1
|
Adeyemi KD, Olatunji OS, Atolani O, Ishola H, Shittu RM, Okukpe KM, Chimezie VO, Kazeem MO. Cholesterol oxides and quality attributes of NaCl-substituted low-fat chicken sausages prepared with different antioxidants. Heliyon 2025; 11:e41796. [PMID: 39897823 PMCID: PMC11782976 DOI: 10.1016/j.heliyon.2025.e41796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
This trial investigated how different salts and antioxidants influence cholesterol oxides, microbial profiles, physicochemical properties and organoleptic characteristics of low-fat chicken sausages (CS). CS were formulated with either 2 % NaCl, CS-1; 2 % NaCl +0.02 % butylated hydroxyanisole (BHA), CS-2; 1 % NaCl + 1 % KCl + 0.25 % onionskin extract (OSE), CS-3; 1 % NaCl + 1 % KCl + 0.5 % OSE, CS-4; 1 % NaCl + 1 % K3C6H5O7 + 0.25 % OSE, CS-5 or 1 % NaCl + 1 % K3C6H5O7 + 0.5 % OSE, CS-6, cooked, and refrigerated for 45 d. The Na content in CS-1 and CS-2 (1185 ± 21 mg/100 g) was greater than that in the other CS (640 ± 18 mg/100 g). The 19-hydroxy cholesterol, 7α-hydroxycholesterol, 25-hydroxycholesterol, 5,6β-epoxycholesterol, 7β-hydroxycholesterol and carbonyl content were greater in CS-1 than in the other sausages. The OSE-treated CS group had lower levels of 7β-hydroxycholesterol and 7α-hydroxycholesterol than did the CS-2 group. CS-1 and CS-2 were lighter than the other CS. Malondialdehyde, pH, chemical composition, textural profile, microbial counts, cook loss and sensorial quality were unaffected by additives. The partial replacement of NaCl with KCl and K3C6H5O7, along with the addition of BHA and OSE, decreased the Na and cholesterol oxide contents without affecting the organoleptic qualities of low-fat CS.
Collapse
Affiliation(s)
- Kazeem D. Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Olaife S. Olatunji
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Olubunmi Atolani
- Department of Chemistry, Faculty of Physical Sciences, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Hakeem Ishola
- Department of Animal Production, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Rafiat M. Shittu
- Department of Food Science and Technology, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Kehinde M. Okukpe
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Victoria O. Chimezie
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Muinat O. Kazeem
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, PMB 1515, Ilorin, Nigeria
| |
Collapse
|
2
|
Adeyemi KD, Sulaimon RO, Ishola H, Shittu RM, Olaniran FJ, Jimoh JO, Akinola HO, Rasheed AO, Yusuf YI, Oluwasola A, Olabisi BM. Influence of Capsicum chinense concentration and salt varieties on the quality attributes of Kilishi, a sundried beef jerky. Meat Sci 2025; 219:109653. [PMID: 39277995 DOI: 10.1016/j.meatsci.2024.109653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
The impact of Capsicum chinense concentration and salt varieties on cholesterol oxides, physicochemical properties, microbial profiles and organoleptic attributes of Kilishi, a sundried beef jerky, was assessed. Kilishi (KL) was prepared from sundried strips of Biceps femoris and marinated with either 2 % Sodium chloride (NaCl) + 7 % fresh Capsicum chinense (CC) (KL-1), 1 % NaCl + 1 % Potassium chloride (KCl) + 7 % CC (KL-2), 1 % NaCl + 1 % Potassium citrate (C6H5K3O7) + 7 % CC (KL-3), 1 % NaCl + 14 % CC (KL-4), 1 % KCl + 14 % CC (KL-5) or 1 % C6H5K3O7 + 14 % CC (KL-6), and stored at 29 ± 1 °C for 90 d. The partial or total replacement of NaCl lowered (P < 0.05) the Na content in KL. The KL samples treated with 14 % CC had lower (P < 0.05) 25-hydroxy cholesterol, cholesta-3,5-dien-7-one, carbonyl, pH, malondialdehyde, and lightness and greater (P < 0.05) redness and Lactobacillus counts than those treated with 7 % CC. The chemical composition, sensory scores and water activity were unaffected by the additives. The taste, flavor, and overall acceptance scores of KL decreased (P < 0.05) after 30 days of storage. The substitution of KCl and C6H5K3O7 for NaCl and the increase in CC concentration from 7 to 14 % lowered the Na content and selected cholesterol oxides, respectively, without impairing the organoleptic traits of Kilishi.
Collapse
Affiliation(s)
- Kazeem D Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria.
| | - Rasheed O Sulaimon
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria; Department of Animal Science, Faculty of Agriculture, University of Abuja, Abuja, Nigeria
| | - Hakeem Ishola
- Department of Animal Production, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Rafiat M Shittu
- Department of Food Science and Technology, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Feranmi J Olaniran
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Jamiu O Jimoh
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Halimat O Akinola
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Ahmed O Rasheed
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Yusuf Ibn Yusuf
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Abdulfatai Oluwasola
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| | - Bukunmi M Olabisi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB, 1515 Ilorin, Nigeria
| |
Collapse
|
3
|
Kang Z, Hou Q, Xu J. Research Progress and Teaching Exploration of Physical Processing Technology for Reduced-Salt Gel Meat Products. Foods 2024; 13:3606. [PMID: 39594022 PMCID: PMC11594212 DOI: 10.3390/foods13223606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Salt assumes a significant role in the production of meat gels. Excessive intake of salt adversely affects human health, and consumers' demand for reduced-salt meat products is escalating. This review primarily introduces the characteristics of the physical processing technology of reduced-salt gel meat products, such as the technology of ultrasonic, high-pressure processing, beating, plasma, and magnetic field, and its role in reduced-salt gel meat processing, and explores means to improve the teaching effect of the physical processing technology of reduced-salt gel meat products in the major of Food Science and Engineering. It was found that physical processing techniques, such as ultrasound, high-pressure processing, and beating, could enhance the solubility and processing performance of myofibrillar protein by improving the meat structure and protein conformation, increasing the interaction between proteins, water, and fat molecules, and enhancing the texture, water-holding capacity, and sensory quality of reduced-salt gel meat products. In the promotion and teaching of physical processing technology, it is necessary to strengthen interdisciplinary integration and scientific research activities according to the customs, laws and regulations of different countries and regions, combined with the development frontier of the technology, and develop reduced-salt gel meat products that meet local needs according to local conditions.
Collapse
Affiliation(s)
- Zhuangli Kang
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Qin Hou
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| | - Jingguo Xu
- School of Tourism and Cuisine, Industrial Engineering Center for Huaiyang Cuisin of Jiangsu Province, Yangzhou University, Yangzhou 225127, China; (Q.H.); (J.X.)
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou 225127, China
| |
Collapse
|
4
|
Lu W, Hu Z, Chen H, Wu J, Fang Y. Formulation of novel low-sodium salts using potassium salts and dietary polysaccharide. Food Res Int 2024; 194:114934. [PMID: 39232545 DOI: 10.1016/j.foodres.2024.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Potassium citrate (KC) and potassium lactate (KL) are considered as salt replacers due to their saltiness, processing advantages, and health benefits. However, the obvious bitter taste associated with these compounds has limited their use in salt substitutes. Despite this challenge, little attention has been paid to improving their sensory properties. This study provided evidence that dietary polysaccharide carrageenan can effectively mask the bitterness of KC and KL by specifically binding K+ and forming double helix chains. A highly accurate prediction model was then established for the saltiness and bitterness of low-sodium salts using mixture design principles. Three low-sodium salt formulas containing different potassium salts (KC, KL, KCl), NaCl, and carrageenan were created based on the prediction model. These formulas exhibited favorable saltiness potencies (>0.85) without any noticeable odor, preserving the sensory characteristics of high-sodium food products like seasoning powder while significantly reducing their sodium content. This research provides a promising approach for the food industry to formulate alternative low-sodium products with substantially reduced sodium content, potentially contributing to decreased salt intake.
Collapse
Affiliation(s)
- Wei Lu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zining Hu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyun Chen
- Institute of Agricultural Processing Research, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Bolumar T, Lohmayer R, Peukert M, Thiemann K, Münch S, Brüggemann DA. High-pressure processing enhances saltiness perception and sensory acceptability of raw but not of cooked cured pork loins-leveraging salty and umami taste. Front Nutr 2024; 11:1352550. [PMID: 38425479 PMCID: PMC10902132 DOI: 10.3389/fnut.2024.1352550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
The salt (NaCl) content in processed meats must be reduced because of its adverse effects on cardiovascular health. However, reducing salt in meat products typically leads to a lower taste intensity and, thus, consumer acceptability. Industry interventions must reduce salt content while maintaining taste, quality, and consumer acceptability. In this context, high-pressure processing (HPP) has been proposed to enhance saltiness perception, though there are contradictory reports to date. The present work aimed to conduct a targeted experiment to ascertain the influence of HPP (300/600 MPa) and cooking (71°C) on saltiness perception and sensory acceptability of meat products. HPP treatment (300/600 MPa) did enhance those two sensory attributes (approx. +1 on a 9-point hedonic scale) in raw (uncooked) cured pork loins but did not in their cooked counterparts. Further, the partition coefficient of sodium (PNa+), as an estimate of Na+ binding strength to the meat matrix, and the content of umami-taste nucleotides were investigated as potential causes. No effect of cooking (71°C) and HPP (300/600 MPa) could be observed on the PNa+ at equilibrium. However, HPP treatment at 300 MPa increased the inosine-5'-monophosphate (IMP) content in raw cured pork loins. Finally, hypothetical HPP effects on taste-mediating molecular mechanisms are outlined and discussed in light of boosting the sensory perception of raw meat products as a strategy to achieve effective salt reductions while keeping consumer acceptability.
Collapse
Affiliation(s)
- Tomas Bolumar
- Department of Safety and Quality of Meat, Max Rubner Institute (MRI), Kulmbach, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Timón ML, Palacios I, López-Parra M, Delgado-Adámez J, Ramírez R. Effect of Single and Two-Cycles of High Hydrostatic Pressure Treatment on the Safety and Quality of Chicken Burgers. Foods 2023; 12:3820. [PMID: 37893713 PMCID: PMC10606788 DOI: 10.3390/foods12203820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to evaluate the effect of two cycles of high hydrostatic pressure (HHP) treatment on chicken burgers after storage at refrigeration (4 °C) for 15 days, in comparison with the application of a single cycle of high hydrostatic pressure treatment, as well as compared with non-treated burgers. Samples were treated at 400 and 600 MPa and a single or two cycles were applied. The results showed that mesophilic, psychrotrophic molds, yeast, and coliforms were significantly reduced by HHP treatment (p < 0.05), 600 MPa/1 s (2 cycles) leading to the maximum inactivation. Concerning color parameters, a significant increase in lightness/paleness (L*) and a reduction in redness (a*) and yellowness (b*) (p < 0.05) was observed in samples as 600 MPa were applied. Moreover, 600 MPa/1 s (2 cycles) caused the highest differences in the meat color (ΔE processing) of the chicken burgers. No HHP treatment significantly affected the degree of oxidation of samples (p > 0.05). However, 600 MPa/1 s (2 cycles) samples showed the highest values of TBA RS content after 15 days of storage (p < 0.05). Finally, the appearance, odor, taste, and global perception of cooked burgers were similar in all groups (p < 0.05). Therefore, treatments at 600 MPa produced a significant reduction in microbial counts but modified the color; however, the discoloration effect in the cooked burgers was not noticed by panelists.
Collapse
Affiliation(s)
- María Luisa Timón
- Food Technology, Agriculture Engineering School, University of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Irene Palacios
- Technological Institute of Food and Agriculture (INTAEX), Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (I.P.); (M.L.-P.); (J.D.-A.)
| | - Montaña López-Parra
- Technological Institute of Food and Agriculture (INTAEX), Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (I.P.); (M.L.-P.); (J.D.-A.)
| | - Jonathan Delgado-Adámez
- Technological Institute of Food and Agriculture (INTAEX), Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (I.P.); (M.L.-P.); (J.D.-A.)
| | - Rosario Ramírez
- Technological Institute of Food and Agriculture (INTAEX), Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (I.P.); (M.L.-P.); (J.D.-A.)
| |
Collapse
|
7
|
Dunteman AN, Lee Y, Lee SY. A qualitative look at perception and experience of sodium reduction strategies in the food industry through focus groups and individual interviews. J Food Sci 2023; 88:2203-2216. [PMID: 37038305 DOI: 10.1111/1750-3841.16564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/12/2023]
Abstract
The high incidence of sodium overconsumption in the general population has led sodium reduction in commercial food products to become a topic of importance in the food industry. In order to bridge the gap between sodium reduction understanding in the food industry and academia, focus groups and individual interviews of food industry professionals were conducted. Sodium reduction and influence from external entities such as federal regulations and consumer insight were prominent in the nutritional concerns of food industry professionals. A large variety of sodium reduction strategies were introduced with discussion on the many factors that contribute to their potential for success. Flavor modification methods were most prevalent in the discussion, with particular focus on potassium chloride and incorporating umami taste. Factors that frequently positively contributed to a strategy's success include maintaining functionality and/or important sensory attributes, inexpensive to implement, and being perceived as clean label. Conversely, factors that negatively affect success include adversely impacting flavor, being considered not clean label, and high costs of implementation. Foods important for future sodium reduction varied widely, although those were largely products with high sodium density. Future efforts toward reducing sodium overconsumption and sodium content in the food supply fell into three categories: consumer-focused, industry-focused, and research-focused. Of particular importance for future efforts included greater regulatory pressure and more consumer nutritional education. Findings suggest that future efforts to reduce the incidence of sodium overconsumption should be carried out through multiple avenues rather than focusing on the agency of consumers, the food industry, or research alone.
Collapse
Affiliation(s)
- Aubrey N Dunteman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Youngsoo Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Soo-Yeun Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- School of Food Science, Washington State University, Pullman
| |
Collapse
|
8
|
dos Santos Rocha C, Magnani M, de Paiva Anciens Ramos GL, Bezerril FF, Freitas MQ, Cruz AG, Pimentel TC. Emerging technologies in food processing: impacts on sensory characteristics and consumer perception. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Nuygen M, Arvaj L, Balamurugan S. The use of high pressure processing to compensate for the effects of salt reduction in ready-to-eat meat products. Crit Rev Food Sci Nutr 2022; 64:2533-2547. [PMID: 36106480 DOI: 10.1080/10408398.2022.2124398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sodium chloride is an essential ingredient in meat products, where it is not only used as a flavoring agent but also to achieve desired textural properties and as an antimicrobial to improve its safety and extend shelf-life. Although NaCl plays this multi-functional role in meat products, excessive sodium intake is linked to various negative health consequences such as cardiovascular disease and obesity. Sodium chloride added to ready-to-eat meat products is the largest contributor of sodium. Thus, there is an increased interest in the development of meat products with reduced sodium levels. Strategies to reduce sodium include identification of alternatives to sodium, considering safety and functionality, and including technological innovations and alternative food processing strategies. Several studies have shown that high pressure processing (HPP) can partially compensate for the loss in functional and sensory properties of meat products as a result of NaCl reduction. This review summarizes these studies to date and will highlight the ability of HPP to enhance the safety, shelf-life and quality of sodium-reduced meat products.
Collapse
Affiliation(s)
- Melina Nuygen
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, Guelph, Ontario, Canada
- Biomedical Toxicology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Laura Arvaj
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, Guelph, Ontario, Canada
| | - S Balamurugan
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Pi R, Li G, Zhuang S, Yu Q, Luo Y, Tan Y, Dai R, Hong H. Effect of the Partial Substitution of Sodium Chloride on the Gel Properties and Flavor Quality of Unwashed Fish Mince Gels from Grass Carp. Foods 2022; 11:foods11040576. [PMID: 35206053 PMCID: PMC8871401 DOI: 10.3390/foods11040576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Excessive salt is usually required to maintain good gel properties and quality characteristics for unwashed fish mince gels (UFMG). This study aimed to investigate the effects of partial sodium chloride substitution (30%) with different substitutes (potassium chloride, disodium inosine-5′-monophosphate, basil) on the gel and flavor properties of UFMG from Ctenopharyngodon idellus. The results indicated that the texture and gel strength of NK (30% NaCl was replaced with 30% KCl) were fairly similar to that of N group (NaCl only), and the whiteness had improved significantly (p < 0.05), while the product eventually yielded a certain bitter taste. The addition of disodium inosine-5′-monophosphate (DIMP) significantly (p < 0.05) increased the hardness, chewiness, buriedness degree of tryptophan and gel strength, decreased the content of α-helix structure in the gels, while less change occurred in gel whiteness and network structure. Basil significantly (p < 0.05) reduced the buriedness degree of tryptophan, gel strength and whiteness, and deteriorated the gel structure. Nevertheless, the addition of DIMP or basil reduced the bitterness induced by KCl and improved the overall acceptability scores of gels of the N group. Moreover, there was no distinct difference in moisture content and water-holding capacity between all groups. Therefore, replacing sodium chloride in UFMG with 25% potassium chloride and 5% DIMP may be an ideal sodium salt substitution strategy.
Collapse
Affiliation(s)
- Ruobing Pi
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Gaojing Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Shuai Zhuang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Qinye Yu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Ruitong Dai
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.P.); (G.L.); (S.Z.); (Q.Y.); (Y.L.); (Y.T.); (R.D.)
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence:
| |
Collapse
|
11
|
Song J, Jiang L, Qi M, Suo W, Deng Y, Ma C, Li H, Zhang D. Microencapsulated procyanidins by extruding starch improved physicochemical properties, inhibited the protein and lipid oxidant of chicken sausages. J Food Sci 2022; 87:1184-1196. [PMID: 35122248 DOI: 10.1111/1750-3841.16057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Microencapsulated procyanidins by extruding starch (MPS) were used in meat and meat products as an antioxidant for their simple production process and high stability. This study investigated the controlled released properties of MPS and their effect on antioxidant capacity, physicochemical properties, and sensory qualities of chicken sausages during 4°C storage within 28 days. Antioxidant capacity, particle size analysis, and simulated digestion in vitro demonstrated that microencapsulation by extruding starch delayed the procyanidins release. The reduced crystal structure of MPS was determined by the morphology observation (SEM) and the decrease of the typical diffraction peak at 2θ of 20.9° (XRD). The MPS-added sausage had a higher (p < 0.05) ABTS and DPPH radical scavenging ratio (97.6% and 67.3%) and sulfhydryl contents (114.69 nmol/g protein) than other groups. Moreover, lower (p < 0.05) thiobarbituric acid reactive substances (TBARS) (0.67 mg MDA/kg sausage) and carbonyl values (3.24 nmol/mg protein) were detected in MPS-added sausages than others at the end of storage. The MPS addition increased redness (a* value) and decreased the lightness (L* value). The sensory analysis suggested that the sausage with the increased redness was favorable. These results denominated that MPS was an alternative antioxidant in chicken sausages. Practical Application: In this study, microencapsulated procyanidins were prepared by extrusion technology, and the effect on the quality of chicken sausages was investigated, which provides an alternative natural antioxidant for meat and meat products.
Collapse
Affiliation(s)
- Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Wenjing Suo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Yuxin Deng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Shandong, China
| |
Collapse
|
12
|
The Use of Potassium Chloride and Tapioca Starch to Enhance the Flavour and Texture of Phosphate- and Sodium-Reduced Low Fat Breakfast Sausages Manufactured Using High Pressure-Treated Meat. Foods 2021; 11:foods11010017. [PMID: 35010144 PMCID: PMC8750991 DOI: 10.3390/foods11010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
The objective of this study was to investigate the use of potassium chloride (KCl) and tapioca starch (TS) to reduce salt levels below 1.5% in sausages manufactured using previously high pressure (HP) processed pork (150 MPa). A 3 × 2 × 1 factorial design was used to formulate breakfast sausages with three salt levels (0.5%, 1.0%, and 1.5%), two ingredient levels (no added ingredient or added as a combination of KCl\TS), and one pressure level (150 MPa). Partial replacement of NaCl with KCl and addition of TS had beneficial effects on the water binding abilities of sausage batters by decreasing (p < 0.05) total expressible fluid (%) and increasing water holding capacity (%). Overall, results indicated that the use of KCl\TS imparted some beneficial effects to salt-reduced low fat breakfast sausages and has the potential to reduce salt levels in the breakfast sausages to 1.0% while still maintaining the organoleptic and functional properties traditionally associated with these meat products.
Collapse
|