxazole in the centre of the networks. In the networks, the conditional probability for an isolate susceptible to ciprofloxacin that was also susceptible to nalidixic acid was 0.999 but for an isolate resistant to ciprofloxacin that was also resistant to nalidixic acid was only 0.779. An isolate susceptible to florfenicol would be expected to be susceptible to chloramphenicol, whereas an isolate resistant to chloramphenicol had a conditional probability of being resistant to florfenicol at only 0.221. Hierarchical clustering further demonstrated the linkage between certain resistances (and serotypes). For example, a higher likelihood of multidrug-resistance in isolates belonging to 1,4,[5],12:i:- serotype was found, and in the cluster where all isolates were resistant to tetracycline, chloramphenicol and florfenicol, 86.9% (n = 53) of the isolates were Typhimurium. Conclusion Our study demonstrated the power of multivariate statistical methods in discovering trends and patterns of AMR and found the existence of serotype-specific AMR patterns for serotypes of public health concern in Salmonella isolates in pigs in Spain. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03377-3.
Collapse
Affiliation(s)
- Kendy Tzu-Yun Teng
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain. .,Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan.
| | - Marc Aerts
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.,Data Science Institute, Hasselt University, Diepenbeek, Belgium
| | - Stijn Jaspers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.,Data Science Institute, Hasselt University, Diepenbeek, Belgium
| | - Maria Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
| | - Miguel A Moreno
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense, Madrid, Spain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de La Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Soledad Collado
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de La Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria (LCV Algete), Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Lucas Dominguez
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.,Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
18
|
Peng X, Ed-Dra A, Song Y, Elbediwi M, Nambiar RB, Zhou X, Yue M. Lacticaseibacillus rhamnosus alleviates intestinal inflammation and promotes microbiota-mediated protection against Salmonella fatal infections. Front Immunol 2022; 13:973224. [PMID: 36032095 PMCID: PMC9411107 DOI: 10.3389/fimmu.2022.973224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 01/17/2023] Open
Abstract
The fatal impairment of the intestinal mucosal barrier of chicks caused by Salmonella significantly resulting economic losses in the modern poultry industry. Probiotics are recognized for beneficially influencing host immune responses, promoting maintenance of intestinal epithelial integrity, antagonistic activity against pathogenic microorganisms and health-promoting properties. Some basic studies attest to probiotic capabilities and show that Lacticaseibacillus rhamnosus could protect intestinal mucosa from injury in animals infected with Salmonella Typhimurium. However, the mechanisms underlying its protective effects in chicks are still not fully understood. Here, we used the chick infection model combined with histological, immunological, and molecular approaches to address this question. The results indicated that L. rhamnosus significantly reduced the diarrhea rate and increased the daily weight gain and survival rate of chicks infected with S. Typhimurium. Furthermore, we found that L. rhamnosus markedly improved the immunity of gut mucosa by reducing apoptotic cells, hence effectively inhibiting intestinal inflammation. Notably, pre-treatment chicks with L. rhamnosus balanced the expression of interleukin-1β and interleukin-18, moderated endotoxin and D-lactic acid levels, and expanded tight junction protein levels (Zonula occluden-1 and Claudin-1), enhanced the function of the intestinal mucosal epithelial cells. Additionally, investigations using full-length 16S rRNA sequencing also demonstrated that L. rhamnosus greatly weakened the adhesion of Salmonella, the mainly manifestation is the improvement of the diversity of intestinal microbiota in infected chicks. Collectively, these results showed the application of L. rhamnosus against Salmonella fatal infection by enhancing barrier integrity and the stability of the gut microbiota and reducing inflammation in new hatch chicks, offering new antibiotic alternatives for farming animals.
Collapse
Affiliation(s)
- Xianqi Peng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | - Yan Song
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Reshma B. Nambiar
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao Zhou
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Min Yue,
| |
Collapse
|
19
|
Miao S, Liu LI, Fu Z. Prevalence of Salmonella in Chinese Food Commodities: A Meta-Analysis. J Food Prot 2022; 85:859-870. [PMID: 34818424 DOI: 10.4315/jfp-21-304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/18/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The objective of the present study was to analyze the prevalence of Salmonella in multiple food commodities in the People's Republic of China by performing a meta-analysis. Accordingly, we screened studies that examined the prevalence of Salmonella in PubMed, Embase, and Web of Science databases. Methodological quality assessment and heterogeneity analyses were performed for included studies. The prevalence rate with the 95% confidence interval (CI) was selected as the effect size. Subgroup analyses for each food type were conducted and then stratified by regions, food chain processing points, and seasons. In total, 49 studies were included in the meta-analysis, among them, 8 (16.3%) studies were deemed "high risk," 13 (26.5%) studies were "unclear risk," and 28 (57.2%) studies were "low risk." The overall prevalence rate of Salmonella was 20.0% (95% CI: 15.9 to 24.4). The prevalence rate of Salmonella in raw meat products was 23.6% (95% CI: 19.8 to 27.6), which was higher than that in aquatic products, 13.7% (95% CI: 3.1 to 29.9), milk products, 0.9% (95% CI: 0.0 to 3.9), frozen convenience foods, 6.5% (95% CI: 4.4 to 8.9), ready-to-eat foods, 2.0% (95% CI: 1.1 to 3.2), vegetables and fruits, 0.9% (95% CI: 0.0 to 5.2), and shell eggs, 4.2% (95% CI: 3.0 to 5.7). Subgroup analyses revealed that prevalence rates of Salmonella in raw meat products from abattoirs, 26.3% (95% CI: 17.4 to 36.3) and retail stores, 30.0% (95% CI: 24.6 to 35.8) were higher than those determined from farms, 10.2% (95% CI: 7.0 to 13.9); P < 0.05); however, no significant difference was observed in the prevalence of Salmonella stratified by different geographical regions or seasons (P > 0.05). On the basis of these findings, high levels of Salmonella contamination could be detected in raw meat products in China, and the prevalence rate of Salmonella in raw meat products from abattoirs and retail stores was high. HIGHLIGHTS
Collapse
Affiliation(s)
- Song Miao
- Department of Inspection, Shizhong District, Jinan, Shandong 250002, People's Republic of China
| | - L I Liu
- Department of Clinical Medicine, Shizhong District, Jinan, Shandong 250002, People's Republic of China
| | - Zheng Fu
- Department of Pharmacy, Shandong Medical College, Shizhong District, Jinan, Shandong 250002, People's Republic of China
| |
Collapse
|
20
|
Xu JG, Hu HX, Han BZ, Chen JY. Interactions between Salmonella Enteritidis and food processing facility isolate Bacillus paramycoides B5 in dual-species biofilms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Shi D, Anwar TM, Pan H, Chai W, Xu S, Yue M. Genomic Determinants of Pathogenicity and Antimicrobial Resistance for 60 Global Listeria monocytogenes Isolates Responsible for Invasive Infections. Front Cell Infect Microbiol 2021; 11:718840. [PMID: 34778102 PMCID: PMC8579135 DOI: 10.3389/fcimb.2021.718840] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes remains a significant public health threat, causing invasive listeriosis manifested as septicemia, meningitis, and abortion, with up to 30% of cases having a fatal outcome. Tracking the spread of invasive listeriosis requires an updated knowledge for virulence factors (VFs) and antimicrobial resistance features, which is an essential step toward its clinical diagnosis and treatment. Taking advantage of high-throughput genomic sequencing, we proposed that the differential genes based on the pathogenomic composition could be used to evaluate clinical observations and therapeutic options for listeriosis. Here, we performed the comparative genomic analysis of 60 strains from five continents with a diverse range of sources, representing serotypes 1/2a, 1/2b, 1/2c, and 4b, comprising lineage I and lineage II and including 13 newly contributed Chinese isolates from clinical cases. These strains were associated with globally distributed clonal groups linked with confirmed foodborne listeriosis outbreak and sporadic cases. We found that L. monocytogenes strains from clonal complex (CC) CC8, CC7, CC9, and CC415 carried most of the adherence and invasive genes. Conversely, CC1, CC2, CC4, and CC6 have the least number of adherence and invasive genes. Additionally, Listeria pathogenicity island-1 (LIPI-1), LIPI-2, intracellular survival, surface anchoring, and bile salt resistance genes were detected in all isolates. Importantly, LIPI-3 genes were harbored in CC3, CC224, and ST619 of the Chinese isolates and in CC1, CC4, and CC6 of other worldwide isolates. Notably, Chinese isolates belonging to CC14 carried antibiotic resistance genes (ARGs) against β-lactams (blaTEM-101, blaTEM-105) and macrolide (ermC-15), whereas CC7 and CC8 isolates harbored ARGs against aminoglycoside (aadA10_2, aadA6_1), which may pose a threat to therapeutic efficacy. Phylogenomic analysis showed that CC8, CC7, and CC5 of Chinese isolates, CC8 (Swiss and Italian isolates), and CC5 and CC7 (Canadian isolates) are closely clustered together and belonged to the same CC. Additionally, CC381 and CC29 of Chinese isolates shared the same genomic pattern as CC26 of Swiss isolate and CC37 of Canadian isolate, respectively, indicating strong phylogenomic relation between these isolates. Collectively, this study highlights considerable clonal diversity with well-recognized virulence and antimicrobial-resistant determinants among Chinese and worldwide isolates that stress to design improved strategies for clinical therapies.
Collapse
Affiliation(s)
- Dawei Shi
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Tanveer Muhammad Anwar
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Hang Pan
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Wenqin Chai
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Sihong Xu
- Division II of In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National Institutes for Food and Drug Control, Beijing, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
22
|
Wang X, Xie Y, Cai H, Duan S, Song X, Wu Y, Fang T, Dong Q, Liu H. Growth and survival characteristics of Salmonella enterica regarding antibiotic resistance phenotypes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Wang W, Chen J, Shao X, Huang P, Zha J, Ye Y. Occurrence and antimicrobial resistance of Salmonella isolated from retail meats in Anhui, China. Food Sci Nutr 2021; 9:4701-4710. [PMID: 34531984 PMCID: PMC8441314 DOI: 10.1002/fsn3.2266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonella is considered one of the major foodborne pathogens associated with severe infections. Little attempt has been focused on the distribution of Salmonella in retail meats and the analysis of its phenotypic characteristics in Anhui Province. The aim of this study was to characterize the prevalence of Salmonella serovars, antimicrobial susceptibility, antimicrobial resistance genes, and virulence genes in Salmonella recovered from retail meats in Anhui, China. Out of the 120 samples collected from supermarket chains and open-air markets, 16 samples (13.3%) were positive for Salmonella, of which Salmonella enterica serovars Enteritidis and Typhimurium were the common serotypes. Significant differences in incidence were found between supermarket chains and open-air markets (p < 0.05). Overall, all 16 isolates were resistant to at least two tested antimicrobials, while 12 isolates showed multiple antimicrobial resistant phenotypes. High resistance was observed for ampicillin (87.5%), doxycycline (75.0%), and tetracycline (62.5%). The sul2 was detected in all isolates, and the aac(6')-Ib-cr (93.8%) and the tetA (81.3%) were predominant in 10 resistance genes conferring five classes of antimicrobials. In addition, the correlation between resistance phenotypes and genes of tetracyclines and aminoglycosides was more than 80%. Interestingly, all the Salmonella isolates contained the genes mogA, mgtC, sopB, and spvB, whereas the siiE was variably represented. The findings in this study showed high prevalence, antimicrobial resistance, and the existence of virulence genes, suggesting that effective measures are required to ensure microbial safety from retail meats.
Collapse
Affiliation(s)
- Wu Wang
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Jing Chen
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Xuefei Shao
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Pan Huang
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Jing Zha
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Yingwang Ye
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| |
Collapse
|
24
|
Elbediwi M, Tang Y, Shi D, Ramadan H, Xu Y, Xu S, Li Y, Yue M. Genomic Investigation of Antimicrobial-Resistant Salmonella enterica Isolates From Dead Chick Embryos in China. Front Microbiol 2021; 12:684400. [PMID: 34497590 PMCID: PMC8419455 DOI: 10.3389/fmicb.2021.684400] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonella spp. is recognized as an important zoonotic pathogen. The emergence of antimicrobial resistance in Salmonella enterica poses a great public health concern worldwide. While the knowledge on the incidence and the characterization of different S. enterica serovars causing chick embryo death remains obscure in China. In this study, we obtained 45 S. enterica isolates from 2,139 dead chick embryo samples collected from 28 breeding chicken hatcheries in Henan province. The antimicrobial susceptibility assay was performed by the broth microdilution method and the results showed that 31/45 (68.8%) isolates were multidrug-resistant (≥3 antimicrobial classes). Besides the highest resistance rate was observed in the aminoglycoside class, all the isolates were susceptible to chloramphenicol, azithromycin, and imipenem. Furthermore, genomic characterization revealed that S. Enteritidis (33.33%; 15/45) was a frequent serovar that harbored a higher number of virulence factors compared to other serovars. Importantly, genes encoding β-lactamases were identified in three serovars (Thompson, Enteritidis, and Kottbus), whereas plasmid-mediated quinolone resistance genes (qnrB4) were detected in certain isolates of S. Thompson and the two S. Kottbus isolates. All the examined isolates harbored the typical virulence factors from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Additionally, a correlation analysis between the antimicrobial resistance genes, phenotype, and plasmids was conducted among Salmonella isolates. It showed strong positive correlations (r < 0.6) between the different antimicrobial-resistant genes belonging to certain antimicrobial classes. Besides, IncF plasmid showed a strong negative correlation (r > −0.6) with IncHI2 and IncHI2A plasmids. Together, our study demonstrated antimicrobial-resistant S. enterica circulating in breeding chicken hatcheries in Henan province, highlighting the advanced approach, by using genomic characterization and statistical analysis, in conducting the routine monitoring of the emerging antimicrobial-resistant pathogens. Our findings also proposed that the day-old breeder chicks trading could be one of the potential pathways for the dissemination of multidrug-resistant S. enterica serovars.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Yanting Tang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Dawei Shi
- National Institutes for Food and Drug Control, Beijing, China
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.,Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Athens, GA, United States
| | - Yaohui Xu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Sihong Xu
- National Institutes for Food and Drug Control, Beijing, China
| | - Yan Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Hainan Institute of Zhejiang University, Sanya, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Hainan Institute of Zhejiang University, Sanya, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Qiu YF, Nambiar RB, Xu XB, Weng ST, Pan H, Zheng KC, Yue M. Global Genomic Characterization of Salmonella enterica Serovar Telelkebir. Front Microbiol 2021; 12:704152. [PMID: 34394052 PMCID: PMC8358458 DOI: 10.3389/fmicb.2021.704152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is a common cause for self-limiting gastroenteritis, representing a public health concern globally. NTS is one of the leading causes of foodborne illnesses in China; however, the invasive infection caused by NTS is largely underappreciated. Here, we reported an NTS invasive infection caused by an infrequently reported serovar Telelkebir (13,23:d:e,n,z15) strain FJ001 in China, which carries antimicrobial-resistant genes [fosA7 and aac(6')-Iaa] and typhoid-toxin genes (cdtB, pltA, and pltB). By conducting the whole genomic sequencing, we also investigated the relatedness of this strain with an additional 120 global contextual Salmonella enterica serovar Telelkebir (S. Telelkebir) isolates, and assessed the antimicrobial-resistant determinants and key virulence factors using the available genomic dataset. Notably, all 121 (100%) of the S. Telelkebir strains possessed the typhoid toxin genes cdtB, pltA, and pltB, and 58.67% (71/121) of S. Telelkebir harbored antimicrobial-resistant gene fosaA7. The study by core genome multilocus sequence typing (cgMLST) and core single-nucleotide polymorphism (SNP)-based phylogenomic analysis demonstrated that the S. Telelkebir isolates from different sources and locations clustered together. This suggests that regular international travels might increase the likelihood of rapid and extensive transmissions of potentially pathogenic bacteria. For the first time, our study revealed the antimicrobial resistance, virulence patterns, and genetic diversity of the serovar S. Telelkebir isolate in humans and similar isolates over the world. The present study also suggests that genomic investigation can facilitate surveillance and could offer added knowledge of a previously unknown threat with the unique combination of virulent and antimicrobial-resistant determinants.
Collapse
Affiliation(s)
- Yu-Feng Qiu
- Department of Bacterialogy, Fujian Provincial Center for Disease Control & Prevention, Fuzhou, China.,Department of Bacterialogy, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Reshma B Nambiar
- Department of Veterinary Medicine & Institute of Preventive Veterinary Science, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xue-Bin Xu
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Shun-Tai Weng
- Department of Bacterialogy, Fujian Provincial Center for Disease Control & Prevention, Fuzhou, China.,Department of Bacterialogy, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
| | - Hang Pan
- Department of Veterinary Medicine & Institute of Preventive Veterinary Science, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Kui-Cheng Zheng
- Department of Bacterialogy, Fujian Provincial Center for Disease Control & Prevention, Fuzhou, China.,Department of Bacterialogy, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China.,School of Public Health, Fujian Medical University, Fuzhou, China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Science, Zhejiang University College of Animal Sciences, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
26
|
Elbediwi M, Shi D, Biswas S, Xu X, Yue M. Changing Patterns of Salmonella enterica Serovar Rissen From Humans, Food Animals, and Animal-Derived Foods in China, 1995-2019. Front Microbiol 2021; 12:702909. [PMID: 34394048 PMCID: PMC8358327 DOI: 10.3389/fmicb.2021.702909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
Salmonellosis represents a growing threat to global public health. Salmonella enterica remains the leading cause of bacterial foodborne diseases in China. Salmonella enterica serovar Rissen (S. Rissen) has been recognized as one of the emerging serovars among humans in different countries worldwide. However, knowledge on the prevalence of S. Rissen in China is largely lacking. To address essential epidemiological information for S. Rissen in China, a total of 1,182 S. Rissen isolates recovered from samples across the food chain were collected from 16 provinces or province-level cities between 1995 and 2019. Risk factors due to the consumption of animal-derived food products were also analyzed. We found S. Rissen is widely distributed, especially in the Eastern and Southern parts of China, and there is an increasing frequency in recent years as evidenced by the greater number of isolates recovered in 2016, 2017, and 2018. Interestingly, the majority of S. Rissen isolates recovered in this study were from human samples (63.4%; 749/1182), remarkably, 58.4% (438/749) were from asymptomatic carriers. We obtained most of the S. Rissen isolates from humans from Guangxi (59.5%; 446/749) and Shanghai (29.5%; 221/749). Among 302 human diarrheal isolates (40.3%; 302/749), we found 44.6% (139/311) of S. Rissen in children with diarrhea (age below 10 years old). This is of clinical significance as diarrhea is one of the crucial causes of child mortality globally and our findings here highlighted the importance of Salmonella infections in Chinese children. Additionally, S. Rissen isolates were also found to be associated with pork and poultry products in China. This study projected the most updated national-wide study of S. Rissen isolates obtained from different sources in China over the past two decades. Continued surveillance is warranted to further monitor this emerging serovar in China and elsewhere over the world.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Agriculture Research Center, Animal Health Research Institute, Cairo, Egypt
| | - Daiwei Shi
- National Institutes for Food and Drug Control, Beijing, China
| | - Silpak Biswas
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xuebin Xu
- Department of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Hainan Institute of Zhejiang University, Sanya, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
27
|
Wu B, Ed-Dra A, Pan H, Dong C, Jia C, Yue M. Genomic Investigation of Salmonella Isolates Recovered From a Pig Slaughtering Process in Hangzhou, China. Front Microbiol 2021; 12:704636. [PMID: 34305874 PMCID: PMC8298193 DOI: 10.3389/fmicb.2021.704636] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023] Open
Abstract
The pig industry is the principal source of meat products in China, and the presence of pathogens in pig-borne meat is a crucial threat to public health. Salmonella is the major pathogen associated with pig-borne diseases. However, route surveillance by genomic platforms along the food chain is still limited in China. Here, we conducted a study to evaluate the dynamic prevalence of Salmonella in a pig slaughtering process in Hangzhou, Zhejiang Province, China. Fifty-five of 226 (24.37%) samples were positive for Salmonella; from them, 78 different isolates were selected and subjected to whole genome sequencing followed by bioinformatics analyses to determine serovar distribution, MLST patterns, antimicrobial resistance genes, plasmid replicons, and virulence factors. Moreover, phenotypic antimicrobial resistance was performed using the broth dilution method against 14 antimicrobial agents belonging to 10 antimicrobial classes. Our results showed that samples collected from the dehairing area (66.66%) and the splitting area (57.14%) were the most contaminated. Phenotypic antimicrobial resistance classified 67 of 78 isolates (85.90%) as having multidrug resistance (MDR), while the highest resistance was observed in tetracycline (85.90%; 67/78) followed by ampicillin (84.62%; 66/78), chloramphenicol (71.80%; 56/78), and nalidixic acid (61.54%; 48/78). Additionally, serovar prediction showed the dominance of Salmonella Typhimurium ST19 (51.28%; 40/78) among the 78 studied isolates, while plasmid prediction reported the dominance of IncHI2A_1 (20.51%; 16/78), followed by IncX1_1 (17.95%; 14/78) and IncHI2_1 (11.54%; 9/78). Virulence factor prediction showed the detection of cdtB gene encoding typhoid toxins in two Salmonella Goldcoast ST358 and one Salmonella Typhimurium ST19, while one isolate of Salmonella London ST155 was positive for genes encoding for the siderophore “yersiniabactin” and the gene senB encoding for enterotoxin production. From this study, we conclude that pig slaughterhouses are critical points for the dissemination of virulent and multidrug-resistant Salmonella isolates along the food chain which require the implementation of management systems to control the critical points. Moreover, there is an urgent need for the implementation of the whole genome sequencing platform to monitor the emergence of virulent and multidrug-resistant clones along the food chain.
Collapse
Affiliation(s)
- Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Hang Pan
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghang Dong
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghao Jia
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China.,Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|