1
|
Cheng G, Yan Y, Zheng B, Yan D. The Applications of Plant Polyphenols: Implications for the Development and Biotechnological Utilization of Ilex Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3271. [PMID: 39683064 DOI: 10.3390/plants13233271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Plants belonging to the Ilex species are distinguished by their rich composition of diverse phenolic compounds and various bioactive substances, which demonstrate dual functionalities in therapeutic applications and health promotion. In recent years, these plants have garnered significant interest among researchers. While the application scope of plant polyphenols (PPs) is extensive, the exploration and utilization of holly polyphenols (HPs) remain comparatively underexplored. This article reviews the research advancements regarding the predominant phenolic compounds present in commonly studied Ilex species over the past five years and summarizes the application studies of PPs across various domains, including pharmacological applications, food technology, health supplements, and cosmetic formulations. The objective of this review is to provide insights into the systematic research and development of HPs, offering references and recommendations to enhance their value.
Collapse
Affiliation(s)
- Gong Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxiao Yan
- College of Life Science, Anqing Normal University, Anqing 246133, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Zhang J, Chen J, Lan J, Liu B, Wang X, Zhang S, Zuo Y. Effect of Different Drying Techniques on the Bioactive Compounds, Antioxidant Ability, Sensory and Volatile Flavor Compounds of Mulberry. Foods 2024; 13:2492. [PMID: 39200419 PMCID: PMC11354017 DOI: 10.3390/foods13162492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mulberry perishes easily due to its high water content and thin skin. It is important to extend the shelf life of mulberry by proper processing methods. In the present study, the influence of three drying techniques, including hot air drying (HAD), vacuum drying (VD), and vacuum freeze-drying (VFD) on the quality maintenance of mulberry was comprehensively evaluated. Bioactive compounds, antioxidant activity, and the sensory and volatile flavor compounds of mulberry have been researched. The results showed that VFD treatment maintained the highest anthocyanins (6.99 mg/g), total flavones (3.18 mg/g), and soluble sugars (2.94 mg/g), and exhibited the best DPPH· (81.2%) and ABTS+· (79.9%) scavenging ability. Mulberry also presented the lowest hardness and the greatest brittleness after VFD. Additionally, VFD maintained the optimal color and presented the best sensory attributes. Furthermore, 30, 20, and 32 kinds of volatile flavor compounds were detected in HAD, VD, and VFD, respectively, among which aldehydes, esters, and ketones were the most abundant compounds. This study indicated the potential application value of VFD for the drying of fruit and vegetable foodstuffs.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (J.Z.); (J.C.); (B.L.)
- Luzhoulaojiao Postdoctoral Programme Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
| | - Jing Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (J.Z.); (J.C.); (B.L.)
| | - Jingsha Lan
- College of Life Science, Sichuan Normal University, Chengdu 610101, China;
| | - Bingliang Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (J.Z.); (J.C.); (B.L.)
| | - Xinhui Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (J.Z.); (J.C.); (B.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Suyi Zhang
- Luzhoulaojiao Postdoctoral Programme Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Yong Zuo
- College of Life Science, Sichuan Normal University, Chengdu 610101, China;
| |
Collapse
|
3
|
Chen D, Wang Q, Yang Y, Zhang Y, Zuo P, Guo Y, Shen Z. Preservative effects of Osmanthus fragrans flower flavonoids on fresh-cut Yuluxiang pear. Heliyon 2024; 10:e29748. [PMID: 38694105 PMCID: PMC11058293 DOI: 10.1016/j.heliyon.2024.e29748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Osmanthus fragrans flower flavonoids (OFFF) possess superior antioxidant and antibacterial activities. However, scant information exists on the efficacy of these secondary metabolites as preservatives for fresh-cut fruits and vegetables. Here, OFFF were tested as a natural preservative for the first time in fresh-cut Yuluxiang pear (Pyrus bretschneideri Rehd.) to assess effects on fruit quality. OFFF-treated samples showed significant retention of firmness, titratable acid, soluble solid content, and weight. Moreover, OFFF maintained the original fruit color, inhibited the decline of total phenol, reducing power and 2,2-diphenyl-1-picrylhydrazyl radical scavenging power, and diminished polyphenol oxidase and peroxidase oxidase activities. Furthermore, OFFF treatment effectively inhibited microbial growth. OFFF-treated samples also displayed better sensory quality. Considering cost and effectiveness, the most suitable concentrations of OFFF extract for fresh-cut Yuluxiang pear preservation were 0.7 and 0.9 mg/mL. The results indicate that OFFF treatment may be a potent strategy to inhibit browning and enhance nutritional properties of fresh-cut pear fruit.
Collapse
Affiliation(s)
- Dixin Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Qian Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yingjun Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yang Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Peijie Zuo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yujie Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Zhiguo Shen
- Henan Academy of Forestry, Zhengzhou, Henan, 450008, China
| |
Collapse
|
4
|
Huang S, Bi Y, Li H, Liu C, Wang X, Wang X, Lei Y, Zhang Q, Wang J. Reduction of Membrane Lipid Metabolism in Postharvest Hami Melon Fruits by n-Butanol to Mitigate Chilling Injury and the Cloning of Phospholipase D-β Gene. Foods 2023; 12:foods12091904. [PMID: 37174441 PMCID: PMC10178218 DOI: 10.3390/foods12091904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
To investigate the effect of n-butanol on postharvest membrane lipid metabolism of Hami melon (Cucumis melo 'Hami'), the fruits were soaked in a 1.0% solution of n-butanol for 30 min with water as the control. Symptoms of chilling injury were observed regularly, and the indices related to permeability and membrane lipid metabolism of pericarp cells were measured. The results showed that treatment with n-butanol inhibited the increase in chilling injury index, membrane permeability, and malondialdehyde content of Hami melon fruits, promoted an increase in the contents of phosphatidyl alcohol and unsaturated fatty acids, such as linoleic acid, linolenic acid, oleic acid (except 14 d), and erucic acid (28-42 d), and decreased the content of saturated fatty acids, stearic acid (0-28 d), phosphatidic acid (except for 21 d), and the key enzymes of membrane lipid metabolism compared with the control. The activities of phospholipase D (PLD) and lipoxygenase (LOX) and the downregulation of the levels of expression CmPLD-β and CmLOX (42 d only) genes reduced the chilling injury index of Hami melon and alleviated the further expansion of chilling injury symptoms in the fruits. We also cloned the key gene of membrane lipid metabolism CmPLD-β, which was obtained by pre-transcriptome screening of the pericarp. We found that CmPLD-β of Hami melon had the closest affinity with cucumber (CsXP5), indicating that the CmPLD-β gene of Hami melon was functionally similar to that of cucumber. In addition, a two-fold alignment analysis of CmPLD-β and CmXP5 base sequences indicated that the base sequences of the two promoter regions differed from each other.
Collapse
Affiliation(s)
- Shuai Huang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ying Bi
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Hui Li
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Caihong Liu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xue Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xinyu Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yaxin Lei
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qi Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jing Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
5
|
Maqsood M, Anam Saeed R, Sahar A, Khan MI. Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review. J Food Biochem 2022; 46:e14263. [PMID: 35642132 DOI: 10.1111/jfbc.14263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants from the family Moraceae have diverse applications in agriculture, cosmetics, food, and the pharmaceutical industry. Their extensive spectrum of pharmacological activity for treating numerous inflammatory illnesses, cancer, cardiovascular diseases, and gastrointestinal problems reflects their biological and therapeutic value. This article summarizes the molecular mechanisms related to the biological implications of mulberry extracts, fractions, and isolated bioactive compounds from different parts in various health-related ailments. Additionally, the food industry and animal nutrition applications are summarized. Phytochemicals such as steroids, saponins, alkaloids, glycosides, polysaccharides, and phenolic compounds including terpenoids, flavonoids, anthocyanins, and tannins are found in this medicinal plant. The aqueous, ethanolic, and methanolic extracts, as well as bioactive compounds, have anti-oxidative, hypoglycemic, nephroprotective, antimicrobial, neuroprotective, anti-mutagenic, hepatoprotective, anthelmintic, immune-modulatory, cardioprotective, and skin protecting activities. Mulberry supplementation in food products improves the stability of phenolics, sensory properties, antioxidant activity, and antimicrobial properties. Mulberry leaves in animal feed increase the nutrient digestibility, growth parameters, antimicrobial, and antioxidant properties. PRACTICAL APPLICATIONS: This review summarized the in vivo and in vitro biological activities of the mulberry and isolated constituents in various health conditions. In addition, the food uses such as antioxidant potential, antimicrobial, and physicochemical properties were discussed. Furthermore, in vivo studies revealed mulberry as a significant protein source and its flavonoids as potential animal foliage.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Teleky BE, Mitrea L, Plamada D, Nemes SA, Călinoiu LF, Pascuta MS, Varvara RA, Szabo K, Vajda P, Szekely C, Martău GA, Elemer S, Ranga F, Vodnar DC. Development of Pectin and Poly(vinyl alcohol)-Based Active Packaging Enriched with Itaconic Acid and Apple Pomace-Derived Antioxidants. Antioxidants (Basel) 2022; 11:antiox11091729. [PMID: 36139803 PMCID: PMC9495313 DOI: 10.3390/antiox11091729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The production of active and biodegradable packaging materials is an emerging and efficient alternative to plastic packaging materials. By combining poly(vinyl alcohol) (PVA), pectin, and itaconic acid (IA), biodegradable and water-soluble packaging materials can be obtained that can also increase the shelf-life and quality of foodstuff. In the present study, the generated film-forming solutions were enriched with organic or phenolic extracts from apple by-products (apple pomace). These extracts possess an efficient antioxidant activity of 9.70 ± 0.08, and 78.61 ± 0.24 μM Trolox/100 g fresh weight, respectively. Furthermore, the lyophilization of these by-products increased the extract’s organic and phenolic content and the antioxidant activity to 67.45 ± 0.28 and 166.69 ± 0.47 μM Trolox/100 g fresh weight, respectively. These extracts influence the physical-chemical properties of the biofilm solutions by facilitating the polymerization process and thus positively influencing their viscosity. The resulting biofilms presented low water vapor permeability and reduced solubility in water. Adding IA and organic/phenolic compounds facilitates the resistance against intrinsic and extrinsic factors; therefore, they might be applicable in the food industry.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Diana Plamada
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Lavinia-Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Mihaela Stefana Pascuta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Katalin Szabo
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Patricia Vajda
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Cristian Szekely
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Gheorghe-Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Simon Elemer
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-747341881
| |
Collapse
|
7
|
Vieira IRS, de Carvalho APAD, Conte-Junior CA. Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:3673-3716. [PMID: 35713102 DOI: 10.1111/1541-4337.12990] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
Inorganic nanoparticles (NPs) and natural antioxidant compounds are an emerging trend in the food industry. Incorporating these substances in biobased and biodegradable matrices as polysaccharides (e.g., starch, cellulose, and chitosan) and proteins has highlighted the potential in active food packaging applications due to more significant antimicrobial, antioxidant, UV blocking, oxygen scavenging, water vapor permeability effects, and low environmental impact. In recent years, the migration of metal NPs and metal oxides in food contact packaging and their toxicological potential have raised concerns about the safety of the nanomaterials. In this review, we provide a comprehensive overview of the main biobased and biodegradable polymer nanocomposites, inorganic NPs, natural antioxidants, and their potential use in active food packaging. The intrinsic properties of NPs and natural antioxidant actives in packaging materials are evaluated to extend shelf-life, safety, and food quality. Toxicological and safety aspects of inorganic NPs are highlighted to understand the current controversy on applying some nanomaterials in food packaging. The synergism of inorganic NPs and plant-derived natural antioxidant actives (e.g., vitamins, polyphenols, and carotenoids) and essential oils (EOs) potentiated the antibacterial and antioxidant properties of biodegradable nanocomposite films. Biodegradable packaging films based on green NPs-this is biosynthesized from plant extracts-showed suitable mechanical and barrier properties and had a lower environmental impact and offered efficient food protection. Furthermore, AgNPs and TiO2 NPs released metal ions from packaging into contents insufficiently to cause harm to human cells, which could be helpful to understanding critical gaps and provide progress in the packaging field.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Anna Paula Azevedo de de Carvalho
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil.,Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Alexandre ACS, Ferreira Gomes BA, Duarte GN, Piva SF, Zauza SB, Vilas Boas EVDB. Recent advances in processing and preservation of minimally processed fruits and vegetables: A review – Part 1: Fundamentals and chemical methods. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Giulia Nayara Duarte
- Agriculture Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | - Samella Fabiane Piva
- Food Science Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | - Stefânia Barros Zauza
- Agriculture Department Federal University of Lavras 37200‐900 Lavras Minas Gerais Brazil
| | | |
Collapse
|
9
|
Ma G, Chai X, Hou G, Zhao F, Meng Q. Phytochemistry, bioactivities and future prospects of mulberry leaves: A review. Food Chem 2022; 372:131335. [PMID: 34818743 DOI: 10.1016/j.foodchem.2021.131335] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/16/2021] [Accepted: 10/02/2021] [Indexed: 12/30/2022]
Abstract
Mulberry leaves (MLs) have been used traditionally to raise silkworms and as herbs and herbal drinks. In vitro and in vivo studies as well as some clinical trials provide some evidence of health benefits, mostly for ML extracts. ML extracts showed antioxidant, hypoglycemic, anticholesterol (affecting lipid metabolism), antiobesity, anti-inflammatory, anticancer activities, and so on. These might be linked to strong antioxidant activities, inhibition of α-glucosidase and α-amylase, reduction of foam cell formation, inhibition of fat formation, decrease of NF-κB activity, and the promotion or induction of apoptosis. Phenolic constituents, especially flavonoids, phenolic acids and alkaloids, are likely to contribute to the reported effects. The phytochemistry and pharmacology of MLs confer the traditional and current uses as medicine, food, fodder, and cosmetics. This paper reviews the economic value, chemical composition and pharmacology of MLs to provide a reference for the development and utilization of MLs.
Collapse
Affiliation(s)
- Guangqun Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
10
|
Oulahal N, Degraeve P. Phenolic-Rich Plant Extracts With Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Front Microbiol 2022; 12:753518. [PMID: 35058892 PMCID: PMC8764166 DOI: 10.3389/fmicb.2021.753518] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the search for natural plant-based antimicrobial compounds as alternatives to some synthetic food preservatives or biocides has been stimulated by sanitary, environmental, regulatory, and marketing concerns. In this context, besides their established antioxidant activity, the antimicrobial activity of many plant phenolics deserved increased attention. Indeed, industries processing agricultural plants generate considerable quantities of phenolic-rich products and by-products, which could be valuable natural sources of natural antimicrobial molecules. Plant extracts containing volatile (e.g., essential oils) and non-volatile antimicrobial molecules can be distinguished. Plant essential oils are outside the scope of this review. This review will thus provide an overview of current knowledge regarding the promises and the limits of phenolic-rich plant extracts for food preservation and biofilm control on food-contacting surfaces. After a presentation of the major groups of antimicrobial plant phenolics, of their antimicrobial activity spectrum, and of the diversity of their mechanisms of action, their most promising sources will be reviewed. Since antimicrobial activity reduction often observed when comparing in vitro and in situ activities of plant phenolics has often been reported as a limit for their application, the effects of the composition and the microstructure of the matrices in which unwanted microorganisms are present (e.g., food and/or microbial biofilms) on their activity will be discussed. Then, the different strategies of delivery of antimicrobial phenolics to promote their activity in such matrices, such as their encapsulation or their association with edible coatings or food packaging materials are presented. The possibilities offered by encapsulation or association with polymers of packaging materials or coatings to increase the stability and ease of use of plant phenolics before their application, as well as to get systems for their controlled release are presented and discussed. Finally, the necessity to consider phenolic-rich antimicrobial plant extracts in combination with other factors consistently with hurdle technology principles will be discussed. For instance, several authors recently suggested that natural phenolic-rich extracts could not only extend the shelf-life of foods by controlling bacterial contamination, but could also coexist with probiotic lactic acid bacteria in food systems to provide enhanced health benefits to human.
Collapse
Affiliation(s)
- Nadia Oulahal
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d’Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | | |
Collapse
|
11
|
Yin ZH, Li YF, Gan HX, Feng N, Han YP, Li LM. Synergistic effects and antityrosinase mechanism of four plant polyphenols from Morus and Hulless Barley. Food Chem 2021; 374:131716. [PMID: 34875434 DOI: 10.1016/j.foodchem.2021.131716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/04/2021] [Accepted: 11/27/2021] [Indexed: 11/15/2022]
Abstract
Sanggenone C, oxyresveratrol, catechin and l-epicatechin exist in Morus and Hulless Barley as natural polyphenols with antityrosinase activity. Little research on their synergistic and structure-function relationships of them has been reported in recent years. In this paper, the inhibition mechanisms of these four plant polyphenols were investigated by enzyme kinetics, HPLC, fluorescence spectra, and molecular docking methods. The results showed that oxyresveratrol (IC50 = 1.096 ± 0.048 μg/mL), sanggenone C (IC50 = 13.360 ± 1.029 μg/mL), l-epicatechin (IC50 = 55.730 ± 1.762 μg/mL), and catechin (IC50 = 148.500 ± 3.355 μg/mL) exhibited tyrosinase inhibition activity. When sangenone C (14 μg/mL) was mixed with l-epicatechin (56 μg/mL) at 4:1 (40 μL + 10 μL), the highest tyrosinase inhibition was achieved. Molecular docking showed that the number and position of phenolic hydroxyls of polyphenols were the key for tyrosinase inhibition activity. This study provided new ideas for the application of these four plant polyphenols from Hulless Barley and Morus as tyrosinase inhibitors in food preservation.
Collapse
Affiliation(s)
- Zheng-Hao Yin
- College of Pharmacy, Institute of Ethnomedicine, Southwest Minzu University, Chengdu 610041, China
| | - Yuan-Fei Li
- College of Pharmacy, Institute of Ethnomedicine, Southwest Minzu University, Chengdu 610041, China
| | - Hong-Xia Gan
- College of Pharmacy, Institute of Ethnomedicine, Southwest Minzu University, Chengdu 610041, China
| | - Nan Feng
- College of Pharmacy, Institute of Ethnomedicine, Southwest Minzu University, Chengdu 610041, China
| | - Yong-Ping Han
- College of Pharmacy, Institute of Ethnomedicine, Southwest Minzu University, Chengdu 610041, China.
| | - Li-Mei Li
- College of Pharmacy, Institute of Ethnomedicine, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
12
|
Polyphenoloxidase (PPO): Effect, Current Determination and Inhibition Treatments in Fresh-Cut Produce. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fresh-cut produce are quite popular among consumers due to their eating ease, high quality and functional content. However, some of the processing steps taking place during minimal processing (such as cutting, peeling, draining, etc.) might speed up decay, e.g., microbial growth, dehydration or browning. When it comes to the latter, polyphenol oxidase (PPO) plays an important role, being the center of many works focused on the understanding of its reaction mechanism and the application of conservative techniques. The aim of this review study was to compare recent research about the effect of PPO on minimally processed fruits and vegetables, trying to understand the way it acts, the measurement of its activity and current treatments, such as modified atmosphere packaging, washing treatments or edible coatings, among others. In conclusion, the combination of conservation techniques (that is, hurdle technology) is vital to guarantee global quality in minimally processed fruits and vegetables, including synergistic effects which will allow the use of mild treatment conditions to decrease PPO activity. However, further research is required to clearly understand PPO inhibition in trendy techniques such as irradiation.
Collapse
|