1
|
Papadochristopoulos A, Kerry JP, Fegan N, Burgess CM, Duffy G. Potential Use of Selected Natural Anti-Microbials to Control Listeria monocytogenes in Vacuum Packed Beef Burgers and Their Impact on Quality Attributes. Microorganisms 2025; 13:910. [PMID: 40284746 PMCID: PMC12029336 DOI: 10.3390/microorganisms13040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
This study assessed the potential for natural anti-microbials to control Listeria monocytogenes in vacuum packed beef burgers. Minimum inhibitory and bactericidal concentration (MIC and MBC) results for natural anti-microbials (carvacrol; essential oils of thyme, rosemary, clove and cinnamon; hop extract; cranberry extract; cranberry pomace; propolis extract; and chitosan sourced from both shrimp and mushroom) were used to select agents (n = 6) showing the most promise against L. monocytogenes. These agents, including chitosan from shrimp and mushroom (a novel source), and cranberry extract, were then tested against L. monocytogenes in vacuum packed beef burgers during chilled storage (3 ± 1 °C, 16 days). Following storage (16 d), the number of L. monocytogenes in beef burgers treated with chitosan (2.5%), regardless of source, was significantly lower (p < 0.05) (1.2 to 1.6 log10CFU g-1) than in the control samples, while smaller reductions (0.5 log10 CFU g-1; p < 0.05) were noted in samples with cranberry extract (0.625%). While chitosan had no significant impact on HunterLab colour measurements during chilled storage, cranberry extract significantly impacted the colour (p < 0.05), resulting in lower L*, a*, and b* values. Observational assessment of colour, odour and the overall quality of the raw meat on opening the pack found that beef burgers with added chitosan (both sources) were acceptable, while those with added cranberry extract received an overall quality score of approximately 5.4, which is above the acceptability threshold (5/10). Overall, the study showed the potential of chitosan to control L. monocytogenes in beef burgers, and the advantage of this agent sourced from mushrooms is discussed.
Collapse
Affiliation(s)
- Angelos Papadochristopoulos
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland; (A.P.); (C.M.B.)
- Food Packaging Group, School of Food & Nutritional Sciences, University College Cork (UCC), T12 K8AF Cork, Ireland;
| | - Joseph P. Kerry
- Food Packaging Group, School of Food & Nutritional Sciences, University College Cork (UCC), T12 K8AF Cork, Ireland;
| | - Narelle Fegan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Coopers Plains, Brisbane, QLD 4108, Australia;
| | - Catherine M. Burgess
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland; (A.P.); (C.M.B.)
| | - Geraldine Duffy
- Teagasc Food Research Centre, Ashtown, D15 DY05 Dublin, Ireland; (A.P.); (C.M.B.)
| |
Collapse
|
2
|
Roila R, Valiani A, Servili M, Ranucci D, Galarini R, Ortenzi R, Primavilla S, Branciari R. Control of Listeria monocytogenes on Frankfurters by Surface Treatment with Olive Mill Wastewater Polyphenolic Extract. Foods 2025; 14:774. [PMID: 40077477 PMCID: PMC11899662 DOI: 10.3390/foods14050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Listeria monocytogenes (LM) is a frequent post-process contaminant in meat products. This study aimed to investigate the antilisterial effectiveness of post-process antimicrobial treatments employing olive mill wastewater polyphenolic extract (PE) in commercially manufactured frankfurters. Frankfurters were inoculated on the surface with a three-strain LM mixture (~102 CFU/g), treated on the surface with PE in a 2-fold series of concentrations (PM, 2PM, 4PM) and a control group (CTR) of PE-untreated samples. Then, the frankfurters were vacuum-packed and stored at 4 °C for 28 days. Samples were examined on days 0, 7, 14, 21, and 28 for LM count, in silico growth modeling, and impacts on pH, water activity (aw), and sensory characteristics. From T(time) 7, the PE treatment showed a significant effect on LM growth, registering maximum Δ values between CTR and 4PM of 3.19, 4.86, 4.59, 4.39 at T7, T14, T21, T28, respectively. Minimum effect was attributable to PM treatment with Δ values (CTR versus PM) of 2.07, 2.52, 1.14, 0.65 at T7, T14, T21, T28, respectively. No significant changes occurred in pH (average 6 at T0 and 5.9 at T28), aw (average 0.978 at T0 and 0.968 at T28), nor in sensory profile (p > 0.05). These findings suggest that PE is an effective natural antimicrobial, offering a promising approach to enhancing food safety and extending shelf life in meat products.
Collapse
Affiliation(s)
- Rossana Roila
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06121 Perugia, Italy; (R.R.); (R.B.)
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’ Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (R.G.); (R.O.); (S.P.)
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via S. Costanzo, 06126 Perugia, Italy;
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06121 Perugia, Italy; (R.R.); (R.B.)
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’ Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (R.G.); (R.O.); (S.P.)
| | - Roberta Ortenzi
- Istituto Zooprofilattico Sperimentale dell’ Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (R.G.); (R.O.); (S.P.)
| | - Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell’ Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy; (R.G.); (R.O.); (S.P.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06121 Perugia, Italy; (R.R.); (R.B.)
| |
Collapse
|
3
|
Chauhan K, Rao A. Clean-label alternatives for food preservation: An emerging trend. Heliyon 2024; 10:e35815. [PMID: 39247286 PMCID: PMC11379619 DOI: 10.1016/j.heliyon.2024.e35815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Consumer demand for natural or 'clean-label' food ingredients has risen over the past 50 years and continues growing. Consumers have become more aware of their health and, therefore, insist on transparency in the list of ingredients. Preservatives are the most crucial food additives, ensuring food safety and security. Despite tremendous technological advancements, food preservation remains a significant challenge worldwide, primarily because most are synthetic and non-biodegradable. As a result, the food industry is placing more value on microbiota and other natural sources for bio-preservation, leading to the substitution of conventional processing and chemical preservatives with natural alternatives to ensure 'clean-label.' General Standard for Food Additives (GSFA) includes some of these 'clean-label' options in its list of additives. However, they are very rarely capable of replacing a synthetic preservative on a 'one-for-one' basis, putting pressure on researchers to decipher newer, cleaner, and more economical alternatives. Academic and scientific research has led to the discovery of several plant, animal, and microbial metabolites that may function as effective bio-preservatives. However, most have not yet been put in the market or are under trial. Hence, the present review aims to summarise such relevant and potential metabolites with bio-preservative properties comprehensively. This article will help readers comprehend recent innovations in the 'clean-label' era, provide informed choices to consumers, and improve the business of regulatory approvals.
Collapse
Affiliation(s)
- Kanika Chauhan
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
- Food Safety and Standards Authority of India (FSSAI), New Delhi 110002, India
| |
Collapse
|
4
|
Goedseels M, Michiels CW. Cell Envelope Modifications Generating Resistance to Hop Beta Acids and Collateral Sensitivity to Cationic Antimicrobials in Listeria monocytogenes. Microorganisms 2023; 11:2024. [PMID: 37630584 PMCID: PMC10457916 DOI: 10.3390/microorganisms11082024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Hop beta acids (HBAs) are characteristic compounds from the hop plant that are of interest for their strong antimicrobial activity. In this work, we report a resistance mechanism against HBA in the foodborne pathogen Listeria monocytogenes. Using an evolution experiment, we isolated two HBA-resistant mutants with mutations in the mprF gene, which codes for the Multiple Peptide Resistance Factor, an enzyme that confers resistance to cationic peptides and antibiotics in several Gram-positive bacteria by lysinylating membrane phospholipids. Besides the deletion of mprF, the deletion of dltA, which mediates the alanylation of teichoic acids, resulted in increased HBA resistance, suggesting that resistance may be caused by a reduction in positive charges on the cell surface. Additionally, we found that this resistance is maintained at low pH, indicating that the resistance mechanism is not solely based on electrostatic interactions of HBA with the cell surface. Finally, we showed that the HBA-resistant mutants display collateral sensitivity to the cationic antimicrobials polymyxin B and nisin, which may open perspectives for combining antimicrobials to prevent resistance development.
Collapse
Affiliation(s)
| | - Chris W. Michiels
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium;
| |
Collapse
|
5
|
Fischer B, Gevinski EV, da Silva DM, Júnior PAL, Bandiera VJ, Lohmann AM, Rigo D, Duarte PF, Franceschi E, Zandoná GP, Rombaldi CV, Cansian RL, Paroul N, Junges A. Extraction of hops pelletized (Humulus lupulus) with subcritical CO2 and hydrodistillation: Chemical composition identification, kinetic model, and evaluation of antioxidant and antimicrobial activity. Food Res Int 2023; 167:112712. [PMID: 37087215 DOI: 10.1016/j.foodres.2023.112712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Hop essential oil and hop extract using carbon dioxide (CO2) are products with high added value because they have bioactive and sensory properties. In this context, the objective of this study was to obtain and characterize essential oil and extracts from pelleted hops of El Dorado, Polaris, Hallertau Blanc and Callista varieties using hydrodistillation and subcritical CO2 extraction methods. Extraction yield ranged from 0.38 % to 1.97 % (m/m) for essential oils and from 8.76 % to 15.35 % (m/m) for extracts using subcritical CO2. The chemical compositions of the essential oils were mainly monoterpene (18.14 % to 29.91 %) and sesquiterpene (46.01 % to 59.03 %) hydrocarbons and for the extracts were sesquiterpene hydrocarbons (33.05 % to 71.90 %) and oxygenated sesquiterpenes (14.80 % to 34.89 %). The extracts showed better antioxidant activity than essential oils due to the presence of phenolic compounds and flavonoids. Hop extracts showed some antimicrobial activity, but essential oils did not demonstrate antimicrobial potential. Hop extracts obtained with subCO2 have the potential to be used in the brewing industry as a flavoring and as natural antioxidants.
Collapse
Affiliation(s)
- Bruno Fischer
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Eduardo Vinicios Gevinski
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Diego Maroso da Silva
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Paulo Amaurí Lando Júnior
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Valmor José Bandiera
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Andreia Menin Lohmann
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Diane Rigo
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Patrícia Fonseca Duarte
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Elton Franceschi
- Center for Research on Colloidal Systems (NUESC), Institute of Research and Technology (ITP), Tiradentes University (UNIT), Aracaju, SE 49032-490, Brazil
| | - Giovana Paula Zandoná
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Capão do Leão Campus, s/n, RS 96010-900, Pelotas, RS, Brazil
| | - Cesar Valmor Rombaldi
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Capão do Leão Campus, s/n, RS 96010-900, Pelotas, RS, Brazil
| | - Rogério Luis Cansian
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Natalia Paroul
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Alexander Junges
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil.
| |
Collapse
|
6
|
Beyond brewing: β-acid rich hop extract in the development of a multifunctional polylactic acid-based food packaging. Int J Biol Macromol 2023; 228:23-39. [PMID: 36565824 DOI: 10.1016/j.ijbiomac.2022.12.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Hops' (Humulus lupulus L.) phytochemicals are well known for their bioactivity. In the present study, the functional properties of hop extract rich in β-acids, as potassium-salts structures (KBA), were investigated to develop a sustainable active food packaging. Polylactic acid (PLA)-based sheets were incorporated with increasing concentrations of hop extract (0.1-5 % w/w in terms of KBA) and characterized through performance and bioactive properties. KBA-added sheets presented decreased crystallinity and affected mechanical and thermal properties, especially with higher KBA amounts. The sheets' surface hydrophobicity gradually decreased by KBA-extract addition, while the water vapor permeability was not affected. A Fickian diffuse behavior and a better fit to application in fatty foods were observed during release tests. UV-blocking and antioxidant properties were improved by KBA incorporation. Furthermore, results from antibacterial assays revealed great susceptibility of Staphylococcus aureus and Listeria monocytogenes towards sheets added with 5 % of KBA. Moreover, the atomic force microscopy (AFM) observations revealed that KBA led to strong effects on the cell membranes of both bacteria, including disruption of membrane integrity and cell death. Therefore, this study is a sign of great prospects of hop β-acids use, as KBA compound, in the production of sustainable active packaging for safe food shelf-life extension.
Collapse
|
7
|
Rodrigues Arruda T, Fontes Pinheiro P, Ibrahim Silva P, Campos Bernardes P. Exclusive Raw Material for Beer Production? Addressing Greener Extraction Techniques, the Relevance, and Prospects of Hops (Humulus lupulus L.) for the Food Industry. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02716-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Yan YF, Wu TL, Du SS, Wu ZR, Hu YM, Zhang ZJ, Zhao WB, Yang CJ, Liu YQ. The Antifungal Mechanism of Isoxanthohumol from Humulus lupulus Linn. Int J Mol Sci 2021; 22:ijms221910853. [PMID: 34639194 PMCID: PMC8509189 DOI: 10.3390/ijms221910853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
Humulus lupulus Linn. is a traditional medicinal and edible plant with several biological properties. The aims of this work were: (1) to evaluate the in vitro antifungal activity of H. lupulus ethanolic extract; (2) to study the in vitro and in vivo antifungal activity of isoxanthohumol, an isoprene flavonoid from H. lupulus, against Botrytis cinerea; and (3) to explore the antifungal mechanism of isoxanthohumol on B. cinerea. The present data revealed that the ethanolic extract of H. lupulus exhibited moderate antifungal activity against the five tested phytopathogenic fungi in vitro, and isoxanthohumol showed highly significant antifungal activity against B. cinerea, with an EC50 value of 4.32 µg/mL. Meanwhile, it exhibited moderate to excellent protective and curative efficacies in vivo. The results of morphologic observation, RNA-seq, and physiological indicators revealed that the antifungal mechanism of isoxanthohumol is mainly related to metabolism; it affected the carbohydrate metabolic process, destroyed the tricarboxylic acid (TCA) cycle, and hindered the generation of ATP by inhibiting respiration. Further studies indicated that isoxanthohumol caused membrane lipid peroxidation, thus accelerating the death of B. cinerea. This study demonstrates that isoxanthohumol can be used as a potential botanical fungicide for the management of phytopathogenic fungi.
Collapse
Affiliation(s)
- Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| | - Tian-Lin Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Sha-Sha Du
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
- Correspondence: (Z.-J.Z.); (Y.-Q.L.)
| | - Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; (Y.-F.Y.); (T.-L.W.); (S.-S.D.); (Z.-R.W.); (Y.-M.H.); (W.-B.Z.); (C.-J.Y.)
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
- Correspondence: (Z.-J.Z.); (Y.-Q.L.)
| |
Collapse
|