1
|
Duan K, Pang G, Duan Y, Onyeaka H, Krebs J. Current research development on food contaminants, future risks, regulatory regime and detection technologies: A systematic literature review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125246. [PMID: 40199209 DOI: 10.1016/j.jenvman.2025.125246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Food contaminants pose serious threats to public health, with profound negative impacts on the economy, society, and environment. However, there is a lack of timely and comprehensive reviews on the latest developments in food contaminants and effective measures to prevent contamination, particularly through novel intelligent detection technologies and regulatory regimes. This study addresses this knowledge gap by presenting a timely review of the literature, focusing on current types of food contaminants, advances in detection technologies, emerging risks, and the latest developments in regulatory frameworks. The study reviewed 116 relevant articles published between 2019 and 2024 and conducted a thematic analysis. The food contaminants were classified into three categories: biological, chemical, and physical. The study identified six key drivers of current and future food safety risks: demographic change, economic factors, environmental conditions, geopolitical shifts, consumer priorities, and technological advancements. Findings reveal the uneven understanding of contaminants of emerging concern, future drivers of contaminants of emerging concern, and their impact on the food system, the environment, and human health. These findings highlight the need for future research on systematically identifying and validating the regional differences in food contamination prevention measures and assessing the extent to which these differences impact the effectiveness of prevention, mitigation, and control efforts. The findings also call for more international cooperation in food contamination research and the active involvement of technology partners to facilitate the application of cutting-edge technologies in food contamination detection and control.
Collapse
Affiliation(s)
- Keru Duan
- Birmingham Business School, Birmingham Institute for Sustainability and Climate Action (BISCA), University of Birmingham, Birmingham, B15 2TT, UK
| | - Gu Pang
- Birmingham Business School, Birmingham Institute for Sustainability and Climate Action (BISCA), University of Birmingham, Birmingham, B15 2TT, UK.
| | - Yanqing Duan
- Business and Management Research Institute (BMRI), University of Bedfordshire, Luton, LU1 3JU, UK
| | - Helen Onyeaka
- Birmingham Business School, Birmingham Institute for Sustainability and Climate Action (BISCA), University of Birmingham, Birmingham, B15 2TT, UK; School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - John Krebs
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
2
|
Zhuang L, Gong J, Zhang D, Zhang P, Zhao Y, Sun L, Yang J, Zhang Y, Shen Q. Recent advances in metallic and metal oxide nanoparticle-assisted molecular methods for the detection of Escherichia coli. Analyst 2025; 150:1206-1228. [PMID: 40034047 DOI: 10.1039/d4an01495b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The detection of E. coli is of irreplaceable importance for the maintenance of public health and food safety. In the field of molecular detection, metal and metal oxide nanoparticles have demonstrated significant advantages due to their unique physicochemical properties, and their application in E. coli detection has become a cutting-edge focus of scientific research. This review systematically introduces the innovative applications of these nanoparticles in E. coli detection, including the use of magnetic nanoparticles for efficient enrichment of bacteria and precise purification of nucleic acids, as well as a variety of nanoparticle-assisted immunoassays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, colorimetric methods, and fluorescence strategies. In addition, this paper addresses the application of nanoparticles used in nucleic acid tests, including amplification-free and amplification-based assays. Furthermore, the application of nanoparticles used in electrochemical and optical biosensors in E. coli detection is described, as well as other innovative assays. The advantages and challenges of the aforementioned technologies are subjected to rigorous analysis, and a prospective outlook on the future direction of development is presented. In conclusion, this review not only illustrates the practical utility and extensive potential of metal and metal oxide nanoparticles in E. coli detection, but also serves as a scientific and comprehensive reference for molecular diagnostics in food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Li Sun
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| |
Collapse
|
3
|
Guo X, Sun H, Yang Y, Zhong W, Wang M, Wang G, Zhang Y. Nanozyme-based colorimetric and smartphone imaging advanced sensing platforms for tetracycline detection and removal in food. Talanta 2025; 283:127028. [PMID: 39476792 DOI: 10.1016/j.talanta.2024.127028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 12/11/2024]
Abstract
The presence of antibiotic residues poses a significant threat to food assurance, triggering widespread concerns. Therefore, the prompt and accurate detection and removal of antibiotic residues are essential for ensuring food safety. In this study, an aptmer modified triple-metal nanozyme (apt-TMNzyme) sensor was developed, which achieved a portable, visual, intelligent, and fast determination for tetracycline (TET). The proposed apt-TMNzyme exhibited willow leaf-like morphology, high specific surface area and excellent TET adsorption and removal properties. The experiments showed that the apt-TMNzyme had outstanding peroxidase activity and could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue product in the presence of H2O2, which provided a visual response signal to TET. This sensor was capable of quantifying TET within a concentration range of 0.2 nM-70 μM, achieving a detection limit of 7.1 nM under optimal conditions. When tested on real food samples, our sensor produced results that closely paralleled those achieved through high-performance liquid chromatography. To improve accessibility and user-friendliness, we also designed a colorimetric testing paper integrated with a smartphone application for intuitive and intelligent detection of TET, which enables the quantitative determination of TET in the concentration range of 0.003-60 μM, the detection limit was 5.1 μM. This integrated portable sensor not only streamlines the testing process, saving time and costs, but also offers a promising solution for rapid and sensitive detection of antibiotic residues.
Collapse
Affiliation(s)
- Xinli Guo
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China
| | - He Sun
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China
| | - Yuanzhen Yang
- School of Stomatology, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China
| | - Wenbin Zhong
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China
| | - Mengmeng Wang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China
| | - Guannan Wang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China; Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Yang Zhang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, People's Republic of China; Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness, Shenyang Medical College, Shenyang, 110034, People's Republic of China.
| |
Collapse
|
4
|
Xu X, Yang J, Hao G, Wang B, Ma T, Zhu S, Gao L, Yang ZQ. Three in one: A multifunctional oxidase-mimicking Ag/Mn 3O 4 nanozyme for colorimetric determination, precise identification, and broad-spectrum inactivation of foodborne pathogenic bacteria. Food Chem 2025; 464:141620. [PMID: 39423521 DOI: 10.1016/j.foodchem.2024.141620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
A multifunctional oxidase-mimicking Ag/Mn3O4 was prepared, catalyzing the 3, 3', 5, 5'-tetramethylbenzidine (TMB) chromogenic reaction. Six foodborne pathogenic bacteria species, including Escherichia coli, Staphylococcus aureus, Salmonella enterica, Listeria monocytogenes, Bacillus cereus, and Cronobacter sakazakii, were observed to differentially inhibit its oxidase-like activity, resulting in decelerating the TMB chromogenic reaction. Owing to these properties, the following achievements were achieved: colorimetric determination of these bacteria with high sensitivity can be achieved using Ag/Mn3O4 + TMB reaction system; precise identification of these bacteria at different concentrations, including individual bacterium, binary mixtures, and even multivariate mixtures, can be effectively realized by combining the Ag/Mn3O4-based colorimetric sensor array with principal component analysis (PCA); broad-spectrum inactivation of these bacteria can be remarkably realized through catalyzation of Ag/Mn3O4 to generate superoxide anion free radicals. Therefore, our proposed Ag/Mn3O4 holds significant application potential in the colorimetric determination, precise identification, and broad-spectrum inactivation of foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Xuechao Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juanli Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, Zhejiang, China
| | - Bo Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Tong Ma
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Suping Zhu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Lu Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Zhen-Quan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
5
|
Li H, Ren Y, Zhan Y, Yu X, Zhang X, Zhu C, Ye Y. "Four - in - one" platform based on multifunctional nanozyme for ultra - accurate detection and on - demand disinfection of Listeria monocytogenes. Food Chem 2025; 462:140776. [PMID: 39241687 DOI: 10.1016/j.foodchem.2024.140776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 09/09/2024]
Abstract
The inability to integrate detection and disinfection hindered building a unified pathogen monitoring platform, risking secondary contamination. Herein, a novel "four - in - one" platform for monitoring foodborne Listeria monocytogenes (L. monocytogenes) was presented. The magnetic daptomycin - functionalized Fe3O4 (Dap/Fe3O4) could selectively bind to L. monocytogenes, enhancing detection accuracy. The separated bacteria were captured by aptamers - functionalized Fe - doped - silica nanoparticles (Apt/Fe@SiNPs) for tri - mode detection. Besides fluorescence, the Apt/Fe@SiNPs converted 3,3',5,5' - tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) via peroxidase activity, allowing colorimetric and subsequent photothermal detection upon irradiation, as low as 2.06 CFU/mL. Magnetic - induced aggregation of Apt/Fe@SiNPs generated toxic hydroxyl radicals around L. monocytogenes, achieving ∼99.6% disinfection. Furthermore, the biofilm of L. monocytogenes was effectively inhibited by the action of hydroxyl radicals. The platform might offer a promising prospect to control L. monocytogenes in food industries.
Collapse
Affiliation(s)
- Hui Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuwei Ren
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ying Zhan
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoyu Yu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xin Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changqing Zhu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
6
|
Han S, Xu L, Fang Y, Dong S. A two-dimensional coordination polymer with high laccase-like activity for sensitive colorimetric detection of thiram. Chem Commun (Camb) 2024; 60:12738-12741. [PMID: 39397734 DOI: 10.1039/d4cc04305g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In contrast to natural enzymes, nanozymes show promising advantages of low cost and high stability for analytical applications. The simple mix of L-phenylalanine (F) and Cu2+ produces two-dimensional nanosheets of a coordination polymer with a high surface area ratio and rich exposed active sites as a novel catalyst. As the mimetic of natural laccase, this nanozyme (F-Cu) can catalyze the oxidative coupling reaction of 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP) to produce a distinct red product, thus establishing an intuitive and simple method for the detection of thiram. In the range of 0-7.5 μM, the absorbance intensity was linearly related to the concentration of thiram, and the detection limit was 0.0845 μM. The F-Cu nanozyme was successfully applied to the colorimetric detection of thiram in real samples.
Collapse
Affiliation(s)
- Songxue Han
- College of Chemistry, Jilin University, Changchun 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Lili Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shaojun Dong
- College of Chemistry, Jilin University, Changchun 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Xu L, Luo ML, Dai JJ, Zhu H, Li P, Wang D, Yang FQ. Applications of nanomaterials with enzyme-like activity for the detection of phytochemicals and hazardous substances in plant samples. Chin Med 2024; 19:140. [PMID: 39380087 PMCID: PMC11462967 DOI: 10.1186/s13020-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Plants such as herbs, vegetables, fruits, and cereals are closely related to human life. Developing effective testing methods to ensure their safety and quantify their active components are of significant importance. Recently, nanomaterials with enzyme-like activity (known as nanozymes) have been widely developed in various assays, including colorimetric, fluorescence, chemiluminescence, and electrochemical analysis. This review presents the latest advances in analyzing phytochemicals and hazardous substances in plant samples based on nanozymes, including some active ingredients, organophosphorus pesticides, heavy metal ions, and mycotoxins. Additionally, the current shortcomings and challenges of the actual sample analysis were discussed.
Collapse
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Mao-Ling Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Jing-Jing Dai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Huan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
8
|
Li H, Xu H, Shi X, Zhao C, Li J, Wang J. Colorimetry/fluorescence dual-mode detection of Salmonella typhimurium based on a "three-in-one" nanohybrid with high oxidase-like activity for AIEgen. Food Chem 2024; 449:139220. [PMID: 38579657 DOI: 10.1016/j.foodchem.2024.139220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
A colorimetry/fluorescence dual-mode assay based on the aptamer-functionalized magnetic covalent organic framework-supported CuO and Au NPs (MCOF-CuO/Au@apt) was developed for Salmonella typhimurium (S. typhimurium) biosensing. The nanohybrid combined three functions in one: good magnetic separation characteristic, excellent oxidase-mimic activity for tetrap-aminophenylethylene (TPE-4A), and target recognition capability. The attachment of MCOF-CuO/Au@apt onto the surface of S. typhimurium resulted in a significant reduction in the oxidase-mimicking activity of the nanohybrid, which could generate dual-signal of colorimetry and fluorescence through the catalytic oxidation of TPE-4A. Based on this, S. typhimurium could be specifically detected in the linear ranges of 102- 106 CFU·mL-1 and 101- 106 CFU·mL-1, with LODs of 7.6 and 2.1 CFU·mL-1, respectively in colorimetry/fluorescence modes. Moreover, the smartphone and linear discrimination analysis-based system could be used for on-site and portable testing. In addition, this platform showed applicability in detecting S. typhimurium in milk, egg liquid and chicken samples.
Collapse
Affiliation(s)
- Hang Li
- School of Public Health, Jilin University, Changchun 130021, China
| | - Hui Xu
- School of Public Health, Jilin University, Changchun 130021, China
| | - Xuening Shi
- School of Public Health, Jilin University, Changchun 130021, China
| | - Chao Zhao
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Juan Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Han XM, Dan J, Chen HQ, Wang Q, Luo LP, Feng JX, Wang TY, Sun J, Wang JL, Gu Y, Zhang W. Engineering an enzyme-like catalytic sensor for on-site dual-mode evaluation of total antioxidant capacity. Mikrochim Acta 2024; 191:465. [PMID: 39012354 DOI: 10.1007/s00604-024-06537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
A novel Fe-MoOx nanozyme, engineered with enhanced peroxidase (POD)-like activity through strategic doping and the creation of oxygen vacancies, is introduced to catalyze the oxidation of TMB with high efficiency. Furthermore, Fe-MoOx is responsive to single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms related to antioxidants and can serve as a desirable nanozyme for total antioxidant capacity (TAC) determination. The TAC colorimetric platform can reach a low LOD of 0.512 μM in solution and 24.316 μM in the smartphone-mediated RGB hydrogel (AA as the standard). As proof of concept, the practical application in real samples was explored. The work paves a promising avenue to design diverse nanozymes for visual on-site inspection of food quality.
Collapse
Affiliation(s)
- Xi Mei Han
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jie Dan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Hao Qian Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lin Pin Luo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jian Xing Feng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Tian Yu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130000, China
| | - Jian Long Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Gao X, Zhang H, Liu L, Jia M, Li X, Li J. Nano-biosensor based on manganese dioxide nanosheets and carbon dots for dual-mode determination of Staphylococcus aureus. Food Chem 2024; 432:137144. [PMID: 37639893 DOI: 10.1016/j.foodchem.2023.137144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
A ratiometric fluorescence and colorimetry dual-mode nano-biosensor has been established for Staphylococcus aureus (S. aureus) determination. The prepared approaches of Manganese dioxide nanosheets (MnO2 NSs) and carbon dots (BCDs) were facile, efficient and labor-saving and MnO2 NSs-mediated fluorescence quenching and oxidation could amplify detection signals. The dual-mode determination had a broad linear range of 37 ∼ 3.7 × 106 CFU/mL and low detection limits of 9 CFU/mL (ratiometric fluorescence) and 22 CFU/mL (colorimetry). Meanwhile, the method was applied in real samples with recovery ranging of 90 ∼ 102% and RSD < 4.44%, which was an insignificant difference with standard plate counting. The new dual-mode approach of S. aureus possesses the advantages of superior sensitivity, precision, accuracy and specificity. Moreover, the dual-mode nano-biosensor can be adopted in other foodborne pathogens determination by changing corresponding aptamers and provide an enlightenment in monitoring food safety.
Collapse
Affiliation(s)
- Xue Gao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Hongmei Zhang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Lu Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Mu Jia
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Institute of Ocean Research, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
11
|
Mancusi A, Egidio M, Marrone R, Scotti L, Paludi D, Dini I, Proroga YTR. The In Vitro Antibacterial Activity of Argirium SUNc against Most Common Pathogenic and Spoilage Food Bacteria. Antibiotics (Basel) 2024; 13:109. [PMID: 38275338 PMCID: PMC10812583 DOI: 10.3390/antibiotics13010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Foodborne diseases are one of the main issues for human health, and antibacterial packaging plays a major role in food security assurance. Silver ultra nanoparticles (Argirium SUNc) are antimicrobial agents that have a wide spectrum of action, including against pathogenic bacteria and spoilage fungi. The aim of the present study was to evaluate the antibacterial activity of Argirium SUNc on the bacteria most commonly found in food: Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium. In this regard, an in vitro study was carried out by assessing the Argirium SUNc effectiveness on different concentrations of each tested microbial strain and at different time intervals. The data showed that the antimicrobial activity of Argirium SUNc was directly related to the microbial concentration and varied depending on the microbial species. Moreover, a greater effectiveness against Gram-negative bacteria than Gram-positive bacteria was observed. These preliminary results provided important information on the silver nanoparticles spectrum of action, and this is an aspect that appears particularly promising for obtaining a viable alternative to traditional antimicrobials to be used against the pathogens and spoilage agents most commonly found in the food chain, harmful both to health and quality aspects.
Collapse
Affiliation(s)
- Andrea Mancusi
- Department of Food Safety Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (A.M.); (Y.T.R.P.)
| | - Marica Egidio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Naples, Italy; (M.E.); (R.M.)
| | - Raffaele Marrone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Naples, Italy; (M.E.); (R.M.)
| | - Luca Scotti
- Department of Medical, Oral, and Biotechnological Sciences, “G. d’Annunzio” University of Chieti–Pescara, 66100 Chieti, Italy
| | - Domenico Paludi
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy;
| | - Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Yolande Thérèse Rose Proroga
- Department of Food Safety Coordination, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (A.M.); (Y.T.R.P.)
| |
Collapse
|
12
|
Wu C, Li J, Song J, Guo H, Bai S, Lu C, Peng H, Wang X. Novel colorimetric detection of oxytetracycline in foods by copper nanozyme. Food Chem 2024; 430:137040. [PMID: 37527579 DOI: 10.1016/j.foodchem.2023.137040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
In this study, copper nanozyme (CuNZs) possess good laccase-like activity were synthesized by grinding method with cupric chloride dihydrate as copper source, sodium borohydride as reducing agent and β-cyclodextrin as protective agent. The CuNZs can oxidize colorless 2,4-dinitrophenol (2,4-DP) to red product. When oxytetracycline (OTC) was added to the above three solutions, the color changed from red to orange and the absorbance increased again, indicating that OTC was also an affinity substrate for CuNZs. When CuNZs was mixed with OTC alone, the color changed from colorless to yellow, and the absorption intensity was related to OTC concentration. It has good selectivity and sensitivity, and had a good linear response to the concentration of OTC in the range of 50-500 μM, and the limit of detection was 0.148 μM. Thus, a fast and simple colorimetric assay for the determination of OTC was established by using the laccase-like activity of CuNZs, and it was applied successfully to detect OTC in food samples.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Jiajia Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Jingping Song
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Hai Guo
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China
| | - Changfang Lu
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, China.
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
13
|
Sun G, Wei X, Zhang D, Huang L, Liu H, Fang H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. BIOSENSORS 2023; 13:886. [PMID: 37754120 PMCID: PMC10526424 DOI: 10.3390/bios13090886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical biosensors based on immobilized enzymes are among the most popular and commercially successful biosensors. The literature in this field suggests that modification of electrodes with nanomaterials is an excellent method for enzyme immobilization, which can greatly improve the stability and sensitivity of the sensor. However, the poor stability, weak reproducibility, and limited lifetime of the enzyme itself still limit the requirements for the development of enzyme electrochemical biosensors for food production process monitoring. Therefore, constructing sensing technologies based on enzyme electrochemical biosensors remains a great challenge. This article outlines the construction principles of four generations of enzyme electrochemical biosensors and discusses the applications of single-enzyme systems, multi-enzyme systems, and nano-enzyme systems developed based on these principles. The article further describes methods to improve enzyme immobilization by combining different types of nanomaterials such as metals and their oxides, graphene-related materials, metal-organic frameworks, carbon nanotubes, and conducting polymers. In addition, the article highlights the challenges and future trends of enzyme electrochemical biosensors, providing theoretical support and future perspectives for further research and development of high-performance enzyme chemical biosensors.
Collapse
Affiliation(s)
- Ganchao Sun
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Xiaobo Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Dianping Zhang
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Liben Huang
- Huichuan Technology (Zhuhai) Co., Ltd., Zhuhai 519060, China;
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| |
Collapse
|
14
|
Cui Q, Gan S, Zhong Y, Yang H, Wan Y, Zuo Y, Yang H, Li M, Zhang S, Negahdary M, Zhang Y. High-throughput and specific detection of microorganisms by intelligent modular fluorescent photoelectric microbe detector. Anal Chim Acta 2023; 1265:341282. [PMID: 37230579 DOI: 10.1016/j.aca.2023.341282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Food safety has emerged as a major global issue. Detecting foodborne pathogenic microorganisms and controlling them is vital to guard against foodborne diseases caused by microorganisms. However, the current detection methods need to meet the demand for real-time detection on the spot after a simple operation. Considering unresolved challenges, we developed an Intelligent Modular Fluorescent Photoelectric Microbe (IMFP) system containing a special detection reagent. This IMFP system can automatically monitor microbial growth in which the photoelectric detection, temperature control, fluorescent probe, and bioinformatics screen are integrated into one platform and employed to detect pathogenic microorganisms. Moreover, a specific culture medium was also developed, which matched the system platform for Coliform bacteria and Salmonella typhi. The developed IMFP system could attain a limit of detection (LOD) of about 1 CFU/mL for both bacteria, while the selectivity could reach 99%. In addition, the IMFP system was applied to detect 256 bacterial samples simultaneously. This platform reflects the high-throughput needs of fields for microbial identification and related requirements, such as the development of pathogenic microbial diagnostic reagents, antibacterial sterilization performance tests, and microbial growth kinetics. The IMFP system also confirmed the other merits, such as high sensitivity, high-throughput, and operation simplicity compared to conventional methods, and it has a high potential as a tool for application in the health and food security fields.
Collapse
Affiliation(s)
- Qian Cui
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shanqun Gan
- Hainan Viewkr Biotechnology Co. , Ltd, Haikou, 570228, China
| | - Yongjie Zhong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Hui Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yi Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Yong Zuo
- Hainan Viewkr Biotechnology Co. , Ltd, Haikou, 570228, China
| | - Hao Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Mengjia Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Shurui Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Yunuo Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Marine College, Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
15
|
Kurup CP, Ahmed MU. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. BIOSENSORS 2023; 13:bios13040461. [PMID: 37185536 PMCID: PMC10136715 DOI: 10.3390/bios13040461] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
This review highlights the recent advancements in the field of nanozymes and their applications in the development of point-of-care biosensors. The use of nanozymes as enzyme-mimicking components in biosensing systems has led to improved performance and miniaturization of these sensors. The unique properties of nanozymes, such as high stability, robustness, and surface tunability, make them an attractive alternative to traditional enzymes in biosensing applications. Researchers have explored a wide range of nanomaterials, including metals, metal oxides, and metal-organic frameworks, for the development of nanozyme-based biosensors. Different sensing strategies, such as colorimetric, fluorescent, electrochemical and SERS, have been implemented using nanozymes as signal-producing components. Despite the numerous advantages, there are also challenges associated with nanozyme-based biosensors, including stability and specificity, which need to be addressed for their wider applications. The future of nanozyme-based biosensors looks promising, with the potential to bring a paradigm shift in biomolecular sensing. The development of highly specific, multi-enzyme mimicking nanozymes could lead to the creation of highly sensitive and low-biofouling biosensors. Integration of nanozymes into point-of-care diagnostics promises to revolutionize healthcare by improving patient outcomes and reducing costs while enhancing the accuracy and sensitivity of diagnostic tools.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| |
Collapse
|
16
|
Chen J, Zhang X, Bassey AP, Xu X, Gao F, Guo K, Zhou G. Prospects for the next generation of artificial enzymes for ensuring the quality of chilled meat: Opportunities and challenges. Crit Rev Food Sci Nutr 2022; 64:3583-3603. [PMID: 36239319 DOI: 10.1080/10408398.2022.2133077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As living standards rise, the demand for high-quality chilled meat among consumers also grows. Researchers and enterprises have been interested in ensuring the quality of chilled meat in all links of the downstream industry. Nanozyme has shown the potential to address the aforementioned requirements. Reasons and approaches for the application of nanozymes in the freshness assessment or shelf life extension of chilled meat were discussed. The challenges for applying these nanozymes to ensure the quality of chilled meat were also summarized. Finally, this review examined the safety, regulatory status, and consumer attitudes toward nanozymes. This review revealed that the freshness assessment of chilled meat is closely related to mimicking the enzyme activities of nanozymes, whereas the shelf life changes of chilled meat are mostly dependent on the photothermal activities and pseudophotodynamic activities of nanozymes. In contrast, studies regarding the shelf life of chilled meat are more challenging to develop, as excessive heat or reactive oxygen species impair its quality. Notably, meat contains a complex matrix composition that may interact with the nanozyme, reducing its effectiveness. Nanopollution and mass manufacturing are additional obstacles that must be overcome. Therefore, it is vital to choose suitable approaches to ensure meat quality. Furthermore, the safety of nanozymes in meat applications still needs careful consideration owing to their widespread usage.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University, Aachen, Germany
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Kaijin Guo
- Institute of Orthopedics, Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|