1
|
Bahuguna A, Kumar V, Lee S, Kim M. Kinetic study and optimization of ginger mediated ochratoxin A reduction: An eco-friendly approach including toxicity evaluation. CHEMOSPHERE 2024; 367:143655. [PMID: 39481488 DOI: 10.1016/j.chemosphere.2024.143655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Ochratoxin A (OTA) is a toxic secondary metabolite synthesized by certain fungal strains of Penicillium and Aspergillus and is characterized as a Group 2B carcinogen. OTA infiltrates food and feeds through diverse chains, posing health risks to humans and animals. Herein, seven distinct edible plant materials were screened for their OTA reduction activity. Amidst them, ginger juice in aqueous (2.5%, v/v) showed the highest OTA reduction (95.63%), following first-order reaction kinetics (R2 = 0.92) with 0.72 d-1 rate constant. OTA reduction activity of ginger juice was substantially compromised in the presence of salt (>2.5%) and temperature (>40 °C). The response surface methodology-based approach employing Box-Behnken experimental design revealed an integrated effect of temperature, pH, and salt concentrations on OTA reduction (27.44-100%) by ginger juice. In addition, heat treatment (100 °C) and dialysis (12-14 kDa cutoff) of ginger juice implied the inclusion of heat-stable small molecules in reducing OTA. Ginger-treated OTA ameliorated hepatocellular carcinoma (HepG2) cell viability and diminished reactive oxygen species (ROS) levels compared to native OTA. In zebrafish embryos, OTA-induced teratogenic effects, diminished hatching (22.91%), and elevated ROS levels leading to embryo mortality (75%) were significantly reversed by OTA treated with ginger, underscoring the curtailed toxicity of OTA-converted products by ginger.
Collapse
Affiliation(s)
- Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Sumi Lee
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
2
|
Özdemir N, Gül H. Effects of fermentation time, baking, and storage on ochratoxin A levels in sourdough flat bread. Food Sci Nutr 2024; 12:7370-7378. [PMID: 39479618 PMCID: PMC11521753 DOI: 10.1002/fsn3.4357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 11/02/2024] Open
Abstract
Ochratoxin A (OTA), which is one of the most important mycotoxins in terms of human health, can be found in cereal products such as bread, "bazlama" (traditional flatbread), and pita bread, as well as cereals such as wheat, barley, and corn. This study aimed to determine the effect of different fermentation times, baking, and storage for various periods on the presence of OTA in sourdough bazlama. Bazlama flour was contaminated with OTA concentrations of 5 and 10 μg/kg. After two different fermentation times (1.5 and 3 h), baking at 300 ± 5°C, and storage at room temperature (25 ± 2°C) for 0, 5, and 10 days, the change in OTA levels of bazlama samples was determined by the high-performance liquid chromatography with fluorescence detector (HPLC-FLD) method. The effect of different storage periods on the presence of OTA is insignificant. Although a general decrease in OTA level has been determined, it has been found that long-term fermentation (at least 3 h) was more effective, especially in flours with a high concentration (10 μg/kg) of OTA contamination. It has been determined that bazlama made from contaminated flours with OTA levels of 5 and 10 μg/kg contained OTA levels exceeding 3 μg/kg when long-term fermentation was not used. This is the maximum permitted limit set by the Turkish Food Codex and the European Commission, indicating that it is not suitable for consumption in this position.
Collapse
Affiliation(s)
- Nazlı Özdemir
- Mycotoxin and Residue Unit, Isparta Food Control Laboratory DirectorateRepublic of Turkey Ministry of Agriculture and ForestryIspartaTurkey
| | - Hülya Gül
- Faculty of Engineering and Natural Sciences, Food Engineering DepartmentSüleyman Demirel UniversityIspartaTurkey
| |
Collapse
|
3
|
Borges Teixeira L, Zanini Campos J, Isabel Kothe C, Elisa Welke J, Rodrigues E, Frazzon J, Cruz Silveira Thys R. Type III sourdough: Evaluation of biopreservative potential in bakery products with enhanced antifungal activity. Food Res Int 2024; 189:114482. [PMID: 38876611 DOI: 10.1016/j.foodres.2024.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
The potential biopreservative role of a Type III sourdough (tIII-SD), produced by starter cultures of Fructilactobacillus sanfranciscensis and Lactiplantibacillus plantarum ATCC 8014, was assessed for its antifungal activity in baking applications. Fermentation was carried out using different substrates to enhance the production of antifungal metabolites for 24 and 48 h. The tIII-SD samples were analyzed in relation to pH, total titratable acidity (TTA) and the production of organic acids. The water/salt-soluble extract of the tIII-SD was evaluated in relation to the inhibition potential against key fungi that contaminate bakery products including Penicillium roqueforti, Penicillium chrysogenum and Aspergillus niger. Finally, breads with 10 % of the tIII-SD were prepared and the fungi contamination was evaluated throughout the shelf life period. The lowest pH value in sourdough was obtained from 48-hour fermentation by L. plantarum. The saline extracts exhibited varying degrees of inhibition in the in vitro test; however, the greatest enhancement of this effect was obtained when whole wheat grain flour was used. The tIII-SD crafted from a blend of wheat and flaxseed flours and fermented with F. sanfranciscensis for 48 h (BSWF48h-FS), demonstrated superior performance compared to other formulations. This variant exhibited a total shelf life of 10 days, suggesting that the utilization of tIII-SD could serve as a viable alternative for natural antifungal agents, proving beneficial for the bakery industry.
Collapse
Affiliation(s)
- Lílian Borges Teixeira
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul - CEVS/SES-RS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Júlia Zanini Campos
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Isabel Kothe
- Sustainable Food Innovation Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Juliane Elisa Welke
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eliseu Rodrigues
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Jeverson Frazzon
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberta Cruz Silveira Thys
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Ben Miri Y, Benabdallah A, Chentir I, Djenane D, Luvisi A, De Bellis L. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024; 13:1184. [PMID: 38672856 PMCID: PMC11049263 DOI: 10.3390/foods13081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ochratoxin A (OTA) is a toxic mycotoxin produced by some mold species from genera Penicillium and Aspergillus. OTA has been detected in cereals, cereal-derived products, dried fruits, wine, grape juice, beer, tea, coffee, cocoa, nuts, spices, licorice, processed meat, cheese, and other foods. OTA can induce a wide range of health effects attributable to its toxicological properties, including teratogenicity, immunotoxicity, carcinogenicity, genotoxicity, neurotoxicity, and hepatotoxicity. OTA is not only toxic to humans but also harmful to livestock like cows, goats, and poultry. This is why the European Union and various countries regulate the maximum permitted levels of OTA in foods. This review intends to summarize all the main aspects concerning OTA, starting from the chemical structure and fungi that produce it, its presence in food, its toxicity, and methods of analysis, as well as control strategies, including both fungal development and methods of inactivation of the molecule. Finally, the review provides some ideas for future approaches aimed at reducing the OTA levels in foods.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, BP 166, M’sila 28000, Algeria;
| | - Amina Benabdallah
- Laboratory on Biodiversity and Ecosystem Pollution, Faculty of Life and Nature Sciences, University Chadli Bendjedid, El-Tarf 36000, Algeria;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agri-Resources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, BP 17, Tizi-Ouzou 15000, Algeria;
| | - Andrea Luvisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
5
|
Perugino F, Pedroni L, Galaverna G, Dall'Asta C, Dellafiora L. Virtual display of targets: A new level to rise the current understanding of ochratoxin A toxicity from a molecular standpoint. Toxicology 2024; 503:153765. [PMID: 38432407 DOI: 10.1016/j.tox.2024.153765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Ochratoxin A (OTA) is a mycotoxin spread worldwide contaminating several food and feed commodities and rising concerns for humans and animals. OTA toxicity has been thoroughly assessed over the last 60 years revealing a variety of adverse effects, including nephrotoxicity, hepatotoxicity and possible carcinogenicity. However, the underpinning mechanisms of action have yet to be completely displayed and understood. In this framework, we applied a virtual pipeline based on molecular docking, dynamics and umbrella simulations to display new OTA potential targets. The results collected consistently identified OGFOD1, a key player in protein translation, as possibly inhibited by OTA and its 2'R diastereomer. This is consistent with the current knowledge of OTA's molecular toxicology and may fill some gaps from a mechanistic standpoint. This could pave the way for further dedicated analysis focusing their attention on the OTA-OGFOD1 interaction, expanding the current understanding of OTA toxicity at a molecular level.
Collapse
Affiliation(s)
- Florinda Perugino
- Department of Food and Drug, University of Parma, Parma, Italy; Department of Biology, University of Naples Federico II, Naples, Italy
| | - Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
6
|
Lee HJ, Kim HD, Ryu D. Practical Strategies to Reduce Ochratoxin A in Foods. Toxins (Basel) 2024; 16:58. [PMID: 38276534 PMCID: PMC10819544 DOI: 10.3390/toxins16010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Ochratoxin A (OTA), a potent nephrotoxin, is one of the most deleterious mycotoxins, with its prevalence in agricultural crops and their processed foods around the world. OTA is a major concern to food safety, as OTA exposure through dietary intake may lead to a significant level of accumulation in the body as a result of its long half-life (about 35 days). Its potent renal toxicity and high risk of exposure as well as the difficulty in controlling environmental factors OTA production has prompted the need for timely information on practical strategies for the food industry to effectively manage OTA contamination during food processing. The effects of various food processes, including both nonthermal and thermal methods, on the reduction in OTA were summarized in this review, with emphasis on the toxicity of residual OTA as well as its known and unknown degradation products. Since complete removal of OTA from foodstuffs is not feasible, additional strategies that may facilitate the reduction in OTA in food, such as adding baking soda and sugars, was also discussed, so that the industry may understand and apply practical measures to ensure the safety of its products destined for human consumption.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Hae Dun Kim
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Dojin Ryu
- Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
7
|
Escrivá L, Calpe J, Lafuente C, Moreno A, Musto L, Meca G, Luz C. Aflatoxin B1 and ochratoxin A reduction by Lactobacillus spp. during bread making. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7095-7103. [PMID: 37332099 DOI: 10.1002/jsfa.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Aflatoxin B1 (AFB1) and ochratoxin A (OTA) are among the most important mycotoxins with common presence in bread and bakery products. Biological detoxification of mould food spoilage and mycotoxin contamination by lactic acid bacteria (LABs) exhibits high potential on a cost-effective and large scale. In this work, the effect of Lactobacillus strains isolated from goat milk whey on reducing AFB1 and OTA during bread making was evaluated by the determination of mycotoxin reduction potential of 12 LAB strains after 72 h incubation in De Man-Rogosa-Sharpe (MRS) broth (37 °C). The most effective LABs were lyophilized and added as ingredient in bread formulation, analysing mycotoxins by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry after bread fermentation and baking. RESULTS AFB1 was reduced in MRS broth by seven LABs (11-35%), highlighting Lactobacillus plantarum B3 activity; while all LABs reduced OTA (12-40%) with L. plantarum B3 and Lactobacillus paracasei B10 as the most active strains. Both LABs were lyophilized and added in contaminated bread with and without yeast, reaching AFB1 and OTA reductions up to 27% and 32% respectively in dough and up to 55% and 34% respectively in bread. CONCLUSION The selected strains significantly reduced AFB1 and OTA during bread fermentation, pointing to a potential biocontrol strategy for mycotoxins detoxification in bread and bakery products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Laura Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Jorge Calpe
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Carla Lafuente
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Ana Moreno
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Leonardo Musto
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Ma W, Fu Y, Zhu S, Xia D, Zhai S, Xiao D, Zhu Y, Dione M, Ben L, Yang L, Wang W. Ochratoxin A induces abnormal tryptophan metabolism in the intestine and liver to activate AMPK signaling pathway. J Anim Sci Biotechnol 2023; 14:125. [PMID: 37684661 PMCID: PMC10486098 DOI: 10.1186/s40104-023-00912-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/02/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Ochratoxin A (OTA) is a mycotoxin widely present in raw food and feed materials and is mainly produced by Aspergillus ochraceus and Penicillium verrucosum. Our previous study showed that OTA principally induces liver inflammation by causing intestinal flora disorder, especially Bacteroides plebeius (B. plebeius) overgrowth. However, whether OTA or B. plebeius alteration leads to abnormal tryptophan-related metabolism in the intestine and liver is largely unknown. This study aimed to elucidate the metabolic changes in the intestine and liver induced by OTA and the tryptophan-related metabolic pathway in the liver. MATERIALS AND METHODS A total of 30 healthy 1-day-old male Cherry Valley ducks were randomly divided into 2 groups. The control group was given 0.1 mol/L NaHCO3 solution, and the OTA group was given 235 μg/kg body weight OTA for 14 consecutive days. Tryptophan metabolites were determined by intestinal chyme metabolomics and liver tryptophan-targeted metabolomics. AMPK-related signaling pathway factors were analyzed by Western blotting and mRNA expression. RESULTS Metabolomic analysis of the intestinal chyme showed that OTA treatment resulted in a decrease in intestinal nicotinuric acid levels, the downstream product of tryptophan metabolism, which were significantly negatively correlated with B. plebeius abundance. In contrast, OTA induced a significant increase in indole-3-acetamide levels, which were positively correlated with B. plebeius abundance. Simultaneously, OTA decreased the levels of ATP, NAD+ and dipeptidase in the liver. Liver tryptophan metabolomics analysis showed that OTA inhibited the kynurenine metabolic pathway and reduced the levels of kynurenine, anthranilic acid and nicotinic acid. Moreover, OTA increased the phosphorylation of AMPK protein and decreased the phosphorylation of mTOR protein. CONCLUSION OTA decreased the level of nicotinuric acid in the intestinal tract, which was negatively correlated with B. plebeius abundance. The abnormal metabolism of tryptophan led to a deficiency of NAD+ and ATP in the liver, which in turn activated the AMPK signaling pathway. Our results provide new insights into the toxic mechanism of OTA, and tryptophan metabolism might be a target for prevention and treatment.
Collapse
Affiliation(s)
- Weiqing Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yang Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Shanshan Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Daiyang Xia
- School of Marine Sciences, Sun Yat-Sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082 China
| | - Shuangshuang Zhai
- College of Animal Science, YangtzeUniversity, Jingzhou, 434025 China
| | - Deqin Xiao
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642 China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | | | - Lukuyu Ben
- Int Livestock Res Inst, Nairobi, 00100 Kenya
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
9
|
Hwang IM, Jeong JY, Park B, Choi JY, Khan N, Jamila N, Yoon BR, Kim JS. Quantification and health risk assessment of ochratoxin A in dried fruit, spices, and coffee. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1275-1284. [PMID: 37607248 DOI: 10.1080/19440049.2023.2245055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Ochratoxin A (OTA) is a stable toxin produced by fungal strains of Aspergillus and Penicillium. It is commonly found in a variety of food products, including dried fruit, coffee, and spices, raising concerns about their safety. This study was aimed to quantify OTA levels in different food products using HPLC with fluorescence detection. The pre-treatment process was optimised by employing immunoaffinity columns with Tween 20 to effectively remove interfering substances. An analytical method was developed, validated, and applied for OTA analysis in dried fruit, spices, and coffee samples. The validation procedure included determining detection and quantification limits, linearity, precision, and accuracy, as per the criteria specified by AOAC International. The validated method was successfully applied for OTA analysis in the selected food samples. Furthermore, health risk assessment was conducted based on the average intake and body weight of the Korean population. From the results, concentrations of OTA in the samples were found to be very low and therefore concluded not to pose significant threats to consumer health.
Collapse
Affiliation(s)
- In Min Hwang
- Fermentation Regulation Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ji Young Jeong
- Fermentation Regulation Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Boyeon Park
- Fermentation Regulation Research Group, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Ji Yeon Choi
- Food Analysis Research Center, Korea Food Research Institute, Wanju, Republic of Korea
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat Khyber Pakhtunkhwa, Pakistan
| | - Nargis Jamila
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar Khyber Pakhtunkhwa, Pakistan
| | - Bo Ryun Yoon
- KOTITI Testing & Research Institute, Gyeonggi do, Republic of Korea
| | - Jae Sung Kim
- KOTITI Testing & Research Institute, Gyeonggi do, Republic of Korea
| |
Collapse
|
10
|
Evaluation of shelf life and technological properties of bread elaborated with lactic acid bacteria fermented whey as a bio-preservation ingredient. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Bryła M, Damaziak K, Twarużek M, Waśkiewicz A, Stępień Ł, Roszko M, Pierzgalski A, Soszczyńska E, Łukasiewicz-Mierzejewska M, Chmiel M, Wójcik W. Toxico-pathological effects of ochratoxin A and its diastereoisomer under in ovo conditions and in vitro evaluation of the toxicity of these toxins against the embryo Gallus gallus fibroblast cell line. Poult Sci 2022; 102:102413. [PMID: 36566659 PMCID: PMC9801203 DOI: 10.1016/j.psj.2022.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Herein, we conducted a comparative study on the embryotoxicity of ochratoxin A (OTA) and its diastereomer 2'R-ochratoxin A (2'R-OTA) under in ovo conditions, as well as assess the in vitro embryotoxicity of these substances together with ochratoxin B and α-ochratoxin, using chicken (Gallus gallus domesticus) embryo cell lines. In ovo tests involved egg incubation of 8 different groups (i.e., control "0"-no puncture or injection (standard incubation); "00"-punctured eggs without injection; "OTA 0.25," "OTA 0.50," "OTA 0.75," "2'R-OTA 0.25," "2'R-OTA 0.50," "2'R-OTA 0.75"-eggs containing OTA or 2'R-OTA at 0.25, 0.50, and 0.75 µg/egg concentration, respectively). The results confirmed OTA's impact on early and late embryo mortality, where chick hatchability decreased with increasing toxin dosage. Both OTA and 2'R-OTA demonstrated embryotoxicity, however, in the case of the highest OTA diastereomer dose, nearly 11% higher chick hatchability was observed compared with the group that received OTA. 2'R-OTA dosage did not reduce parameters chick quality compared to chicks hatched from control group eggs. OTA concentrations were higher than 2'R-OTA detected in chicken organs such as liver and kidney, whereas 2'R-OTA concentrations were higher in blood serum and heart. The presented studies highlighted the differences in the ability to accumulate toxins in certain organs, which, to a certain extent, may affect the potential toxicity on individual organs. Additionally, during in vitro tests, when assessing the cytotoxic effects of OTA and its analogues toward the chicken embryonic cell line in an MTT assay, the cell metabolic activity was inhibited to a comparable extent at 27-times higher concentration of 2'R-OTA than OTA (0.24 µM). Also, comparably lower toxicity was attributed to the remaining OTA derivatives.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, 02-532 Warsaw, Poland,Corresponding author:
| | - Krzysztof Damaziak
- Department of Animal Breeding, Institute of Animal Science, Warsaw University of Life Sciences - SGGW, 02-786 Warsaw, Poland
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, 60-625 Poznan, Poland
| | - Łukasz Stępień
- Department of Plant-Pathogen Interaction, Institute of Plant Genetics of the Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, 02-532 Warsaw, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, 02-532 Warsaw, Poland
| | - Ewelina Soszczyńska
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland
| | - Monika Łukasiewicz-Mierzejewska
- Department of Animal Breeding, Institute of Animal Science, Warsaw University of Life Sciences - SGGW, 02-786 Warsaw, Poland
| | - Marta Chmiel
- Division of Meat Technology, Department of Food Technology and Assessment, Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Wojciech Wójcik
- Department of Animal Breeding, Institute of Animal Science, Warsaw University of Life Sciences - SGGW, 02-786 Warsaw, Poland
| |
Collapse
|
12
|
Wu H, Zhao F, Li Q, Huang J, Ju J. Antifungal mechanism of essential oil against foodborne fungi and its application in the preservation of baked food. Crit Rev Food Sci Nutr 2022; 64:2695-2707. [PMID: 36129051 DOI: 10.1080/10408398.2022.2124950] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Baked food is one of the most important staple foods in people's life, but its shelf life is limited. In addition, the spoilage of baked food caused by microbial deterioration will not only cause huge economic losses, but also pose a serious threat to human health. At present, due to the improvement of consumers' health awareness, the use of chemical preservatives has been gradually restricted. Compared with other types of synthetic preservatives, essential oils are becoming more and more popular because they are in line with the current development trend of "green," "safety" and "health" of food additives. Therefore, in this paper, we first summarized the main factors affecting the fungal contamination of baked food. Then analyzed the antifungal activity and mechanism of essential oil. Finally, we comprehensively summarized the application strategy of essential oil in the preservation of baked food. This review is of great significance for fully understanding the antifungal mechanism of essential oils and promoting the application of essential oils in the preservation of baked food.
Collapse
Affiliation(s)
- Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Qianyu Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jinglin Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jian Ju
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| |
Collapse
|
13
|
Wang L, Wang Q, Wang S, Cai R, Yuan Y, Yue T, Wang Z. Bio-control on the contamination of Ochratoxin A in food: Current research and future prospects. Curr Res Food Sci 2022; 5:1539-1549. [PMID: 36161229 PMCID: PMC9489538 DOI: 10.1016/j.crfs.2022.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Ochratoxin A (OTA) is a secondary metabolite of several fungi and widely exists in various species of foods. The establishment of effective methods for OTA reduction is a key measure to ensure food processing and human health. This article reviews the current research of OTA reduction by biological approaches, summarizes the characteristics and efficiency of them, and evaluates the transformation pathways and metabolites safety of each degradation technology. The shortcomings of various methods are pointed out and future prospects are also proposed. Biological methods are the most promising approaches for OTA control. The defect of them is the long processing time and the growth of microbial cells may affect the product quality. Therefore, the control of OTA contamination should be conducted according to the food processing and their product types. Besides, it is significant for the exploitation of new strains, enzyme and novel adsorbents.
Collapse
Affiliation(s)
- Leran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Qi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Saiqun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|
14
|
Khaneghah AM, Mostashari P, Oliveira CA, Vanin FM, Amiri S, Sant'Ana AS. Assessment of the concentrations of ochratoxin A, zearalenone, and deoxynivalenol during cracker production. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Abedi E, Mousavifard M, Hashemi SMB. Ultrasound-Assisted Detoxification of Ochratoxin A: Comparative Study of Cell Wall Structure, Hydrophobicity, and Toxin Binding Capacity of Single and Co-culture Lactic Acid Bacteria. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02767-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Zapaśnik A, Bryła M, Waśkiewicz A, Ksieniewicz-Woźniak E, Podolska G. Ochratoxin A and 2' R-Ochratoxin A in Selected Foodstuffs and Dietary Risk Assessment. Molecules 2021; 27:188. [PMID: 35011417 PMCID: PMC8746423 DOI: 10.3390/molecules27010188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to estimate the contamination of grain coffee, roasted coffee, instant coffee, and cocoa purchased in local markets with ochratoxin A (OTA) and its isomerization product 2'R-ochratoxin A (2'R-OTA), and to assess risk of dietary exposure to the mycotoxins. OTA and 2'R-OTA content was determined using the HPLC chromatography with immunoaffinity columns dedicated to OTA. OTA levels found in all the tested samples were below the maximum limits specified in the European Commission Regulation EC 1881/2006. Average OTA concentrations calculated for positive samples of grain coffee/roasted coffee/instant coffee/cocoa were 0.94/0.79/3.00/0.95 µg/kg, with the concentration ranges: 0.57-1.97/0.44-2.29/0.40-5.15/0.48-1.97 µg/kg, respectively. Average 2'R-OTA concentrations calculated for positive samples of roasted coffee/instant coffee were 0.90/1.48 µg/kg, with concentration ranges: 0.40-1.26/1.00-2.12 µg/kg, respectively. In turn, diastereomer was not found in any of the tested cocoa samples. Daily intake of both mycotoxins with coffee/cocoa would be below the TDI value even if the consumed coffee/cocoa were contaminated with OTA/2'R-OTA at the highest levels found in this study. Up to now only a few papers on both OTA and 2'R-OTA in roasted food products are available in the literature, and this is the first study in Poland.
Collapse
Affiliation(s)
- Agnieszka Zapaśnik
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland;
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
17
|
Escrivá L, Agahi F, Vila-Donat P, Mañes J, Meca G, Manyes L. Bioaccessibility Study of Aflatoxin B 1 and Ochratoxin A in Bread Enriched with Fermented Milk Whey and/or Pumpkin. Toxins (Basel) 2021; 14:toxins14010006. [PMID: 35050983 PMCID: PMC8779489 DOI: 10.3390/toxins14010006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
The presence of mycotoxins in cereals and cereal products remains a significant issue. The use of natural ingredients such as pumpkin and whey, which contain bioactive compounds, could be a strategy to reduce the use of conventional chemical preservatives. The aim of the present work was to study the bioaccessibility of aflatoxin B1 (AFB1) and ochratoxin (OTA) in bread, as well as to evaluate the effect of milk whey (with and without lactic acid bacteria fermentation) and pumpkin on reducing mycotoxins bioaccessibility. Different bread typologies were prepared and subjected to an in vitro digestion model. Gastric and intestinal extracts were analyzed by HPLC-MS/qTOF and mycotoxins bioaccessibility was calculated. All the tested ingredients but one significantly reduced mycotoxin intestinal bioaccessibility. Pumpkin powder demonstrated to be the most effective ingredient showing significant reductions of AFB1 and OTA bioaccessibility up to 74% and 34%, respectively. Whey, fermented whey, and the combination of pumpkin-fermented whey showed intestinal bioaccessibility reductions between 57-68% for AFB1, and between 11-20% for OTA. These results pointed to pumpkin and milk whey as potential bioactive ingredients that may have promising applications in the bakery industry.
Collapse
|
18
|
Gómez-Salazar JA, Ruiz-Hernández K, Martínez-Miranda MM, Castro-Ríos K. Postharvest strategies for decontamination of aflatoxins in cereals. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Julián Andrés Gómez-Salazar
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | - Karla Ruiz-Hernández
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | | | - Katherin Castro-Ríos
- Grupo de Cromatografía Y Técnicas Afines, Universidad de Caldas, Manizales, Colombia
- Instituto de Investigación En Microbiología Y Biotecnología Agroindustrial, Universidad Católica de Manizales, Manizales, Colombia
| |
Collapse
|