1
|
Liberty JT, Lin H, Kucha C, Sun S, Alsalman FB. Innovative approaches to food traceability with DNA barcoding: Beyond traditional labels and certifications. ECOLOGICAL GENETICS AND GENOMICS 2025; 34:100317. [DOI: 10.1016/j.egg.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Mahato DK, Kamle M, Pandhi S, Pandey S, Gupta A, Paul V, Kalsi R, Agrawal S, Islam D, Khare S, Singh A, Kumar P, Rab SO, Saeed M. Foodomics: A sustainable approach for the specific nutrition and diets for human health. Food Chem X 2024; 24:101872. [PMID: 39483356 PMCID: PMC11525469 DOI: 10.1016/j.fochx.2024.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Foodomics is an interdisciplinary field that integrates various omics technologies to explore the complex relationship between food and human health in depth. This approach offers valuable insights into the biochemical, molecular, and cellular composition of food by employing advanced omics techniques. Its applications span the food industry and human health, including efforts to combat malnutrition, provide dietary recommendations, and ensure food safety. This paper critically examines the successful applications of foodomics across areas such as food safety, quality, traceability, processing, and bioactivity. It highlights the crucial role of metabolomics, proteomics, and transcriptomics in achieving a comprehensive understanding of food components, their functions, and their interactions with human biology.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North-Eastern Regional Institute of Science and Technology, Nirjuli 791109, Arunachal Pradesh, India
| | - Shikha Pandhi
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Surabhi Pandey
- Department of Food Technology, Harcourt Butler Technical University, Kanpur, 208002, India
| | - Akansha Gupta
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Veena Paul
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Rhythm Kalsi
- School of Agriculture, Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Swati Agrawal
- Department of Bioresource Engineering, Faculty of Agricultural & Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| | - Dawrul Islam
- World Food Programme, Trust for India, New Delhi 110029, India
| | - Shubhra Khare
- Department of Applied Sciences & Humanities, Invertis University, Bareilly, India
| | - Ajey Singh
- Applied Microbiology Lab., Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Botany, University of Lucknow, Lucknow, 226007, India
- College of Life Science & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
3
|
Scali M, Spinsanti G, Vignani R. Validation of a simplified small-scale DNA extraction protocol from wine by quantitative real-time PCR. 3 Biotech 2024; 14:145. [PMID: 38706928 PMCID: PMC11065827 DOI: 10.1007/s13205-024-03992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
In the present study, we compared a simplified small-scale purification protocol to obtain DNA admixtures out of wine, with our large-scale published method. The extraction methods must provide DNA free of PCR inhibitors, that can interfere with DNA amplification. To evaluate the efficiency of grapevine's nuclear DNA extraction from wine, the new protocol was also compared in terms of purity and yield to the DNA obtained out of grapevine's (Vitis vinifera) leaf tissue, using a commercial kit. Two single-copy nuclear genes, nine-cis-epoxy carotenoid dioxygenase 2 (NCED2), and prefoldin subunit 5-like (PS5) were amplified in DNA extracted from wine and grapevine by real-time TaqMan PCR to determine the presence of inhibitors in relation to the diversity of starting biological matrix. This study showed that the small-scale, simpler method for extracting DNA from wine produced effective results in terms of inhibitor presence and purity. Furthermore, even though the initial biological matrix was more complicated, the grapevine nuclear DNA that was removed from wine was qualitatively equivalent to the DNA that was isolated from the leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03992-x.
Collapse
Affiliation(s)
- Monica Scali
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giacomo Spinsanti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Rita Vignani
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
4
|
Moine A, Boccacci P, De Paolis C, Rolle L, Gambino G. TaqMan® and HRM approaches for SNP genotyping in genetic traceability of musts and wines. Curr Res Food Sci 2024; 8:100707. [PMID: 38444732 PMCID: PMC10912045 DOI: 10.1016/j.crfs.2024.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
The fight against fraud in the wine sector requires continuous improvements and validations of new technologies applicable to musts and wines. Starting from published data from the Vitis18kSNP array, a series of new specific single nucleotide polymorphism (SNP) markers have been identified for some important north-western Italian cultivars, such as Barbera, Dolcetto and Arneis (Vitis vinifera L.), used in the production of high-quality wines under Protected Denomination of Origin. A pair of new SNP markers for each grape variety were selected and validated using two real-time PCR techniques: TaqMan® genotyping assays and high-resolution melting analysis (HRM). The TaqMan® assay has proven to be more reliable and repeatable than HRM analysis because despite being an economical and versatile technique for the detection of different types of genomic mutations (SNPs, insertions or deletions), HRM has shown limitations in the presence of poor-quality DNA extracted from musts and wines. TaqMan® assays have successfully identified Barbera, Dolcetto and Arneis in their respective musts and experimental wines, and with good efficiency in commercial wines. Marked differences between genotypes were observed, varietal identification in Dolcetto-based musts/wines was more efficient than that in Arneis-based wines. Therefore, the TaqMan® assay has considerable potential for varietal identification in wines and the procedure described in the present work can be easily adapted to all wines with adequate setup of DNA extraction methods that should be adapted to different wines.
Collapse
Affiliation(s)
- Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy
| | - Camilla De Paolis
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Luca Rolle
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
- Interdepartmental Centre for Grapevines and Wine Sciences, University of Turin, Corso Enotria 2/C, 12051, Alba, CN, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
5
|
Carrara I, Terzi V, Ghizzoni R, Delbono S, Tumino G, Crespan M, Gardiman M, Francia E, Morcia C. A Molecular Toolbox to Identify and Quantify Grape Varieties: On the Trace of "Glera". Foods 2023; 12:3091. [PMID: 37628090 PMCID: PMC10453920 DOI: 10.3390/foods12163091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
A pillar of wine authenticity is the variety/ies used. Ampelographic descriptors and SSR markers, included in several national and international databases, are extensively used for varietal identification purposes. Recently, SNP markers have been proposed as useful for grape varietal identification and traceability. Our study has been directed toward the development of a molecular toolbox able to track grape varieties from the nursery to the must. Two complementary approaches were developed, exploiting SNP markers with two different technologies, i.e., a high-throughput platform for varietal identification and a digital PCR system for varietal quantification. As proof-of-concept, the toolbox was successfully applied to the identification and quantification of the "Glera" variety along the Prosecco wine production chain. The assays developed found their limits in commercial, aged wines.
Collapse
Affiliation(s)
- Ilaria Carrara
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Valeria Terzi
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Roberta Ghizzoni
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Stefano Delbono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| | - Giorgio Tumino
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Manna Crespan
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Viale 28 Aprile 26, 31015 Conegliano, Italy; (M.C.); (M.G.)
| | - Massimo Gardiman
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Viticoltura ed Enologia (CREA-VE), Viale 28 Aprile 26, 31015 Conegliano, Italy; (M.C.); (M.G.)
| | - Enrico Francia
- Department of Life Science, Centre BIOGEST-SITEIA, University of Study of Modena and Reggio Emilia, Via Amendola, n. 2, 42122 Reggio Emilia, Italy;
| | - Caterina Morcia
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Genomica e Bioinformatica (CREA-GB), Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy (R.G.); (S.D.); (C.M.)
| |
Collapse
|
6
|
Markos MU, Tola Y, Kebede BT, Ogah O. Metabolomics: A suitable foodomics approach to the geographical origin traceability of Ethiopian Arabica specialty coffees. Food Sci Nutr 2023; 11:4419-4431. [PMID: 37576063 PMCID: PMC10420859 DOI: 10.1002/fsn3.3434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 08/15/2023] Open
Abstract
Coffee arabica, originated in Ethiopia, is considered a quality bean for its high sensory qualities, and has a special price in the world coffee market. The country is a pool of genetic diversity for Arabica coffee, and coffee from different regions has a distinct flavor profile. Their exceptional quality is attributed to their genetic diversity, favorable environmental conditions, and agroforestry-based production system. However, the country still needs to benefit from its single-origin product due to a lack of appropriate traceability information to register for its geographical indication. Certification of certain plants or plant-derived products emerged to inform consumers about their exceptional qualities due to their geographical origin and protect the product from fraud. The recently emerging foodomics approaches, namely proteomics, genomics, and metabolomics, are reported as suitable means of regional agri-food product authentication and traceability. Particularly, the metabolomics approach provides truthful information on product traceability. Despite efforts by some researchers to trace the geographical origin of Ethiopian Arabica coffees through stable isotope and phenolic compound profiling and elemental analysis, foodomics approaches are not used to trace the geographical origin of Arabica specialty coffees from various parts of the country. A metabolomics-based traceability system that demonstrates the connection between the exceptional attributes of Ethiopian Arabica specialty coffees and their geographic origin is recommended to maximize the benefit of single-origin coffees.
Collapse
Affiliation(s)
- Makiso Urugo Markos
- Department of Food Science and Postharvest Technology, College of Agricultural SciencesWachemo UniversityHosannaEthiopia
- Department of Postharvest Management, College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Yetenayet Tola
- Department of Postharvest Management, College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | | | - Onwuchekwa Ogah
- Department of BiotechnologyEbonyi State UniversityAbakalikiNigeria
| |
Collapse
|
7
|
Metagenomic bacterial diversity and metabolomics profiling of Buttafuoco wine production. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Zambianchi S, Soffritti G, Stagnati L, Patrone V, Morelli L, Busconi M. Effect of storage time on wine DNA assessed by SSR analysis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Giorgia Potortì A, Francesco Mottese A, Rita Fede M, Sabatino G, Dugo G, Lo Turco V, Costa R, Caridi F, Di Bella M, Di Bella G. Multielement and chemometric analysis for the traceability of the Pachino Protected Geographical Indication (PGI) cherry tomatoes. Food Chem 2022; 386:132746. [PMID: 35334318 DOI: 10.1016/j.foodchem.2022.132746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/15/2022]
Abstract
To prevent PGI (Protected Geographical Indication) cherry tomato of Pachino (Sicily, Italy) from frauds, an alternative method, which includes chemometric treatments, was proposed. The content of 32 inorganic elements (macro-micronutrients and lanthanides) present in 16 PGI and 24 not PGI cherry tomato samples cv Naomy, and in 16 PGI and 8 not PGI soil samples, was determined by Inductively Coupled Plasma - Mass Spectrometer (ICP-MS). To identify the elements able to differentiate PGI and not PGI cherry tomato samples, Principal Components Analysis (PCA) and Canonical discriminant analysis (CDA) were performed. The first two principal components (PC1-PC2) explain a total variance of 71,41% between PGI and not PGI group, whereas CDA showed Zn, Cd, Mn and Ca as inorganic markers able to correctly classify the 100% of samples. Furthermore, with a translocation factor (K), evaluated in soil/plant chain, the comparison of absorption trends for PGI and not PGI samples was realized.
Collapse
Affiliation(s)
- Angela Giorgia Potortì
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Antonio Francesco Mottese
- Department of Mathematics and Informatics, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Maria Rita Fede
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Giuseppe Sabatino
- Department of Mathematics and Informatics, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giacomo Dugo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Rosaria Costa
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Francesco Caridi
- Department of Mathematics and Informatics, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Marcella Di Bella
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Palermo, Milazzo Office, Via dei Mille 46, 98057 Milazzo, ME, Italy; Sede Territoriale Sicilia, Dipartimento di Ecologia Marina Integrata, Stazione Zoologica Anton Dohrn (SZN), Via dei Mille 46, 98057 Milazzo, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
10
|
Biochemical Traits, 1H NMR Profile and Residual DNA Content of ‘Asprinio’, White Wine from Campania Region (Southern Italy). Foods 2022; 11:foods11152322. [PMID: 35954087 PMCID: PMC9368296 DOI: 10.3390/foods11152322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
‘Asprinio’ is a white dry wine characteristic for its acidity and aromatic flavour, known as emerging DOP wine in Southern Italy. Nevertheless, little information is available on the metabolomic profile of this wine. Thus, in this paper we evaluated the colourimetric parameters, 1H NMR profiles and free amino acids content of ‘Asprinio’ wines, bottled by two different wineries (hereafter ‘Asprinio_A’ and ‘Asprinio_B’) collected in 2019 and 2020, using ‘Greco di Tufo’ for comparison. The colourimetric parameters are similar for both ‘Asprinio’ wines and differ from ‘Greco di Tufo’ wines. On the other hand, both 1H NMR and free amino acid content profiles show different chemometric profiles among the three wines analysed, although the profiles are similar for both vintages. Moreover, the multivariate analyses carried out highlight differences between ‘Asprinio_A’ and ‘Asprinio_B’, which exbibit also different residual yeast and plant DNA. Overall, considering that the two-manufacturing wineries use 100% ‘Asprinio’ grape, the difference retrieved between the two ‘Asprinio’ wines could be explained by the different grapevine training systems: ‘vite maritata’ (training system inherited from Etruscans) for ‘Asprinio_A’ and ‘guyot’ for ‘Asprinio_B’.
Collapse
|
11
|
Giulia T, Vallauri G, Pavese V, Valentini N, Ruffa P, Botta R, Torello Marinoni D. Identification of the hazelnut cultivar in raw kernels and in semi-processed and processed products. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe request for an efficient traceability system able to identify hazelnut cultivars along the entire processing chain is becoming a critical point for avoiding fraudulent practices and safeguarding the interests of growers, food processors and consumers. In this study, DNA was extracted from different hazelnut matrices, including plant material (leaf, kernel and kernel episperm), and processed foods (paste, grain, flour and different types of snacks containing hazelnuts). The efficiency of Simple Sequence Repeat (SSR) markers was tested to identify the hazelnut cultivar ‘Tonda Gentile’ in all the supply chain. The analysis at 10 SSR loci was able to verify the presence/absence of the alleles of a declared cultivar contained in these matrices. The SSR analysis of DNA from raw episperm offers the possibility of identifying the mother cultivar and is suggested as an effective way to discover frauds since DNA analysis can be performed on individual kernels. For food matrices containing hazelnuts, the presence of the mother cultivar’s DNA can be assessed based on the identification of its alleles in the sample, although the presence of multiple alleles from the pollenizers makes the interpretation of results more difficult.
Collapse
|
12
|
Impact of oenological processing aids and additives on the genetic traceability of 'Nebbiolo' wine produced with withered grapes. Food Res Int 2022; 151:110874. [PMID: 34980406 DOI: 10.1016/j.foodres.2021.110874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 11/22/2022]
Abstract
'Nebbiolo' is a well-known grapevine variety used to produce prestigious monovarietal Italian red wines. Genetic traceability is an important tool used to protect the authenticity of high-quality wines. SNP-based assays are an effective method to reach this aim in wines, but several issues have been reported for the authentication of commercial wines. In this study, the impact of the most common commercial additives and processing aids used in winemaking was analysed in 'Nebbiolo' wine using SNP-based traceability. Gelatine and bentonite had the strongest impact on the turbidity, colour and phenolic composition of wines and on residual grapevine DNA. The DNA reduction associated with the use of bentonite and gelatine (>99% compared to the untreated control) caused issues in the SNP-based assay, especially when the DNA concentration was below 0.5 pg/mL of wine. This study contributed to explaining the causes of the reduced varietal identification efficiency in commercial wines.
Collapse
|
13
|
Fanelli V, Mascio I, Miazzi MM, Savoia MA, De Giovanni C, Montemurro C. Molecular Approaches to Agri-Food Traceability and Authentication: An Updated Review. Foods 2021; 10:1644. [PMID: 34359514 PMCID: PMC8306823 DOI: 10.3390/foods10071644] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decades, the demand for molecular tools for authenticating and tracing agri-food products has significantly increased. Food safety and quality have gained an increased interest for consumers, producers, and retailers, therefore, the availability of analytical methods for the determination of food authenticity and the detection of major adulterations takes on a fundamental role. Among the different molecular approaches, some techniques such as the molecular markers-based methods are well established, while some innovative approaches such as isothermal amplification-based methods and DNA metabarcoding have only recently found application in the agri-food sector. In this review, we provide an overview of the most widely used molecular techniques for fresh and processed agri-food authentication and traceability, showing their recent advances and applications and discussing their main advantages and limitations. The application of these techniques to agri-food traceability and authentication can contribute a great deal to the reassurance of consumers in terms of transparency and food safety and may allow producers and retailers to adequately promote their products.
Collapse
Affiliation(s)
- Valentina Fanelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Isabella Mascio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Monica Marilena Miazzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Michele Antonio Savoia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Claudio De Giovanni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (I.M.); (M.M.M.); (M.A.S.); (C.D.G.); (C.M.)
- Spin off Sinagri s.r.l., University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Institute for Sustainable Plant Protection–Support Unit Bari, National Research Council of Italy (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|