1
|
Zhang C, Wang Y, Guo M, Kong Y, Fan X, Sun S, Du C, Gong H. Antifungal mechanisms of phenyllactic acid against Mucor racemosus: Insights from spore growth suppression, and proteomic analysis. Food Chem 2025; 475:143309. [PMID: 39954636 DOI: 10.1016/j.foodchem.2025.143309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Mucor, a common mold, is a major cause of post-harvest spoilage in sweet cherries, leading to significant economic losses. While previous studies have demonstrated that phenyllactic acid (PLA) exhibits potent antifungal activity against Mucor, its underlying mechanism remains unclear. Here, we probed into the efficacy of PLA in inhibiting Mucor spore growth and explored its mechanisms of action. PLA treatment suppressed Mucor spore growth in a dose-dependent manner, with a minimum inhibitory concentration of 12 mmol/L. Morphological analysis revealed that PLA caused nuclear chromatin condensation, DNA fragmentation, and severe ultrastructural damage, including cell swelling, vacuolization, and separation of the cell wall from the membrane. Additionally, results of flow cytometry showed that PLA induced phosphatidylserine externalization, mitochondrial membrane potential depolarization, and intracellular reactive oxygen species accumulation in Mucor spore cells. Tandem Mass Tag (TMT)-based proteomic analysis identified 1248 differentially expressed proteins (DEPs; 616 upregulated and 632 downregulated) in Mucor spores treated with 24 mmol/L PLA, compared to the untreated control (p < 0.05). Bioinformatics analysis revealed that these DEPs were primarily involved in oxidative phosphorylation, glycolysis, the citrate cycle, and the biosynthesis and metabolism of carbon and amino acids. Overall, these findings elucidate the antifungal mechanisms of PLA against Mucor spores and provide valuable insights into the potential application of PLA in food preservation.
Collapse
Affiliation(s)
- Chaoqi Zhang
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Yunfan Wang
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Mingmei Guo
- Mudan District Mudan Street Sub-district Office, Heze, Shandong Province 274000, PR China
| | - Yanhui Kong
- Yantai Landscape Construction and Maintenance Center, Yantai, Shandong Province 264000, PR China
| | - Xinguang Fan
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Shuyang Sun
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China
| | - Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China.
| | - Hansheng Gong
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China; Yantai Engineering Research Center of Green Food Processing and Quality Control, 186 Middle Hongqi Road, Yantai, Shandong Province 264025, PR China.
| |
Collapse
|
2
|
Zhou Y, Gu X, Ji S, Yang Y, Zhao Y, Liu H. Antibiofilm mechanism of mouse gastrointestinal stimulation against Vibrio parahaemolyticus under bile salt culture. Microb Pathog 2025; 200:107339. [PMID: 39880136 DOI: 10.1016/j.micpath.2025.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Bile salts are crucial microbe-selective inhibitors present in the intestinal tracts of humans and other animals. Environmental and clinical strains of Vibrio parahaemolyticus (V. parahaemolyticus) exhibited different biofilm-forming abilities under bile salt incubation. In order to find an effective way to eliminate biofilm, in this study, environmental strains were subjected to mouse gastrointestinal (GI) stimulation and cultured in medium containing 0.06 % bile salts. The effects of GI stimulation on V. parahaemolyticus biofilm formation were evaluated by biofilm cells assay, atomic force microscopy (AFM) assay, confocal laser scanning microscopy (CLSM) assay, extracellular polysaccharide (EPS) assay, and salmon surface biofilm formation assay. The results showed that GI stimulation diminished the ability of V. parahaemolyticus to form biofilm, significantly reduced biofilm cells, decreased the level of EPS, and destroyed the biofilm structure. For the biofilm formed by V. parahaemolyticus after GI stimulation, AFM observed that the appearance of the biofilm became inhomogeneous and rough, and CLSM observed that the 3D structure of the biofilm became dispersed and sparse. GI stimulation reduced the ability of V. parahaemolyticus to form biofilms on the surface of salmon containing 0.06 % bile salts at both 12 h and 24 h, as evidenced by a decrease in the number of adherent cells. Comparing biofilms formed by tdh-positive V. parahaemolyticus before and after undergoing GI stimulation, a total of 1169 differentially expressed genes (DEGs) were identified by RNA sequencing. And 10 of the biofilm-related genes displayed significant down-regulation after GI stimulation. Enrichment analysis of DEGs revealed that affecting the switch between succinate and fumarate in the TCA cycle could inhibit biofilm formation. This study offers new insights into strategies for preventing biofilm formation by foodborne pathogens.
Collapse
Affiliation(s)
- Yu Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Xin Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Shiying Ji
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Yao Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China; Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Wu CH, Kaneyasu Y, Yano K, Shigeishi H, Kitasaki H, Maehara T, Niitani Y, Takemoto T, Mine Y, Le MNT, Kawada-Matsuo M, Komatsuzawa H, Ohta K. Anti-fungal effects of slightly acidic electrolyzed water on Candida species. J Oral Biosci 2025; 67:100573. [PMID: 39515466 DOI: 10.1016/j.job.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Slightly acidic electrolyzed water (SAEW) is produced by electrolyzing 2-6% diluted hydrochloric acid in a membrane-less chamber, resulting in 5.0-6.5 pH, and can be applied to various foods as a disinfectant. Although SAEW has shown to have bactericidal activity, the details of its anti-fungal effects towards Candida species remain unknown. Therefore, we examined the fungicidal effects of SAEW on Candida spp. and biofilms on acrylic resins. METHODS The fungicidal effects of SAEW on Candida spp. at different reaction times and total numbers of colonies in culture plates were examined. Subsequently, SAEW was added to Candida spp. biofilms formed on polystyrene plates, and adenosine triphosphate (ATP) in SAEW was measured to examine its fungicidal effects towards Candida spp. biofilms. The fungicidal effect of SAEW on Candida spp. biofilms was determined by counting the number of colonies on the acrylic resin after adding SAEW. RESULTS SAEW completely killing activity within 1 min with the tested Candida spp. C. albicans and C. glabrata ATP were increased 5 min after adding SAEW compared with the controls, suggesting the removal of biofilm. Of the C. albicans on acrylic resin, >99.9%were killed by SAEW compared to their levels in deionized distilled water (DW) (76.2 × 102/mL and 43.3 × 102/mL, respectively). Similarly, 93.1% of C. glabrata were killed by SAEW compared to DW (159.3x102/mL). CONCLUSIONS SAEW may be useful in preventing oral candidiasis as part of oral care.
Collapse
Affiliation(s)
- Chia-Hsin Wu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Yoshino Kaneyasu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kanako Yano
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Honami Kitasaki
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tomoko Maehara
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Yoshie Niitani
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Toshinobu Takemoto
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Yuichi Mine
- Department of Medical Systems Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
4
|
Du Y, Tian Q, Li G, Yi J, Hu X, Jiang Y. Advanced application of slightly acidic electrolyzed water for fresh-cut fruits and vegetables preservation. Food Res Int 2024; 195:114996. [PMID: 39277256 DOI: 10.1016/j.foodres.2024.114996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Fresh-cut fruits and vegetables (F&V) play a pivotal role in modern diets due to their convenience and nutritional value. However, their perishable nature renders them susceptible to rapid spoilage, causing quality deterioration, safety risks, and economic losses along the supply chain. Traditional preservation methods, while effective to some extent, often fall short in maintaining the quality and safety of fresh-cut F&V. This comprehensive review examines the utilization of slightly acidic electrolyzed water (SAEW) as a novel preservation technique for fresh-cut F&V. The review encompasses the production mechanisms, sterilization principles, classifications and application of SAEW. It explores the effects of SAEW on microbial inactivation, quality parameters, and metabolic pathways in fresh-cut F&V. Additionally, it assesses the synergistic effects of SAEW when combined with other preservation methods. SAEW demonstrates remarkable potential in extending the shelf life of fresh-cut F&V by effectively inhibiting microbial growth, suppressing browning, preserving chemical content, and influencing various metabolic processes. Moreover, its synergy with different treatments enhances its overall efficacy in maintaining fresh-cut F&V quality. The review highlights the promising role of SAEW as an innovative preservation approach for fresh-cut F&V. However, challenges regarding its widespread implementation and potential limitations require further exploration. Overall, SAEW stands as a significant contender in ensuring the safety and quality of fresh-cut F&V paving the way for future research and application in the food industry.
Collapse
Affiliation(s)
- Yanlin Du
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Qi Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Guijing Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Plateau Characteristic Prepared Food in Yunnan Province, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China.
| |
Collapse
|
5
|
Pius Bassey A, Pei Liu P, Chen J, Kabir Bako H, Frimpong Boateng E, Isaiah Ibeogu H, Ye K, Li C, Zhou G. Antibacterial efficacy of phenyllactic acid against Pseudomonas lundensis and Brochothrix thermosphacta and its synergistic application on modified atmosphere/air-packaged fresh pork loins. Food Chem 2024; 430:137002. [PMID: 37524609 DOI: 10.1016/j.foodchem.2023.137002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/24/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Microbial contamination is a crucial problem that is difficult to solve for the meat industry. Therefore, this study explored the antibacterial efficacy of phenyllactic acid (PLA) against Pseudomonas lundensis (PL) and Brochothrix thermosphacta (BT) solely and in combination (PL + BT). It also provided insights into its synergistic preservation effect during inoculation in chilled (4 °C) fresh pork loins under air (AP) and modified atmosphere packaging (MAP). The minimum inhibitory concentration (MIC) of PLA was 10 mg/mL. Growth kinetics, scanning electron microscopy (SEM), zeta potential, and cell viability investigations showed that PLA treatment exhibited reduced bacterial growth, aided morphological alterations, and leakage in cell membrane integrity in vitro. Nonetheless, PLA and MAP (70 %N2/30 %CO2) showed an excellent synergistic antibacterial ability against spoilage indicators(total glucose, pH, TVB-N, and TBARS), bacterial counts than AP, without impairing organoleptic acceptability. These results demonstrate the broad antibacterial efficacy of PLA as a biopreservative for the meat industry.
Collapse
Affiliation(s)
- Anthony Pius Bassey
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Pei Pei Liu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Jiahui Chen
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Hadiza Kabir Bako
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Evans Frimpong Boateng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Henry Isaiah Ibeogu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST, PR China; Key Laboratory of Meat Processing, MARA, PR China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|
6
|
Ban GH, Kim SH, Kang DH, Park SH. Comparison of the efficacy of physical and chemical strategies for the inactivation of biofilm cells of foodborne pathogens. Food Sci Biotechnol 2023; 32:1679-1702. [PMID: 37780592 PMCID: PMC10533464 DOI: 10.1007/s10068-023-01312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilm formation is a strategy in which microorganisms generate a matrix of extracellular polymeric substances to increase survival under harsh conditions. The efficacy of sanitization processes is lowered when biofilms form, in particular on industrial devices. While various traditional and emerging technologies have been explored for the eradication of biofilms, cell resistance under a range of environmental conditions renders evaluation of the efficacy of control challenging. This review aimed to: (1) classify biofilm control measures into chemical, physical, and combination methods, (2) discuss mechanisms underlying inactivation by each method, and (3) summarize the reduction of biofilm cells after each treatment. The review is expected to be useful for future experimental studies and help to guide the establishment of biofilm control strategies in the food industry.
Collapse
Affiliation(s)
- Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439 Republic of Korea
| |
Collapse
|
7
|
Hu S, Li X, Xiong Q. The Combination of Corona Discharge Plasma and ε-Polylysine for the Inactivation of Serratia liquefaciens. J Food Prot 2023; 86:100078. [PMID: 37295216 DOI: 10.1016/j.jfp.2023.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The purpose of the study was to investigate the mechanism of inactivation of Serratia liquefaciens by different treatments, namely corona discharge plasma (CDP), ε-polylysine (ε-PL), and corona discharge plasma combined with ε-polylysine (CDP plus ε-PL). The results showed that the combined treatment of CDP and ε-PL exhibited significant antibacterial effects. The total number of colonies of S. liquefaciens dropped by 0.49 log CFU/mL following 4 min of CDP treatment, 4MIC ε-PL treatment for 6 h alone decreased the amounts of colonies by 2.11 log CFU/mL, and 6 h of treatment with 4MIC ε-PL after the bacterium was treated with CDP could decrease the number of colonies by 6.77 log CFU/mL. Scanning electron microscopy images showed that the combined treatment of CDP and ε-PL caused the most serious damage to the cell morphology. Electrical conductivity, nucleic acid, and PI staining indicated that the combined treatment dramatically enhanced the permeability of the cell membrane. In addition, the combined treatment led to a significant decrease in SOD and POD enzyme activities in S. liquefaciens, which prevented energy metabolism. Finally, the determination of free and intracellular ε-PL concentrations confirmed that the treatment of CDP could cause the bacteria to bind more ε-PL and exert more significant bacterial inhibition. Therefore, CDP and ε-PL had a synergistic effect in the inhibition of S. liquefaciens.
Collapse
Affiliation(s)
- Sijia Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Xinfu Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Qiang Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China.
| |
Collapse
|
8
|
Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel by synergistic effects of tap water-based neutral electrolyzed water and lactic acid. Food Microbiol 2023; 112:104233. [PMID: 36906304 DOI: 10.1016/j.fm.2023.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Contaminated food contact surface is one of the most important transmission routes for foodborne pathogens. Stainless steel is one such food-contact surface that is widely used in food-processing environments. The present study aimed to evaluate the synergistic antimicrobial efficacy of a combination of tap water-based neutral electrolyzed water (TNEW) and lactic acid (LA) against the foodborne pathogens Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel. The results revealed that simultaneous treatment with TNEW (ACC of 4.60 mg/L) and 0.1% LA (TNEW-LA) for 5 min resulted in 4.99-, 4.34-, and >5.4- log CFU/cm2 reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes on stainless steel, respectively. Of these, 4.00-, 3.57-, and >4.76-log CFU/cm2 reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively were exclusively attributed to the synergistic action of the combined treatments after factoring out the reductions due to individual treatments. Furthermore, five mechanistic investigations revealed that the key mechanisms underlying the synergistic antibacterial effect of TNEW-LA were reactive oxygen species (ROS) production, cell membrane damage resulting from membrane lipid oxidation, DNA damage, and inactivation of intracellular enzymes. Overall, our findings suggest that the TNEW-LA combination treatment could be effectively used in the sanitization of food processing environments, especially the food contact surfaces, to control major pathogens and enhance food safety.
Collapse
|
9
|
Zhang C, Xie Y, Qiu W, Mei J, Xie J. Antibacterial and Antibiofilm Efficacy and Mechanism of Ginger ( Zingiber officinale) Essential Oil against Shewanella putrefaciens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1720. [PMID: 37111943 PMCID: PMC10140911 DOI: 10.3390/plants12081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Ginger (Zingiber officinale) has unique medicinal value and can be used to treat colds and cold-related diseases. The chemical composition and antibacterial activity of ginger essential oil (GEO) against Shewanella putrefaciens were determined in the present study. Zingiberene, α-curcumene, and zingerone were the main active compounds of GEO. GEO displayed significant antibacterial activity against S. putrefaciens, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 2.0 and 4.0 μL/mL, respectively. Changes in intracellular ATP content, nucleic acid and protein structure, exopolysaccharides (EPS) content, and extracellular protease production indicated that GEO disrupted the membrane integrity of S. putrescens. At the same time, changes in biofilm metabolic activity content and the growth curve of biofilm showed that GEO could destroy the biofilm. Both scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) observations confirmed that GEO destroyed the cell membrane and lead to the leakage of the constituents. The above results indicate that GEO entered the cells via contact with bacterial membranes, and then inhibited the growth of S. putrefaciens and its biofilms by increasing membrane permeability and inhibiting various virulence factors such as EPS. The findings showed that GEO could destroy the structure of cell membrane and biofilm of tested S. putrefaciens, indicating its potential as a natural food preservative.
Collapse
Affiliation(s)
- Chi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yao Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
10
|
Sun H, Liao C, Chen L, Cheng Q, Zheng Y, Wang C, Xie Y, Chen C, Li P. Potential for volatile fatty acid production via anaerobically-fermenting rice straw pretreated with silage effluent and phenyllactic acid. BIORESOURCE TECHNOLOGY 2023; 369:128355. [PMID: 36402281 DOI: 10.1016/j.biortech.2022.128355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
To resolve environmental problems associated with rice straw and silage effluent disposal, silage effluent pretreating rice straw for the anaerobic production of volatile fatty acids (VFAs) was investigated. To prevent the lactic acid bacteria in silage effluent from inhibiting anaerobic fermentation, four phenyllactic acid (PLA) levels were set (0, 0.1, 0.3, 0.5 mg/kg). The total VFA yields of treatments pretreated only with silage effluent (CK) were higher than the groups combined with PLA during 15 days fermentation. Compared to PLA treatments, the total VFA of CK increased by 11.4 % ∼ 25.1 % on day 15. The CK showed higher lactic and propionic acid contents and lower pH values (<4.9). The PLA treatments decreased Lactobacillus abundance while increasing bacterial richness and evenness, and acetic and butyric acid contents. These demonstrated silage effluent has the potential to be used as a biological pretreatment for VFA production in anaerobic fermentation.
Collapse
Affiliation(s)
- Hong Sun
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Liangyin Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yulong Zheng
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chunmei Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixiao Xie
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang 550025, China; Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
11
|
Yan P, Chen X, Chelliah R, Jo KH, Shan L, Shin H, Kim S, Oh DH. Biocontrol and anti-biofilm potential of aerosols sprayed slightly acidic electrolyzed water against Cronobacter sakazakii in infant food industry. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
12
|
Yuan X, Li Y, Mo Q, Zhang B, Shu D, Sun L, Zhao X, Zhang R, Zheng J, Jia Y, Zang Y. Antibacterial activity and mechanism of slightly acidic electrolyzed water combined with ultraviolet light against Salmonella enteritidis. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Sung W, Lu S, Chen Y, Pan C, Hsiao H. Inhibition of individual and combination of cell free supernatants of phenyllactic acid, pediocin‐ and nisin‐producing lactic acid bacteria against food pathogens and bread spoilage molds. J Food Saf 2022. [DOI: 10.1111/jfs.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen‐Chieh Sung
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
- Center of Excellence for the Oceans National Taiwan Ocean University Keelung Taiwan, ROC
| | - Szu‐Hsaun Lu
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Yi‐Chen Chen
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Chorng‐Liang Pan
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Hsin‐I Hsiao
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| |
Collapse
|
14
|
Shakya S, Danshiitsoodol N, Noda M, Inoue Y, Sugiyama M. 3-Phenyllactic acid generated in medicinal plant extracts fermented with plant-derived lactic acid bacteria inhibits the biofilm synthesis of Aggregatibacter actinomycetemcomitans. Front Microbiol 2022; 13:991144. [PMID: 36212837 PMCID: PMC9539679 DOI: 10.3389/fmicb.2022.991144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the present study, the effect of PLA on a periodontic pathogen, Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), the biofilm, and virulence-related genes was investigated. We confirmed that two lactic acid bacteria (LAB) strains isolated from plant sources, Lactiplantibacillus plantarum MSC-C2 and Pediococcus pentosaceus K40, secrete PLA into the de Man, Rogosa & Sharpe (MRS) broth when supplemented with phenyl pyruvic acid (PPA) as a precursor to PLA. Moreover, PLA was generated in the fermentation broths of two medicinal plant extracts, Paeonia lactiflora Pall (PR) and Carthamus tinctorius (CT), when used by each LAB strain and each extract supplemented with PPA. We determined that the minimum inhibitory concentration (MIC) of PLA against A. actinomycetemcomitans was 20 mM. PLA significantly decreased biofilm formation and suppressed the transcription of pgA, ltxA, and cdtB genes, which encode the poly-N-acetylglucosamine (PGA) polysaccharide of biofilm matrix and exotoxins leukotoxin and cytolethal distending toxin (CDT), respectively. The PLA produced by the MSC-C2 and K40 strains was increased several times by the addition of PPA to the MRS broth. The anti-biofilm effect of the extracts from the fermentation broth was proportional to the increasing PLA concentration, while a cumulatively higher effect than that of PLA alone suggested a combinational effect of PLA and the other metabolites, such as lactic acid (LA). Among the two medicinal plants, PLA, produced after the addition of PPA, was higher in PR extract in case of both the LAB strains. PLA production by the MSC-C2 strain in the PR extract reached 4.8 ± 0.23 mM, which was obviously higher than that in the MRS broth (3.88 ± 0.12 mM) supplemented with 1 mg/ml PPA. The activity to inhibit biofilm formation in the fermented PR extract was clearly high. PLA formed in the fermented PR extract downregulated the dispersin B encoding the dspB gene together with pgA, ltxA, and cdtB. In conclusion, this study shows a promising activity of PLA against the A. actinomycetemcomitans biofilm and virulence genes. In addition, the combinational effect of PLA and the medicinal plant extract can be achieved by fermentation with a specific plant-derived LAB strain.
Collapse
|
15
|
Anti-adhesion and anti-biofilm activity of slightly acidic electrolyzed water combined with sodium benzoate against Streptococcus mutans: A novel ecofriendly oral sanitizer to prevent cariogenesis. Microb Pathog 2022; 166:105535. [DOI: 10.1016/j.micpath.2022.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/03/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022]
|
16
|
Antibacterial effect of phenyllactic acid against Vibrio parahaemolyticus and its application on raw salmon fillets. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112586] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Sun J, Wang D, Sun Z, Liu F, Du L, Wang D. The combination of ultrasound and chlorogenic acid to inactivate Staphylococcus aureus under planktonic, biofilm, and food systems. ULTRASONICS SONOCHEMISTRY 2021; 80:105801. [PMID: 34688141 PMCID: PMC8551818 DOI: 10.1016/j.ultsonch.2021.105801] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 05/03/2023]
Abstract
This study aimed to investigate the mechanism of different treatments, namely, ultrasound (US), chlorogenic acid (CA), and ultrasound combined with chlorogenic acid (US plus CA) on the inactivation of Staphylococcus aureus planktonic and biofilm cells. Results showed that the combined treatment of US and CA exhibited remarkable synergistic antibacterial and antibiofilm effects. Scanning electron microscopy images indicated that the combined treatment of US and CA caused the most serious damage to the cell morphology. Confocal laser scanning microscopy images revealed that the combined treatment led to sharp increase and severe damage to the permeability of the cell membrane, causing the release of ATP and nucleic acids and decreasing the exopolysaccharide contents in S. aureus biofilm. Finally, the combined treatment of US plus 1% CA for 60 min inactivated S. aureus cells by 1.13 lg CFU/g on mutton. Thus, the combined treatment of US and CA had synergistic effect against S. aureus under planktonic, biofilm, and food systems.
Collapse
Affiliation(s)
- Jinyue Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Debao Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Lihui Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
18
|
Exoproteome Analysis of Antagonistic Interactions between the Probiotic Bacteria Limosilactobacillus reuteri LR1 and Lacticaseibacillus rhamnosus F and Multidrug Resistant Strain of Klebsiella pneumonia. Int J Mol Sci 2021; 22:ijms222010999. [PMID: 34681658 PMCID: PMC8537075 DOI: 10.3390/ijms222010999] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The expansion of multiple drug resistant (MDR) strains of Klebsiella pneumoniae presents an immense threat for public health. Annually, this microorganism causes thousands of lethal nosocomial infections worldwide. Currently, it has been shown that certain strains of lactic acid bacteria (LAB) can efficiently inhibit growth of K. pneumoniae and the formation of its biofilms; however, the active principle of such action remains unknown. In the current article, the growth inhibition of MDR K. pneumoniae by two LAB—Limosilactobacillus reuteri LR1 and Lacticaseibacillus rhamnosus F—is demonstrated, and the nature of this inhibition studied at the level of exoproteome. This article shows that the exoproteomes of studied LAB contains both classically and non-classically secreted proteins. While for L. reuteri LR1 the substantial portion of classically secreted proteins was presented by cell-wall-degrading enzymes, for L. rhamnosus F only one out of four classically secreted proteins was presented by cell-wall hydrolase. Non-classically secreted proteins of both LAB were primarily metabolic enzymes, for some of which a possible moonlighting functioning was proposed. These results contribute to knowledge regarding antagonistic interaction between LAB and pathogenic and opportunistic microorganisms and set new perspectives for the use of LAB to control the spread of these microorganisms.
Collapse
|
19
|
Zhang J, Wang D, Sun J, Sun Z, Liu F, Du L, Wang D. Synergistic Antibiofilm Effects of Ultrasound and Phenyllactic Acid against Staphylococcus aureus and Salmonella enteritidis. Foods 2021; 10:foods10092171. [PMID: 34574281 PMCID: PMC8466041 DOI: 10.3390/foods10092171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
This study evaluated the effect of the combination of ultrasound and phenyllactic acid (PLA) on inactivating Staphylococcus aureus and Salmonella enteritidis biofilm cells and determined the possible antibiofilm mechanism. S. aureus and S. enteritidis biofilm cells were separately treated with ultrasound (US, 270 W), phenyllactic acid (PLA, 0.5% and 1%), and their combination (US + 0.5% PLA, and US + 1% PLA) for 5, 10, 20, 30, and 60 min. Biofilm inactivation, polysaccharide, and respiratory chain dehydrogenase assays were conducted. US and PLA had a synergistic effect on inactivating bacterial cells in S. aureus and S. enteritidis biofilms. The combination of US and PLA significantly decreased the contents of soluble and insoluble polysaccharides and the activity of respiratory chain dehydrogenase in the biofilm cells compared to the single treatment. Confocal laser scanning microscopy, scanning electron microscopy, and intracellular adenosine-triphosphate (ATP) analyses indicated that the combination of US and PLA seriously destroyed the cell membrane integrity of the S. aureus and S. enteritidis biofilms and caused the leakage of intracellular ATP. These findings demonstrated the synergistic antibiofilm effect of US combined with PLA and offered a research basis for its application in the food industry.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
| | - Debao Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
| | - Jinyue Sun
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
| | - Zhilan Sun
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
| | - Fang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
- Correspondence: (F.L.); (L.D.)
| | - Lihui Du
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- Correspondence: (F.L.); (L.D.)
| | - Daoying Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China; (D.W.); (J.S.); (Z.S.); (D.W.)
| |
Collapse
|