1
|
Park SK, Lee D, Jo DM, Yu D, Song HS, Kim YM. Bactericidal effect of water-washing methods on Vibrio vulnificus contaminated in a raw fish Konosirus punctatus: water type, temperature, and pH. Food Sci Biotechnol 2024; 33:1495-1504. [PMID: 38585562 PMCID: PMC10992113 DOI: 10.1007/s10068-023-01421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 04/09/2024] Open
Abstract
This study aimed to evaluate a method for effectively reducing Vibrio vulnificus contamination in fish based on the type of washing water and method. Texture profiles and sensory evaluations were performed to determine the effect of the developed method on the quality and preference of the samples. The selected fish sample was Konosirus punctatus, which is mainly consumed in Asian countries. Various factors that could affect the survival rate of V. vulnificus were reviewed, including water type, temperature, exposure time, organic acids, pH, and washing methods. As a result, immersion and washing with filtered water with pH adjusted to 4.0 using acetic acid showed a high bactericidal effect of 2.5 log MPN/100 g. Furthermore, this method showed no statistically significant effect on the texture and sensory characteristics of fish. The results of the present study suggest a simple and effective method for preventing V. vulnificus infection in raw fish.
Collapse
Affiliation(s)
- Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, 55365 Korea
| | - Daeun Lee
- Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513 Korea
| | - Daeung Yu
- Department of Food and Nutrition, Changwon National University, Changwon, 51140 Korea
- Interdisciplinary Program in Senior Human-Ecology, Major in Food and Nutrition, Changwon National University, Changwon, 51140 Korea
| | - Ho-Su Song
- Division of Culinary Arts, Youngsan University, Busan, 48015 Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513 Korea
| |
Collapse
|
2
|
Sharafi H, Divsalar E, Rezaei Z, Liu SQ, Moradi M. The potential of postbiotics as a novel approach in food packaging and biopreservation: a systematic review of the latest developments. Crit Rev Food Sci Nutr 2023; 64:12524-12554. [PMID: 37667831 DOI: 10.1080/10408398.2023.2253909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Metabolic by-products are part of the so-called postbiotics of probiotics and other beneficial microorganisms, particularly lactic acid bacteria, which have gained popularity as a feasible alternative to improving food quality and safety. Postbiotics in dry and liquid forms can be easily integrated into food formulations and packaging materials, exhibiting antimicrobial and antioxidant effects owing to the presence of multiple antimicrobials, such as organic acids, bacteriocins, exopolysaccharides and bioactive peptides. Postbiotics can thus control the growth of pathogens and spoilage microorganisms, thereby extending the shelf life of food products. Because of their ability to be easily manufactured without requiring extensive processing, postbiotics are regarded as a safer and more sustainable alternative to synthetic preservatives, which can have negative environmental consequences. Additionally, food manufacturers can readily adopt postbiotics in food formulations without significant modifications. This systematic review provides an in-depth analysis of studies on the use of postbiotics in the biopreservation and packaging of a wide range of food products. The review evaluates and discusses the types of microorganisms, postbiotics preparation and modification techniques, methods of usage in dairy products, meat, poultry, seafood, fruits, vegetables, bread, and egg, and their effects on food quality and safety.
Collapse
Affiliation(s)
- Houshmand Sharafi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elahe Divsalar
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Zeinab Rezaei
- Center of Cheshme noshan khorasan (Alis), University of Applied Science and Technology, Chanaran, Iran
| | - Shao-Quan Liu
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Stupar J, Hoel S, Strømseth S, Lerfall J, Rustad T, Jakobsen AN. Selection of lactic acid bacteria for biopreservation of salmon products applying processing-dependent growth kinetic parameters and antimicrobial mechanisms. Heliyon 2023; 9:e19887. [PMID: 37810133 PMCID: PMC10559289 DOI: 10.1016/j.heliyon.2023.e19887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Biopreservation using lactic acid bacteria (LAB) is a promising technology to prevent the growth of pathogenic microorganisms in fresh and mildly processed food. The main aim of this study was to select LAB, originally isolated from ready-to-eat (RTE) seafood, for biopreservation of fresh salmon and processed salmon products. Ten LAB strains (five Carnobacterium and five Leuconostoc) were selected based on previously demonstrated bioprotective properties to investigate their antimicrobial mechanisms and temperature-dependent growth kinetics in a sterile salmon juice model system. Furthermore, five strains (three Carnobacterium and two Leuconostoc) were selected to test process-dependent growth kinetic parameters relevant to the secondary processing of salmon. Two strains (Carnobacterium maltaromaticum 35 and C. divergens 468) showed bacteriocin-like activity against Listeria innocua, while inhibitory effect of cell-free supernatants (CFS) was not observed against Escherichia coli. All selected strains were able to grow in sterile salmon juice at tested temperatures (4, 8, 12 and 16 °C), with specific growth rates (μ) ranging from 0.01 to 0.04/h at 4 °C and reaching a maximum population density of 8.4-9 log CFU/ml. All five strains tested for process-dependent growth kinetic parameters were able to grow in the range of 0.5-5% NaCl and 0.13-0.26% purified condensed smoke (VTABB and JJT01), with inter- and intraspecies variation in growth kinetics. According to the temperature-dependent growth kinetics and antimicrobial assay results, two strains, Leuconostoc mesenteroides 68 (Le.m.68) and C. divergens 468 (C d.468), were selected for in situ test to validate their ability to grow in vacuum-packed fresh salmon at 4 °C. Both strains were able to grow at maximum growth rates of 0.29 ± 0.04/d for Le. m.68 and 0.39 ± 0.06/d for C.d.468, and their final concentrations were 7.91 ± 0.31 and 8.02 ± 0.25 log CFU/g, respectively. This study shows that LAB, originally isolated from RTE seafood, have promising potential as bioprotective strains in fresh and processed salmon products.
Collapse
Affiliation(s)
- Jelena Stupar
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Sunniva Hoel
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Sigrid Strømseth
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Jørgen Lerfall
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Turid Rustad
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| |
Collapse
|
4
|
Abbasi E, Basiri S, Shekarforoush SS, Gholamhosseini A. The efficacy of tragacanth gel incorporated with cell-free supernatants of Lactobacillus sakei and Lactobacillus curvatus for preserving Pacific white shrimp. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Kang MG, Khan F, Tabassum N, Cho KJ, Jo DM, Kim YM. Inhibition of Biofilm and Virulence Properties of Pathogenic Bacteria by Silver and Gold Nanoparticles Synthesized from Lactiplantibacillus sp. Strain C1. ACS OMEGA 2023; 8:9873-9888. [PMID: 36969455 PMCID: PMC10035013 DOI: 10.1021/acsomega.2c06789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The emergence of antibiotic resistance in microbial pathogens necessitates the development of alternative ways to combat the infections that arise. The current study used nanotechnology as an alternate technique to control virulence characteristics and biofilm development in Pseudomonas aeruginosa and Staphylococcus aureus. Furthermore, based on the acceptance and biocompatibility of the probiotic bacteria, we chose a lactic acid bacteria (LAB) for synthesizing two types of metallic nanoparticles (NPs) in this study. Using molecular techniques, the LAB strain C1 was isolated from Kimchi food samples and identified as Lactiplantibacillus sp. strain C1. The prepared supernatant from strain C1 was used to produce gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs). C1-AuNPs and C1-AgNPs were characterized physiochemically using a variety of instruments. C1-AuNPs and C1-AgNPs had spherical shapes and sizes of 100.54 ± 14.07 nm (AuNPs) and 129.51 ± 12.31 nm (AgNPs), respectively. C1-AuNPs and C1-AgNPs were discovered to have high zeta potentials of -23.29 ± 1.17 and -30.57 ± 0.29 mV, respectively. These nanoparticles have antibacterial properties against several bacterial pathogens. C1-AuNPs and C1-AgNPs significantly inhibited the initial stage biofilm formation and effectively eradicated established mature biofilms of P. aeruginosa and S. aureus. Furthermore, when P. aeruginosa was treated with sub-MIC levels of C1-AuNPs and C1-AgNPs, their different virulence features were significantly reduced. Both NPs greatly inhibited the hemolytic activity of S. aureus. The inhibition of P. aeruginosa and S. aureus biofilms and virulence features by C1-AuNPs and C1-AgNPs can be regarded as viable therapeutic strategies for preventing infections caused by these bacteria.
Collapse
Affiliation(s)
- Min-Gyun Kang
- Department
of Food Science and Technology, Pukyong
National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine
Integrated Biomedical Technology Center, The National Key Research
Institutes in Universities, Pukyong National
University, Busan 48513, Republic of Korea
- Research
Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Marine
Integrated Biomedical Technology Center, The National Key Research
Institutes in Universities, Pukyong National
University, Busan 48513, Republic of Korea
- Research
Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department
of Food Science and Technology, Pukyong
National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- Department
of Food Science and Technology, Pukyong
National University, Busan 48513, Republic of Korea
- Marine
Integrated Biomedical Technology Center, The National Key Research
Institutes in Universities, Pukyong National
University, Busan 48513, Republic of Korea
- Research
Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department
of Food Science and Technology, Pukyong
National University, Busan 48513, Republic of Korea
- Marine
Integrated Biomedical Technology Center, The National Key Research
Institutes in Universities, Pukyong National
University, Busan 48513, Republic of Korea
- Research
Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Huligere SS, Chandana Kumari VB, Alqadi T, Kumar S, Cull CA, Amachawadi RG, Ramu R. Isolation and characterization of lactic acid bacteria with potential probiotic activity and further investigation of their activity by α-amylase and α-glucosidase inhibitions of fermented batters. Front Microbiol 2023; 13:1042263. [PMID: 36756202 PMCID: PMC9901530 DOI: 10.3389/fmicb.2022.1042263] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 01/24/2023] Open
Abstract
Probiotic microbiota plays a vital role in gastrointestinal health and possesses other beneficial attributes such as antimicrobial and antibiotic agents along with a significant role in the management of diabetes. The present study identifies the probiotic potential of Lactobacillus spp. isolated from three traditionally fermented foods namely, jalebi, medhu vada, and kallappam batters at biochemical, physiological, and molecular levels. By 16S rRNA gene amplification and sequencing, the isolates were identified. A similarity of >98% to Lacticaseibacillus rhamnosus RAMULAB13, Lactiplantibacillus plantarum RAMULAB14, Lactiplantibacillus pentosus RAMULAB15, Lacticaseibacillus paracasei RAMULAB16, Lacticaseibacillus casei RAMULAB17, Lacticaseibacillus casei RAMULAB20, and Lacticaseibacillus paracasei RAMULAB21 was suggested when searched for homology using NCBI database. Utilizing the cell-free supernatant (CS), intact cells (IC), and cell-free extract (CE) of the isolates, inhibitory potential activity against the carbohydrate hydrolyzing enzymes α-glucosidase and α-amylase was assessed. CS, CE, and IC of the isolates had a varying capability of inhibition against α-glucosidase (15.08 to 59.55%) and α-amylase (18.79 to 63.42%) enzymes. To assess the probiotic potential of seven isolates, various preliminary characteristics were examined. All the isolates exhibited substantial tolerance toward gastrointestinal conditions and also demonstrated the highest survival rate (> 99%), hydrophobicity (> 65%), aggregation (> 76%), adherence to HT-29 cells (> 84%), and chicken crop epithelial cells suggesting that the isolates had a high probiotic attribute. Additionally, the strains showed remarkable results in safety assessment assays (DNase and hemolytic), and antibacterial and antibiotic evaluations. The study concludes that the lactic acid bacteria (LAB) characterized possesses outstanding probiotic properties and has antidiabetic effects. In order to obtain various health advantages, LAB can be utilized as probiotic supplements.
Collapse
Affiliation(s)
- Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Taha Alqadi
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Charley A. Cull
- Midwest Veterinary Services, Inc., Oakland, NE, United States
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States,Raghavendra G. Amachawadi,
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India,*Correspondence: Ramith Ramu,
| |
Collapse
|
7
|
Unraveling the antibacterial mechanism of Lactiplantibacillus plantarum MY2 cell-free supernatants against Aeromonas hydrophila ST3 and potential application in raw tuna. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Antibiofilm and Antivirulence Activities of Gold and Zinc Oxide Nanoparticles Synthesized from Kimchi-Isolated Leuconostoc sp. Strain C2. Antibiotics (Basel) 2022; 11:antibiotics11111524. [PMID: 36358180 PMCID: PMC9686622 DOI: 10.3390/antibiotics11111524] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The rapid emergence of antimicrobial resistance (AMR) among bacterial pathogens results in antimicrobial treatment failure and the high mortality rate associated with AMR. The application of nanoparticles synthesized from probiotics will be widely accepted due to their efficacy and biocompatibility in treating microbial infections in humans. The current work sought to isolate and identify lactic acid bacteria (LAB) from Kimchi. Based on 16S rRNA gene sequencing, the LAB isolate C2 was identified as a member of the genus Leuconostoc. The obtained supernatant from Leuconostoc sp. strain C2 was employed for the green synthesis of metal (AuNPs) and metal oxide (ZnONPs) nanoparticles. UV–vis absorption spectra, FTIR analysis, XRD, DLS, FE-TEM, and EDS mapping were used to fully characterize these C2-AuNPs and C2-ZnONPs. The C2-AuNPs were found to be spherical in shape, with a size of 47.77 ± 5.7 nm and zeta potential of −19.35 ± 0.67 mV. The C2-ZnONPs were observed to be rod-shaped and 173.77 ± 14.53 nm in size. The C2-ZnONPs zeta potential was determined to be 26.62 ± 0.35 mV. The C2-AuNPs and C2-ZnONPs were shown to have antimicrobial activity against different pathogens. Furthermore, these nanoparticles inhibited the growth of Candida albicans. The antibiofilm and antivirulence properties of these NPs against Pseudomonas aeruginosa and Staphylococcus aureus were thoroughly investigated. C2-AuNPs were reported to be antibiofilm and antivirulence against P. aeruginosa, whereas C2-ZnONPs were antibiofilm and antivirulence against both P. aeruginosa and S. aureus. Furthermore, these nanoparticles disrupted the preformed mature biofilm of P. aeruginosa and S. aureus. The inhibitory impact was discovered to be concentration-dependent. The current research demonstrated that C2-AuNPs and C2-ZnONPs exhibited potential inhibitory effects on the biofilm and virulence features of bacterial pathogens. Further studies are needed to unravel the molecular mechanism behind biofilm inhibition and virulence attenuation.
Collapse
|
9
|
Sung W, Lu S, Chen Y, Pan C, Hsiao H. Inhibition of individual and combination of cell free supernatants of phenyllactic acid, pediocin‐ and nisin‐producing lactic acid bacteria against food pathogens and bread spoilage molds. J Food Saf 2022. [DOI: 10.1111/jfs.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen‐Chieh Sung
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
- Center of Excellence for the Oceans National Taiwan Ocean University Keelung Taiwan, ROC
| | - Szu‐Hsaun Lu
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Yi‐Chen Chen
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Chorng‐Liang Pan
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Hsin‐I Hsiao
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| |
Collapse
|
10
|
Body yield, growth performance, and haematological evaluation of Nile tilapia fed a diet supplemented with Saccharomyces cerevisiae. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Todeschini S, Perreault V, Goulet C, Bouchard M, Dubé P, Boutin Y, Bazinet L. Impacts of pH and Base Substitution during Deaerator Treatments of Herring Milt Hydrolysate on the Odorous Content and the Antioxidant Activity. Foods 2022; 11:foods11131829. [PMID: 35804649 PMCID: PMC9265915 DOI: 10.3390/foods11131829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the biological interest in herring milt hydrolysate (HMH), its valorization is limited by its unpleasant odor resulting from the presence of mainly amine and carbonyl compounds. Recently, a deaerator was demonstrated as an interesting avenue to reduce the odorous content of HMH. However, the removal rate of amine and carbonyl compounds was highly dependent on the operating conditions, and the impact of such a process on the biological potential of HMH was not considered. Therefore, this study aimed to optimize the deaerator process by assessing the impacts of the combination of deaerator treatments at neutral and basic pH, the increase in pH from 10 to 11, and the substitution of NaOH by KOH on the odorous content and the antioxidant activity of HMH. Results showed that the highest deodorization rate of HMH was obtained when a deaerator treatment at neutral pH was combined with another one at basic pH using KOH for alkalization. This condition resulted in a decrease in the dimethylamine and trimethylamine contents by 70%, while certain compounds such as 2,3-pentanedione, methional, (E,E)-2,4-heptadienal, or (E,Z)-2,6-nonadienal were almost completely removed. Removal mechanisms of the targeted compounds were totally identified, and the performance of the developed process was confirmed by sensory analysis. Lastly, it was shown that the antioxidant potential of HMH was not affected by the deodorization process. These results demonstrated the feasibility of deodorizing a complex matrix without affecting its biological potential.
Collapse
Affiliation(s)
- Sarah Todeschini
- Department of Food Sciences and Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec, QC G1V 0A6, Canada; (S.T.); (V.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada;
| | - Véronique Perreault
- Department of Food Sciences and Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec, QC G1V 0A6, Canada; (S.T.); (V.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada;
| | - Charles Goulet
- Department of Phytology, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Mélanie Bouchard
- Investissement Québec-Centre de Recherche Industrielle du Québec (CRIQ, Quebec Investment–Industrial Research Center of Quebec), Québec, QC G1P 4C7, Canada; (M.B.); (P.D.)
| | - Pascal Dubé
- Investissement Québec-Centre de Recherche Industrielle du Québec (CRIQ, Quebec Investment–Industrial Research Center of Quebec), Québec, QC G1P 4C7, Canada; (M.B.); (P.D.)
| | - Yvan Boutin
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada;
- Centre Collégial de Transfert de Technologie en Biotechnologie (TransBIOTech, College Center for Technology Transfer in Biotechnology), Lévis, QC G6V 6Z9, Canada
| | - Laurent Bazinet
- Department of Food Sciences and Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec, QC G1V 0A6, Canada; (S.T.); (V.P.)
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada;
- Correspondence: ; Tel.: +418-656-2131 (ext. 407445); Fax: +418-656-3353
| |
Collapse
|
12
|
Pinto de Rezende L, Barbosa J, Teixeira P. Analysis of Alternative Shelf Life-Extending Protocols and Their Effect on the Preservation of Seafood Products. Foods 2022; 11:foods11081100. [PMID: 35454688 PMCID: PMC9025290 DOI: 10.3390/foods11081100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/25/2022] Open
Abstract
Seafood is essential to a healthy and varied diet due to its highly nutritious characteristics. However, seafood products are highly perishable, which results in financial losses and quality concerns for consumers and the industry. Due to changes in consumer concerns, demand for healthy products has increased. New trends focusing on reducing synthetic preservatives require innovation and the application of additional or alternative strategies to extend the shelf life of this type of product. Currently, refrigeration and freezing storage are the most common methods for fish preservation. However, refrigeration alone cannot provide long shelf-life periods for fish, and freezing worsens sensorial characteristics and consumer interest. Therefore, the need to preserve seafood for long periods without exposing it to freezing temperatures exists. This review focuses on the application of other approaches to seafood products, such as biodegradable films and coating technology; superchilling; irradiation; high-pressure processing; hyperbaric storage; and biopreservation with lactic acid bacteria, bacteriocins, or bacteriophages. The efficiency of these techniques is discussed based on their impact on microbiological quality, sensorial degradation, and overall preservation of the product’s nutritional properties. Although these techniques are already known, their use in the industrial processing of seafood is not widespread. Thus, the novelty of this review is the aggregation of recent studies on shelf life extension approaches, which provide useful information for the selection of the most appropriate technology and procedures and industrial innovation. Despite the fact that all techniques inhibit or delay bacterial proliferation and product decay, an undesirable sensory impact may occur depending on the treatment conditions. Although no technique appears to replace refrigeration, the implementation of additional treatments in the seafood processing operation could reduce the need for freezing, extending the shelf life of fresh unfrozen products.
Collapse
|
13
|
Zhang L, Yu X, Yagoub AEA, Xia G, Zhou C. Effect of vacuum impregnation assisted probiotics fermentation suspension on shelf life quality of freshly cut lotus root. Food Chem 2022; 381:132281. [PMID: 35121314 DOI: 10.1016/j.foodchem.2022.132281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Probiotic fermentation suspension was used to extend the shelf life of freshly cut lotus root for the first time, which played a dual role of biological protection and quality maintenance. Fermentation suspension contained lactic acid bacteria (8-9 log CFU/mL) was prepared from juice of lotus root and used to immerse samples under atmospheric pressure and vacuum. Probiotic fermentation suspension inhibited microorganism and the activity of polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonia lyase (PAL), which slowed down the physiological reaction and was beneficial to maintain the color and hardness of tissues. Lactic acid bacteria antagonized other microorganisms, and metabolic acid production played a continuous role in preservation during storage. The vacuum was helpful for the fermentation suspension to be fully impregnated into samples. The probiotic fermentation suspension had a significant inhibitory effect on E.coli O157:H7, and extended lotus root shelf life from 3 to 9 days.
Collapse
Affiliation(s)
- Long Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Nanjing Shennongyuan Food Industry Co. LTD, Pingan Xi Road, Lishui, Nanjing, 211219, China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Guohua Xia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
14
|
İncili GK, Karatepe P, Akgöl M, Kaya B, Kanmaz H, Hayaloğlu AA. Characterization of Pediococcus acidilactici postbiotic and impact of postbiotic-fortified chitosan coating on the microbial and chemical quality of chicken breast fillets. Int J Biol Macromol 2021; 184:429-437. [PMID: 34166693 DOI: 10.1016/j.ijbiomac.2021.06.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
This study was carried out to characterize antioxidant activity, total phenolic content, and the phenolic and flavonoids profile of postbiotic of Pediococcus acidilactici and to evaluate the effects of postbiotics (10% and 50%) alone and in combination with chitosan coating (1%) on the microbial and chemical quality of chicken breast fillets during storage at 4 °C. Antioxidant activity and total phenolic content of the postbiotics were found to be 1291.02 ± 1.5 mg/L TEAC and 2336.11 ± 2.36 mg/L GAE, respectively. The most abundant phenolic was vanillic acid, followed by t-caffeic, gallic, and caftaric acids. The postbiotic-chitosan (50% + 1%) combination decreased L. monocytogenes and S. Typhimurium counts by 1.5 and 2.1 log10 CFU/g, respectively, compared to the control (P < 0.05). This combination decreased the total viable count (TVC), lactic acid bacteria (LAB), and psychrotrophic bacteria count compared to the control (P < 0.05). No differences were found in thiobarbituric acid (TBA) values among the samples during storage (P > 0.05). Postbiotic treatment did not significantly change the pH values and color properties of the breast fillets (P > 0.05). Postbiotic-chitosan combinations extended the shelf-life by up to 12 days compared to the control. In conclusion, the postbiotic-chitosan combination can be used to preserve and improve the microbial quality of chicken meat products.
Collapse
Affiliation(s)
- Gökhan Kürşad İncili
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey.
| | - Pınar Karatepe
- Food Processing Department, Keban Vocational School, Fırat University, Elazığ, Turkey
| | - Müzeyyen Akgöl
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Büşra Kaya
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Hilal Kanmaz
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
15
|
García-Díez J, Saraiva C. Use of Starter Cultures in Foods from Animal Origin to Improve Their Safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2544. [PMID: 33806611 PMCID: PMC7967642 DOI: 10.3390/ijerph18052544] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 01/30/2023]
Abstract
Starter cultures can be defined as preparations with a large number of cells that include a single type or a mixture of two or more microorganisms that are added to foods in order to take advantage of the compounds or products derived from their metabolism or enzymatic activity. In foods from animal origin, starter cultures are widely used in the dairy industry for cheese, yogurt and other fermented dairy products, in the meat industry, mainly for sausage manufacture, and in the fishery industry for fermented fish products. Usually, microorganisms selected as starter culture are isolated from the native microbiota of traditional products since they are well adapted to the environmental conditions of food processing and are responsible to confer specific appearance, texture, aroma and flavour characteristics. The main function of starter cultures used in food from animal origin, mainly represented by lactic acid bacteria, consists in the rapid production of lactic acid, which causes a reduction in pH, inhibiting the growth of pathogenic and spoilage microorganisms, increasing the shelf-life of fermented foods. Also, production of other metabolites (e.g., lactic acid, acetic acid, propionic acid, benzoic acid, hydrogen peroxide or bacteriocins) improves the safety of foods. Since starter cultures have become the predominant microbiota, it allows food processors to control the fermentation processes, excluding the undesirable flora and decreasing hygienic and manufacturing risks due to deficiencies of microbial origin. Also, stater cultures play an important role in the chemical safety of fermented foods by reduction of biogenic amine and polycyclic aromatic hydrocarbons contents. The present review discusses how starter cultures contribute to improve the microbiological and chemical safety in products of animal origin, namely meat, dairy and fishery products.
Collapse
Affiliation(s)
- Juan García-Díez
- CECAV—Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Cristina Saraiva
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal;
| |
Collapse
|