1
|
Guo Y, Liu M, Chuang R, Zhang H, Li H, Xu L, Xia N, Xiao C, Rayan AM, Ghamry M. Mechanistic applications of low-temperature plasma in starch-based biopolymer film: A review. Food Chem 2025; 479:143739. [PMID: 40073561 DOI: 10.1016/j.foodchem.2025.143739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
The substitution of traditional packaging with bio-based edible films has emerged as a new research direction. The starch biopolymer films currently studied by researchers exhibit issues such as inadequate physical properties, barrier performance, mechanical strength, and biological activity. Consequently, a range of advanced techniques are employed to enhance the properties of biopolymer films. Low-temperature plasma stands out as an emerging multi-functional non-thermal green molecular surface modification technology that has been particularly effective in enhancing starch biopolymer films. Furthermore, owing to its non-thermal characteristics, low-temperature plasma is particularly suitable for heat-sensitive materials. Consequently, this study aims to investigate the impact of low-temperature plasma technology on enhancing the properties of biopolymer film substrates, elucidate its mechanisms of action on starch films and starch composite films, refine methods for modifying biopolymer films, and conduct a rational analysis of any contradictions.
Collapse
Affiliation(s)
- Yanli Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Mengzhuo Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Rui Chuang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Lina Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Chaogeng Xiao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| |
Collapse
|
2
|
Sharma R, Nath PC, Rustagi S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Cold Plasma-A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:4166141. [PMID: 40124845 PMCID: PMC11930388 DOI: 10.1155/ijfo/4166141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Nonthermal technologies, mostly utilized for microbial inactivation and quality preservation in food, are attracting increased interest, particularly in nonthermal plasma. Cold plasma (CP) demonstrates favorable results, such as increased germination, enhanced functional and rheological characteristics, and the eradication of microorganisms. Consequently, CP is a novel technology in food processing that has significantly contributed to the prevention of food spoilage. This study highlights contemporary research on CP technology in food processing. This includes its use in microbial decontamination, shelf life extension, mycotoxin degradation, enzyme inactivation, and surface modification of food products. The CP generation techniques under low pressure, including glow discharge, radio frequency and microwave techniques, and atmospheric pressure, including dielectric barrier discharge (DBD), plasma jet, and corona discharge, are discussed. Additionally, the source for the generation of plasma-activated water (PAW) with its significant role in food processing is critically discussed. The CP is an effective method for the decontamination of several food materials like fruits, vegetables, meat, and low-moisture food products. Also, the review addressed the effects of CP on the physicochemical properties of foods and CP for pretreatment in various aspects of food processing, including drying of food, extraction of bioactive compounds, and oil hydrogenation. CP improved the drying kinetics of food, resulting in reduced processing time and improved product quality. Similarly, CP is effective in maintaining food safety and quality, removing the formation of biofilm, and also in reducing protein allergenicity. The review also underscored the importance of CP as a sterilizing agent for food packaging materials, emphasizing its role in enhancing the barrier characteristics of biopolymer-based food packaging materials. Therefore, it is concluded that CP is effective in the reduction of pathogenic microorganisms from food products. Moreover, it is effective in maintaining the nutritional and sensory properties of food products. Overall, it is effective for application in all aspects of food processing. There is a critical need for ongoing research on upscaling for commercial purposes.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Pinku Chandra Nath
- Research and Development Cell, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, Haryana, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | | | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, India
| |
Collapse
|
3
|
Chung WH, Chaklader MR, Howieson J. Efficacy Evaluation of Chlorine Dioxide and Hypochlorous Acid as Sanitisers on Quality and Shelf Life of Atlantic Salmon ( Salmo salar) Fillets. Foods 2024; 13:3156. [PMID: 39410191 PMCID: PMC11475980 DOI: 10.3390/foods13193156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Microbial contamination during seafood processing can often lead to a reduction in shelf life and the possibility of food-borne illnesses. Sanitisation with chlorine-based products during seafood processing is therefore sometimes undertaken. This study compared the effects of two sanitisers, chlorine dioxide (ClO2) and hypochlorous acid (HOCl) at their suggested concentration (5 ppm and 10 ppm; 50 ppm and 100 ppm respectively), on physical, chemical, and microbial qualities of Atlantic salmon (Salmo salar) fillets throughout 7 days of simulated retail display refrigeration. Parameters used for assessment included quality index (QI), drip loss, colour, texture, histology, total volatile base nitrogen (TVB-N), lipid oxidation (malonaldehyde, MDA), pH, and total viable count changes. Results indicated that whilst drip loss increased over the storage time, day 4 and 7 drip loss in both sanitisers decreased significantly compared with the control. There was a linear relationship (R > 0.70) between QI and storage time in all treatments, particularly in regard to skin brightness, flesh odour, and gaping parameters, but treatment differences were not present. Texture parameters including gumminess, chewiness, and hardness increased over time in the control whilst both sanitiser treatments seemed to provide protective effects against texture hardening during storage. The observed softening effects from the sanitiser treatments were aligned with microstructural and cytological changes in the histology results, as evidenced by a reduced fibre-fibre adhesion, myodigeneration, and an increase in interfibrillar space over storage time. Colour, especially chroma (C*), was shown to decrease over time in control, whereas insignificant protective effects were observed in both sanitiser treatments at day 7. Irrespective of treatment and storage time, MDA levels exceeded the acceptable limit on all days, whilst TVB-N levels were below the critical limit. Although pH was influenced by treatment and storage time, the pH was within the normal range. Microbiological results showed that with sanitiser addition, TVC was below the permissible level (106 CFU/g) until day 4 but ClO2 ice (5 ppm), ClO2 (10 ppm), and HOCl (100 ppm) treated fillets all exceeded the limit on day 7. The mixed results on the effect of sanitiser addition on fillet quality and shelf life suggested that further investigation on pathogen reduction, sanitiser introductory method, as well as testing the same treatments in low-fat fish models would be recommended.
Collapse
Affiliation(s)
- Wing H. Chung
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia; (M.R.C.); (J.H.)
| | - Md Reaz Chaklader
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia; (M.R.C.); (J.H.)
- Department of Primary Industries and Regional Development, Fleet Street, Fremantle, WA 6160, Australia
| | - Janet Howieson
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia; (M.R.C.); (J.H.)
| |
Collapse
|
4
|
Dai M, Cheng A, Lim LT, Xiao Q. Properties and application of antioxidant and antibacterial composite films based on methylcellulose and spine grape pomace fabricated by thermos-compression molding. Food Chem 2024; 453:139683. [PMID: 38788649 DOI: 10.1016/j.foodchem.2024.139683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Methylcellulose (MC)/grape pomace (GP) films, plasticized with either glycerol (GLY) or cinnamon essential oil (CEO), were prepared by thermo-compression molding and characterized. Compared to the GLY-plasticized MC50/GP50 films, a considerable increase in TS and YM values of CEO-plasticized films was observed, rising from 9.66 to 30.05 MPa, 762 to 1631 MPa, respectively. Moreover, the water vapor barrier, surface hydrophobic properties, and antioxidant/antibacterial activities of CEO-plasticized films remarkedly improved with increasing CEO content from 5 to 15% w/w. From scanning electron microscopy, phase separation between GP and the MC/GLY mixture were evident for GLY-plasticized MC/GP films. On the other hand, the CEO-plasticized films showed compact morphologies, attributable to the formation of hydrogen bonding and π-π stacking interaction. Preliminary shelf-life study on showed that fresh chicken wrapped with the CEO-plasticized MC/GP films exhibited lower TVB-N, TBARS, and TVC values than the unwrapped control samples, during 7 d storage at 4 °C.
Collapse
Affiliation(s)
- Miaoqi Dai
- School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China
| | - Anwei Cheng
- School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, N1G 2W1, Ontario, Canada
| | - Qian Xiao
- School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China.
| |
Collapse
|
5
|
Hsieh KC, Ting Y. Atmospheric cold plasma reduces Ara h 1 antigenicity in roasted peanuts by altering the protein structure and amino acid profile. Food Chem 2024; 441:138115. [PMID: 38183716 DOI: 10.1016/j.foodchem.2023.138115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
Ara h 1 is the major allergen in peanuts. To enhance the unique flavor, peanuts are usually roasted at high temperatures. However, roasting can increase the allergenic potential, owing to glycation of allergens. Atmospheric cold plasma (ACP) is a non-thermal processing technology that generates reactive species, enabling protein structural changes. Herein, glucose was also added to the ACP-treated peanut protein before roasting. The content and antigenicity of the advanced glycation end products were measured. The antigenicity was evaluated by ELISA and in vitro digestion assays. The amino acid profile and secondary and tertiary protein structures were also assessed. The antigenicity of Ara h 1 decreased by 91 % and 76 % after 30 min of air and nitrogen plasma treatment, respectively. The glycation degree and thermal and digestive stabilities were also reduced. These results correlated with the structural changes, denaturation, and aggregation. Therefore, cold plasma may reduce the allergic effects of peanuts.
Collapse
Affiliation(s)
- Kuan-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd, Taipei, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd, Taipei, Taiwan.
| |
Collapse
|
6
|
Zhang K, Li N, Wang Z, Feng D, Liu X, Zhou D, Li D. Recent advances in the color of aquatic products: Evaluation methods, discoloration mechanism, and protection technologies. Food Chem 2024; 434:137495. [PMID: 37741243 DOI: 10.1016/j.foodchem.2023.137495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Color plays a pivotal role in guiding and assessing the industrial production of aquatic products due to the swift sensory perception of information through vision. This review provides a comprehensive overview of the following four aspects: (a) mechanisms governing natural color formation in aquatic products, (b) factors and mechanisms contributing to the discoloration of aquatic products, (c) cutting-edge methods for color analysis and detection, and (d) current valuable techniques for preserving color quality. The natural color of aquatic products is derived from skin chromatophores, endogenous pigment proteins, and astaxanthin. Discoloration of aquatic products can occur due to lipid oxidation, as well as enzymatic and non-enzymatic browning. Furthermore, this review examines frontier color protective technologies, encompassing physical methods like ultra-high pressure, irradiation, and low-temperature plasma, as well as chemical methods involving natural preservatives. The findings of this study offer significant insights into the development of high-quality aquatic products.
Collapse
Affiliation(s)
- Kexin Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Na Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Zonghan Wang
- College of Biological System Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Dingding Feng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiaoyang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China
| | - Dayong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China.
| | - Deyang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, Dalian, 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian, 116034, China.
| |
Collapse
|
7
|
Sahraeian S, Rashidinejad A, Niakousari M. Enhanced properties of non-starch polysaccharide and protein hydrocolloids through plasma treatment: A review. Int J Biol Macromol 2023; 249:126098. [PMID: 37543265 DOI: 10.1016/j.ijbiomac.2023.126098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Hydrocolloids are important ingredients in food formulations and their modification can lead to novel ingredients with unique functionalities beyond their nutritional value. Cold plasma is a promising technology for the modification of food biopolymers due to its non-toxic and eco-friendly nature. This review discusses the recent published studies on the effects of cold plasma treatment on non-starch hydrocolloids and their derivatives. It covers the common phenomena that occur during plasma treatment, including ionization, etching effect, surface modification, and ashing effect, and how they contribute to various changes in food biopolymers. The effects of plasma treatment on important properties such as color, crystallinity, chemical structure, rheological behavior, and thermal properties of non-starch hydrocolloids and their derivatives are also discussed. In addition, this review highlights the potential of cold plasma treatment to enhance the functionality of food biopolymers and improve the quality of food products. The mechanisms underlying the effects of plasma treatment on food biopolymers, which can be useful for future research in this area, are also discussed. Overall, this review paper presents a comprehensive overview of the current knowledge in the field of cold plasma treatment of non-starch hydrocolloids and their derivatives and highlights the areas that require further investigation.
Collapse
Affiliation(s)
- Shahriyar Sahraeian
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| | - Mehrdad Niakousari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Bhat ZF, Bhat HF, Mohan MS, Aadil RM, Hassoun A, Aït-Kaddour A. Edible packaging systems for improved microbial quality of animal-derived foods and the role of emerging technologies. Crit Rev Food Sci Nutr 2023; 64:12137-12165. [PMID: 37594230 DOI: 10.1080/10408398.2023.2248494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Animal-derived foods are susceptible to microbial spoilage due to their superior nutritional composition and high moisture content. Among the various options, edible packaging is a relatively nascent area and can effectively control microbial growth without substantially affecting the sensory and techno-functional properties. Numerous studies have evaluated the effect of edible packaging systems on the microbial quality of animal-derived foods, however, a review that specifically covers the effect of edible packaging on animal foods and summarizes the findings of these studies is missing in the literature. To fill this gap, the present review analyses the findings of the studies on animal foods published during the last five years. Studies have reported edible-packaging systems for improving microbial stability of animal foods using different biopolymers (proteins, polysaccharides, lipids, and their derivatives) and bioactive ingredients (phytochemicals, peptides, plant extracts, essential oils, and their nanoparticles, nanoemulsions or coarse emulsions). In general, nanoparticles and nanoemulsions are more effective in controlling microbial spoilage in animal foods compared to the direct addition of bioactive agents to the film matrices. Studies have reported the use of non-thermal and emerging technologies in combination with edible packaging systems for improved food safety or their use for enhancing functionality, bioactivity and characteristics of the packaging systems. Future studies should focus on developing sustainable packaging systems using widely available biopolymers and bioactive ingredients and should also consider the economic feasibility at the commercial scale.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Hina F Bhat
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | - Maneesha S Mohan
- Dairy and Food Science, South Dakota State University, Brookings, SD, USA
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Boulogne-sur-Mer, France
| | | |
Collapse
|
9
|
Khumsupan D, Lin SP, Hsieh CW, Santoso SP, Chou YJ, Hsieh KC, Lin HW, Ting Y, Cheng KC. Current and Potential Applications of Atmospheric Cold Plasma in the Food Industry. Molecules 2023; 28:4903. [PMID: 37446565 DOI: 10.3390/molecules28134903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The cost-effectiveness and high efficiency of atmospheric cold plasma (ACP) incentivise researchers to explore its potentials within the food industry. Presently, the destructive nature of this nonthermal technology can be utilised to inactivate foodborne pathogens, enzymatic ripening, food allergens, and pesticides. However, by adjusting its parameters, ACP can also be employed in other novel applications including food modification, drying pre-treatment, nutrient extraction, active packaging, and food waste processing. Relevant studies were conducted to investigate the impacts of ACP and posit that reactive oxygen and nitrogen species (RONS) play the principal roles in achieving the set objectives. In this review article, operations of ACP to achieve desired results are discussed. Moreover, the recent progress of ACP in food processing and safety within the past decade is summarised while current challenges as well as its future outlook are proposed.
Collapse
Affiliation(s)
- Darin Khumsupan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, Taipei City 110, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan
| | | | - Yu-Jou Chou
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung City 41354, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
- Department of Optometry, Asia University, Taichung City 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404327, Taiwan
| |
Collapse
|
10
|
Enhancing the applicability of gelatin-carboxymethyl cellulose films by cold plasma modification for the preservation of fruits. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
11
|
The characteristics of polysaccharide from Gracilaria chouae and its application in food packaging with carboxymethyl cellulose and lysozyme. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Hosseini S, Kadivar M, Shekarchizadeh H, Abaee MS, Alsharif MA, Karevan M. Cold plasma treatment to prepare active polylactic acid/ethyl cellulose film using wheat germ peptides and chitosan. Int J Biol Macromol 2022; 223:1420-1431. [PMID: 36395951 DOI: 10.1016/j.ijbiomac.2022.11.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
In this study, the surface of the polylactic acid/ethyl cellulose (PLA/EC) blend film was modified by dielectric barrier discharge (DBD) plasma treatment to facilitate the spin-coating of chitosan (CH) and wheat germ bioactive peptides (PEP) obtained from enzymatic hydrolysis of defatted wheat germ protein isolate on the surface of the film. The suitable plasma treatment condition was 5 min at 20 kV according to ATR-FTIR, AFM, SEM, water angle contact, and water solubility results. Increasing the surface roughness and oxygen-containing functional groups (CO and -OH) improved coating by PEP and CH. The PEP-coated film had better antioxidant activity than CH-PEP and CH-coated films. The results of antimicrobial activity demonstrated that PEP-coated film could reduce the growth of gram-negative bacteria (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). The PEP-coated film had competitive antibacterial properties with CH-coated. Hence, the obtained PEP-coated PLA/EC film could be a promising candidate for antioxidant and antibacterial food packaging.
Collapse
Affiliation(s)
- Samane Hosseini
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahdi Kadivar
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hajar Shekarchizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad Saeed Abaee
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Km 17 Tehran-Karaj Highway, Pajohesh Blvd, Tehran, Iran.
| | - Mohammad Ali Alsharif
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mehdi Karevan
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
13
|
Lin SP, Khumsupan D, Chou YJ, Hsieh KC, Hsu HY, Ting Y, Cheng KC. Applications of atmospheric cold plasma in agricultural, medical, and bioprocessing industries. Appl Microbiol Biotechnol 2022; 106:7737-7750. [PMID: 36329134 PMCID: PMC9638309 DOI: 10.1007/s00253-022-12252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Atmospheric cold plasma (ACP) is a nonthermal technology that is extensively used in several industries. Within the scopes of engineering and biotechnology, some notable applications of ACP include waste management, material modification, medicine, and agriculture. Notwithstanding numerous applications, ACP still encounters a number of challenges such as diverse types of plasma generators and sizes, causing standardization challenges. This review focuses on the uses of ACP in engineering and biotechnology sectors in which the innovation can positively impact the operation process, enhance safety, and reduce cost. Additionally, its limitations are examined. Since ACP is still in its nascent stage, the review will also propose potential research opportunities that can help scientists gain more insights on the technology. KEY POINTS: • ACP technology has been used in agriculture, medical, and bioprocessing industries. • Chemical study on the reactive species is crucial to produce function-specific ACP. • Different ACP devices and conditions still pose standardization problems.
Collapse
Affiliation(s)
- Shin-Ping Lin
- School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan
| | - Darin Khumsupan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yu-Jou Chou
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yuwen Ting
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
14
|
Rodríguez-Varillas S, Murru C, Díaz-García ME, Badía-Laíño R. Green Carbon Dots as Additives of Biopolymer Films for Preserving from Oxidation of Oil-Based Products. Antioxidants (Basel) 2022; 11:2193. [PMID: 36358565 PMCID: PMC9686731 DOI: 10.3390/antiox11112193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 10/10/2023] Open
Abstract
The deterioration of oil-based products during processing, distribution and storage has a major negative impact on the industry from an economic point of view. The spoilage of oil is mainly due to its oxidation which can be triggered by various factors, such as UV light, heating or the presence of impurities that result in the formation of radical species. In this context, several packaging alternatives have recently been developed with the aim to protect and extend the shelf life of oil-based products. This work aimed to study the antioxidant properties of bio-polymer-based films (BPFs) obtained from high methoxylated pectin (HMP) and sodium caseinate (CAS) and enriched with different concentrations of green carbon dots (gCDs), 0.25%, 0.50 and 1% w/w, obtained from apple pomace (APCDs) and rosemary powder (RCDs). The resulting films (gCDs-BPFs) have shown that the presence of gCDs not only modified the surface roughness of the films, but also positively affected their antioxidant properties. The addition of gCDs enhanced the radical inhibiting capacity of the raw BPFs by 42 and 62% for the films containing 1% RCDs and 1% APCDs, respectively. As a proof of the concept, two oil samples (edible and cosmetic) were treated with the obtained antioxidant films, and the results demonstrated that in both types of samples the oxidation process was minimized during the five days of the experiment. These results are promising and suggest that the antioxidant bio-polymer-based films could be excellent candidates for further production of active packaging.
Collapse
Affiliation(s)
| | | | | | - Rosana Badía-Laíño
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Asturias, Spain
| |
Collapse
|
15
|
Cinnamaldehyde inactivates Listeria monocytogenes at a low temperature in ground pork by disturbing the expression of stress regulatory genes. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
16
|
Siew ZZ, Chan EWC, Wong CW. Anti‐browning active packaging: A review on delivery mechanism, mode of action, and compatibility with biodegradable polymers. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi Zhou Siew
- Department of Food Science with Nutrition Faculty of Applied Sciences, UCSI University Cheras Kuala Lumpur Malaysia
| | - Eric Wei Chiang Chan
- Department of Food Science with Nutrition Faculty of Applied Sciences, UCSI University Cheras Kuala Lumpur Malaysia
| | - Chen Wai Wong
- Department of Biotechnology, Faculty of Applied Sciences UCSI University Cheras Kuala Lumpur Malaysia
| |
Collapse
|
17
|
Zong L, Gao H, Chen C, Xie J. Effects of starch/polyvinyl alcohol active film containing cinnamaldehyde on the quality of large yellow croaker (Pseudosciaena crocea) proteins during frozen storage. Food Chem 2022; 389:133065. [PMID: 35489262 DOI: 10.1016/j.foodchem.2022.133065] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022]
Abstract
This study aimed to investigate the effects of starch/polyvinyl alcohol (starch/PVA) film containing cinnamaldehyde (CIN) with different humidity treatment on the quality changes of large yellow croaker (Pseudosciaena crocea) under vacuum packaging during frozen storage. It was evaluated by measuring the water loss, water migration, total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), free amino acids (FAA) content, myofibril secondary and tertiary structure and microstructure of large yellow croaker. Compared with control group, the starch/PVA films could inhibit the water loss, water migration, protein degradation, lipid oxidation and microstructure damage of fish. The film containing CIN with higher humidity treatment showed the best protective effect for large yellow croaker. The film with higher humidity treatment showed better to maintain the quality of fish than that with low humidity treatment. Therefore, starch/PVA active film containing CIN with high humidity treatment showed good fresh-keeping potential in the frozen storage of aquatic products.
Collapse
Affiliation(s)
- Lin Zong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
18
|
Shao L, Xi Y, Weng Y. Recent Advances in PLA-Based Antibacterial Food Packaging and Its Applications. Molecules 2022; 27:molecules27185953. [PMID: 36144687 PMCID: PMC9502505 DOI: 10.3390/molecules27185953] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
In order to reduce environmental pollution and resource waste, food packaging materials should not only have good biodegradable ability but also effective antibacterial properties. Poly(lactic acid) (PLA) is the most commonly used biopolymer for food packaging applications. PLA has good physical properties, mechanical properties, biodegradability, and cell compatibility but does not have inherent antibacterial properties. Therefore, antibacterial packaging materials based on PLA need to add antibacterial agents to the polymer matrix. Natural antibacterial agents are widely used in food packaging materials due to their low toxicity. The high volatility of natural antibacterial agents restricts their application in food packaging materials. Therefore, appropriate processing methods are particularly important. This review introduces PLA-based natural antibacterial food packaging, and the composition and application of natural antibacterial agents are discussed. The properties of natural antibacterial agents, the technology of binding with the matrix, and the effect of inhibiting various bacteria are summarized.
Collapse
Affiliation(s)
- Linying Shao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuewei Xi
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (Y.X.); (Y.W.)
| |
Collapse
|
19
|
Laorenza Y, Chonhenchob V, Bumbudsanpharoke N, Jittanit W, Sae-tan S, Rachtanapun C, Chanput WP, Charoensiddhi S, Srisa A, Promhuad K, Wongphan P, Harnkarnsujarit N. Polymeric Packaging Applications for Seafood Products: Packaging-Deterioration Relevance, Technology and Trends. Polymers (Basel) 2022; 14:polym14183706. [PMID: 36145850 PMCID: PMC9504574 DOI: 10.3390/polym14183706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/17/2022] Open
Abstract
Seafood is a highly economical product worldwide. Primary modes of deterioration include autolysis, oxidation of protein and lipids, formation of biogenic amines and melanosis, and microbial deterioration. These post-harvest losses can be properly handled if the appropriate packaging technology has been applied. Therefore, it is necessary for packaging deterioration relevance to be clearly understood. This review demonstrates recent polymeric packaging technology for seafood products. Relationship between packaging and quality deterioration, including microbial growth and chemical and biochemical reactions, are discussed. Recent technology and trends in the development of seafood packaging are demonstrated by recent research articles and patents. Development of functional polymers for active packaging is the largest area for seafood applications. Intelligent packaging, modified atmosphere packaging, thermal insulator cartons, as well as the method of removing a fishy aroma have been widely developed and patented to solve the specific and comprehensive quality issues in seafood products. Many active antioxidant and antimicrobial compounds have been found and successfully incorporated with polymers to preserve the quality and monitor the fish freshness. A thermal insulator has also been developed for seafood packaging to preserve its freshness and avoid deterioration by microbial growth and enzymatic activity. Moreover, the enhanced biodegradable tray is also innovative as a single or bulk fish container for marketing and distribution. Accordingly, this review shows emerging polymeric packaging technology for seafood products and the relevance between packaging and seafood qualities.
Collapse
Affiliation(s)
- Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Vanee Chonhenchob
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nattinee Bumbudsanpharoke
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Weerachet Jittanit
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Sudathip Sae-tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Chitsiri Rachtanapun
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Wasaporn Pretescille Chanput
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2-562-5045
| |
Collapse
|
20
|
The Positive Influences of Roselle Anthocyanin Active Film on Shrimp (Penaeus vannamei) Sensory Attribute Modification. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Shi Y, Wei P, Shi Q, Cao J, Zhu K, Liu Z, Zhou D, Shen X, Li C. Quality changes and deterioration mechanisms in three parts (belly, dorsal and tail muscle) of tilapia fillets during partial freezing storage. Food Chem 2022; 385:132503. [PMID: 35331610 DOI: 10.1016/j.foodchem.2022.132503] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
The quality changes in tilapia belly muscle (BM), dorsal muscle (DM) and tail muscle (TM) were studied and the hypothesis of browning of the fillets was revealed during partial freezing. Compared with DM and TM groups, BM samples had higher thiobarbituric acid reactive substances (TBARS) (0.41 mg malondialdehyde eq/kg at 49 d) and K values (61.81% at 42 d) (P < 0.05). The microstructure of the BM group deteriorated most obviously during storage. Therefore, the BM group was considered to be the fastest to oxidize and deteriorate. In addition, 54 different micromolecular metabolites were identified from tilapia fillets by UHPLC-Q-TOF-MS analysis, and there were significant differences in the micromolecular metabolites in the three parts of tilapia. Therefore, proteins and lipids were degraded by the action of enzymes and microorganisms to produce some amines and small molecular acids, leading to the deterioration of the quality of tilapia fillets.
Collapse
Affiliation(s)
- Yali Shi
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Peiyu Wei
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiuge Shi
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Kexue Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Zhongyuan Liu
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuanri Shen
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
22
|
Sun J, Leng X, Zang J, Zhao G. Bio-based antibacterial food packaging films and coatings containing cinnamaldehyde: A review. Crit Rev Food Sci Nutr 2022; 64:140-152. [PMID: 35900224 DOI: 10.1080/10408398.2022.2105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a typical bioactive compound from the bark and leaves of the trees of the genus Cinnamomum, cinnamaldehyde (CIN) is natural and safe. Its excellent antibacterial activity against various foodborne microorganisms is growingly regarded as a promising additive for improving and enhancing the properties of bio-based packaging films/coatings. This review systematically summarized the bio-based food packaging films/coatings containing CIN developed recently. The effects of CIN incorporation on physical and chemical properties of the antibacterial food packaging films/coatings, including thickness, color index, transparency, water content, water solubility, water contact angle, mechanical performances, water barrier performances, and antibacterial performances, were discussed. Simultaneously, this work also concluded that an explanation of the antibacterial mechanism of CIN and preparation methods of bio-based packaging films/coatings containing CIN/CIN carriers. Notably, the incorporation of CIN into the films/coatings could enhance their antibacterial performance extend the shelf-life of various foods, such as fish, meats, vegetables, fruits, and other perishable food, while improving their physical and chemical properties. Although incorporating CIN into food packaging films/coatings has been extensively studied, long-term follow-up research on the human safety of active food packaging films/coatings containing CIN needs to be carried out.
Collapse
Affiliation(s)
- Jishuai Sun
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Xiaojing Leng
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Félix de Andrade M, Silva MG, Silva IDDL, Caetano VF, Moraes Filho LETPD, Vinhas GM, Medeiros Bastos de Almeida Y. Pepper‐rosmarin essential oil (
Lippia sidoides Cham
.) as an antioxidant additive for PBAT ‐ poly (butylene adipate co‐terephthalate) films and its application for active packaging. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Michelle Félix de Andrade
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| | - Marina Gomes Silva
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| | - Ivo Diego de Lima Silva
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| | - Viviane Fonseca Caetano
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| | | | - Glória Maria Vinhas
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| | - Yeda Medeiros Bastos de Almeida
- Federal University of Pernambuco Department of Chemical Engineering, Av. Prof. Moraes Rego, 1235 – Cidade Universitária Recife – PE ‐ Brazil 50670‐90
| |
Collapse
|
24
|
The Use of Cinnamon Essential Oils in Aquaculture: Antibacterial, Anesthetic, Growth-Promoting, and Antioxidant Effects. FISHES 2022. [DOI: 10.3390/fishes7030133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cinnamon essential oils (EOs) are widely known for their pharmaceutical properties; however, studies investigating the use of these EOs in aquaculture are scarce. The aims of this study were to evaluate the anesthetic effect of bathing silver catfish (Rhamdia quelen) with Cinnamomum cassia EO (CCEO) and its nanoemulsion (NCCEO); the growth-promoting and antioxidant effects of dietary supplementation with CCEO in silver catfish; and the in vitro antibacterial effect of CCEO, NCCEO, and Cinnamomum zeylanicum EO (CZEO) against bacteria isolated from diseased silver catfish. The two cinnamon EOs showed promising antibacterial activity, which was potentiated by the nanoemulsion. CCEO showed satisfactory anesthetic activity in silver catfish, and its nanoemulsion intensified the sedative activity. Supplementation of 1.0 mL CCEO per kg of diet for 60 days increased weight, length, and weight gain when compared to the control group, evidencing the growth-promoting activity of this EO. Dietary supplementation of CCEO for 30 and 60 days also showed an antioxidant effect, as it decreased levels of thiobarbituric acid reactive species and increased the superoxide dismutase activity in the liver of silver catfish. Therefore, cinnamon EOs have a promising use in aquaculture.
Collapse
|
25
|
Yudhistira B, Sulaimana AS, Punthi F, Chang CK, Lung CT, Santoso SP, Gavahian M, Hsieh CW. Cold Plasma-Based Fabrication and Characterization of Active Films Containing Different Types of Myristica fragrans Essential Oil Emulsion. Polymers (Basel) 2022; 14:polym14081618. [PMID: 35458368 PMCID: PMC9027929 DOI: 10.3390/polym14081618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Myristica fragrans essential oil (MFEO) is a potential active compound for application as an active packaging material. A new approach was developed using a cold plasma treatment to incorporate MFEO to improve the optical, physical, and bacterial inhibition properties of the film. The MFEO was added as coarse emulsion (CE), nanoemulsion (NE), and Pickering emulsion (PE) at different concentrations. The PE significantly affected (p < 0.05) the optical, physical, and chemical properties compared with CE and NE films. The addition of MFEO to low-density polyethylene (LDPE) film significantly reduced water vapor permeability (WVP) and oxygen permeability (OP) and showed marked activity against E. coli and S. aureus (p < 0.05). The release rate of PE films after 30 h was 70% lower than that of CE and NE films. Thus, it can be concluded that the fabrication of active packaging containing MFEO is a potential food packaging material.
Collapse
Affiliation(s)
- Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan; (B.Y.); (F.P.); (C.-K.C.); (C.-T.L.)
- Department of Food Science and Technology, Sebelas Maret University, Surakarta City 57126, Indonesia
| | | | - Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan; (B.Y.); (F.P.); (C.-K.C.); (C.-T.L.)
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan; (B.Y.); (F.P.); (C.-K.C.); (C.-T.L.)
| | - Chun-Ta Lung
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan; (B.Y.); (F.P.); (C.-K.C.); (C.-T.L.)
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia;
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 40227, Taiwan; (B.Y.); (F.P.); (C.-K.C.); (C.-T.L.)
- Department of Medical Research, China Medical University Hospital, Taichung City 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22840385 (ext. 5010)
| |
Collapse
|
26
|
Hosseini SF, Ghaderi J, Gómez-Guillén MC. Tailoring physico-mechanical and antimicrobial/antioxidant properties of biopolymeric films by cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging of fresh rainbow trout fillets. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107249] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Chakraborty P, Nath D, Hoque M, Sarkar P, Hati S, Mishra BK. Biopolymer‐based antimicrobial coatings for aquatic food products: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Priyanka Chakraborty
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| | - Debarshi Nath
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Monjurul Hoque
- Teagasc Ashtown Food Research Centre Teagasc Ashtown Dublin 15 Ireland
- School of Food and Nutritional Sciences University College Cork T12 R229 Cork Ireland
| | - Preetam Sarkar
- Department of Food Process Engineering National Institute of Technology Rourkela India
| | - Subrota Hati
- Department of Dairy Microbiology SMC College of Dairy Science Anand Agricultural University India
| | - Birendra Kumar Mishra
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus India
| |
Collapse
|
28
|
|
29
|
Effect of Cold Plasma Treatment on the Packaging Properties of Biopolymer-Based Films: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Biopolymers, like polysaccharides and proteins, are sustainable and green materials with excellent film-forming potential. Bio-based films have gained a lot of attention and are believed to be an alternative to plastics in next-generation food packaging. Compared to conventional plastics, biopolymers inherently have certain limitations like hydrophilicity, poor thermo-mechanical, and barrier properties. Therefore, the modification of biopolymers or their films provide an opportunity to develop packaging materials with desired characteristics. Among different modification approaches, the application of cold plasma has been a very efficient technology to enhance the functionality and interfacial characteristics of biopolymers. Cold plasma is biocompatible, shows uniformity in treatment, and is suitable for heat-sensitive components. This review provides information on different plasma generating equipment used for the modification of films and critically analyses the impact of cold plasma on packaging properties of films prepared from protein, polysaccharides, and their combinations. Most studies to date have shown that plasma treatment effectively enhances surface characteristics, mechanical, and thermal properties, while its impact on the improvement of barrier properties is limited. Plasma treatment increases surface roughness that enables surface adhesion, ink printability, and reduces the contact angle. Plasma-treated films loaded with antimicrobial compounds demonstrate strong antimicrobial efficacy, mainly due to the increase in their diffusion rate and the non-thermal nature of cold plasma that protects the functionality of bioactive compounds. This review also elaborates on the existing challenges and future needs. Overall, it can be concluded that the application of cold plasma is an effective strategy to modify the inherent limitations of biopolymer-based packaging materials for food packaging applications.
Collapse
|
30
|
Chen C, Zong L, Wang J, Xie J. Microfibrillated cellulose reinforced starch/polyvinyl alcohol antimicrobial active films with controlled release behavior of cinnamaldehyde. Carbohydr Polym 2021; 272:118448. [PMID: 34420711 DOI: 10.1016/j.carbpol.2021.118448] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
The starch/polyvinyl alcohol (ST/PVA) films incorporated with cinnamaldehyde (CIN) and microfibrillated cellulose (MFC) were developed. The effect of MFC content on the films' properties was studied. The SEM results showed that MFC promoted compatibility among starch, PVA and CIN. With increased content of MFC, the strength of the films was improved and their flexibility reduced, the films' crystallinity degree and hydrophobicity were improved. The oxygen and water vapor permeability of the films both reduced first and then increased as a whole. The release of CIN from films into the food stimulant (10% ethanol) could be controlled by MFC. When MFC content was between 1% and 7.5%, it decelerated the release of CIN but high MFC content exceeded 10% promoted the release of CIN. It revealed that films containing CIN could inhibit growth of S. putrefaciens. It showed a good prospect of using MFC to develop controlled release active ST/PVA films.
Collapse
Affiliation(s)
- Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China
| | - Lin Zong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaxi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
31
|
Chang CK, Cheng KC, Hou CY, Wu YS, Hsieh CW. Development of Active Packaging to Extend the Shelf Life of Agaricus bisporus by Using Plasma Technology. Polymers (Basel) 2021; 13:polym13132120. [PMID: 34203311 PMCID: PMC8271542 DOI: 10.3390/polym13132120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/25/2023] Open
Abstract
In this study, a preservation package that can extend the shelf life of Agaricus bisporus was developed using plasma modification combined with low-density polyethylene (LDPE), collagen (COL), and carboxymethyl cellulose (CMC). Out results showed that the selectivity of LDPE to gas can be controlled by plasma modification combined with coating of different concentrations of CMC and COL. Packaging test results applied to A. bisporus showed that 3% and 5% of CMC and COL did not significantly inhibit polyphenol oxidase and β-1,3-glucanase, indicating no significant effect on structural integrity and oxidative browning. The use of 0.5% and 1.0% CMC and COL can effectively inhibit the polyphenol oxidase and β-1,3-glucanase activity of A. bisporus, leading to improved effects in browning inhibition and structural integrity maintenance. P-1.0COL can effectively maintain gas composition in the package (carbon dioxide: 10–15% and oxygen: 8–15%) and catalase activity during storage, thereby reducing the oxidative damage caused by respiration of A. bisporus. The current study confirmed that the use of plasma modification technology combined with 1.0% COL can be used in preservation packaging by regulating the respiration of A. bisporus, thus extending its shelf life from 7 to 21 days.
Collapse
Affiliation(s)
- Chao-Kai Chang
- College of Biotechnology and Bioresources, Da-Yeh University, 168 University Rd., Dacun, Changhua 51500, Taiwan;
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science and Technology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan;
- Institute of Biotechnology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40400, Taiwan
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142, Haizhuan Rd., Nanzi Dist., Kaohsiung City 81157, Taiwan;
| | - Yi-Shan Wu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan;
| | - Chang-Wei Hsieh
- Department of Medical Research, China Medical University Hospital, Taichung 40400, Taiwan
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan;
- Correspondence: ; Tel.: +886-4-22840385 (ext. 5010)
| |
Collapse
|
32
|
Li B, Wang X, Gao X, Mei J, Xie J. Effect of Active Coatings Containing Lippa citriodora Kunth. Essential Oil on Bacterial Diversity and Myofibrillar Proteins Degradation in Refrigerated Large Yellow Croaker. Polymers (Basel) 2021; 13:polym13111787. [PMID: 34071698 PMCID: PMC8198210 DOI: 10.3390/polym13111787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
The research evaluated the effects of locust bean gum (LBG) and sodium alginate (SA) active coatings containing 0.15, 0.30 or 0.60% lemon verbena (Lippa citriodora Kunth.) essential oil (LVEO) on the bacterial diversity and myofibrillar proteins (MPs) of large yellow croaker during refrigerated storage at 4 °C for 18 days. Variability in the dominant bacterial community in different samples on the 0, 9th and 18th day was observed. Pseudomonas and Shewanella were the two major genera identified during refrigerated storage. At the beginning, the richness of Pseudomonas was about 37.31% and increased for control (CK) samples during refrigerated storage, however, the LVEO-treated samples increased sharply from day 0 to the 9th day and then decreased. LBG-SA coatings containing LVEO treatments significantly delayed MPs oxidation by retarding the formation of free carbonyl compounds and maintaining higher sulfhydryl content, higher Ca2+-ATPase activity, better organized secondary (higher contents of α-helix and β-sheet) and tertiary structures during refrigerated storage. The transmission electron microscope (TEM) images showed that the integrity of the sarcomere was damaged; the boundaries of the H-, A-, and I-bands, Z-disk, and M-line were fuzzy in the CK samples at the end of storage. However, the LVEO-treated samples were still regular in appearance with distinct dark A-bands, light I-bands, and Z-disk. In brief, LBG-SA active coatings containing LVEO treatments suggested a feasible method for protecting the MPs of large yellow croaker during refrigerated storage.
Collapse
Affiliation(s)
- Bo Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.L.); (X.W.); (X.G.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Xuesong Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.L.); (X.W.); (X.G.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Xin Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.L.); (X.W.); (X.G.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.L.); (X.W.); (X.G.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.)
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (B.L.); (X.W.); (X.G.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Correspondence: (J.M.); (J.X.)
| |
Collapse
|
33
|
Cui R, Zhu B, Yan J, Qin Y, Yuan M, Cheng G, Yuan M. Development of a Sodium Alginate-Based Active Package with Controlled Release of Cinnamaldehyde Loaded on Halloysite Nanotubes. Foods 2021; 10:foods10061150. [PMID: 34063767 PMCID: PMC8223774 DOI: 10.3390/foods10061150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
The worsening environment and the demand for safer food have accelerated the development of new food packaging materials. The objective of this research is to prepare antimicrobial food packaging film with controlled release by loading cinnamaldehyde (CIN) on etched halloysite nanotubes (T-HNTs) and adding it to sodium alginate (SA) matrix. The effects of T-HNTs-CIN on the physical functional properties and antibacterial activity of the film were systematically evaluated, and the release of CIN in the film was also quantified. Transmission electron microscopy and nitrogen adsorption experiments showed that the halloysite nanotubes had been etched and CIN was successfully loaded into the T-HNTs. The addition of T-HNTs-CIN significantly improved the water vapor barrier properties and tensile strength of the film. Similarly, the presence of T-HNTs-CIN in the film greatly reduced the negative effects of ultraviolet rays. The release experiment showed that the diffusion time of CIN in SA/T-HNTs-CIN film to fatty food simulation solution was delayed 144 h compared with that of SA/CIN film. Herein, the antibacterial experiment also confirmed the controlled release effect of T-HNTs on CIN. In conclusion, SA/T-HNTs-CIN film might have broad application prospects in fatty food packaging.
Collapse
Affiliation(s)
- Rui Cui
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Bifen Zhu
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Jiatong Yan
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Yuyue Qin
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
- Correspondence: (Y.Q.); (M.Y.)
| | - Mingwei Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Nationalities University, Kunming 650550, China;
- Correspondence: (Y.Q.); (M.Y.)
| | - Guiguang Cheng
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming 650550, China; (R.C.); (B.Z.); (J.Y.); (G.C.)
| | - Minglong Yuan
- Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Nationalities University, Kunming 650550, China;
| |
Collapse
|