1
|
Kang MJ, Reyes-De-Corcuera JI. Stabilization of galactose oxidase by high hydrostatic pressure: Insights on the role of cavities size. Biotechnol Bioeng 2024; 121:2057-2066. [PMID: 38650386 DOI: 10.1002/bit.28715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/24/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
High hydrostatic pressure stabilized galactose oxidase (GaOx) at 70.0-80.0°C against thermal inactivation. The pseudo-first-order rate constant of inactivation kinact decreased by a factor of 8 at 80°C and by a factor of 44 at 72.5°C. The most pronounced effect of pressure was at the lowest studied temperature of 70.0°C with an activation volume of inactivation ΔV‡ of 78.8 cm3 mol-1. The optimal pressure against thermal inactivation was between 200 and 300 MPa. Unlike other enzymes, as temperature increased the ΔV‡ of inactivation decreased, and as pressure increased the activation energy of inactivation Eai increased. Combining the results for GaOx with earlier research on the pressure-induced stabilization of other enzymes suggests that ΔV‡ of inactivation correlates with the total molar volume of cavities larger than ~100 Å3 in enzyme monomers for enzymes near the optimal pH and whose thermal unfolding is not accompanied by oligomer dissociation.
Collapse
Affiliation(s)
- Min J Kang
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, USA
| | - José I Reyes-De-Corcuera
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Feng X, Hong S, Zhao H, Vuong TV, Master ER. Biocatalytic cascade to polysaccharide amination. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:34. [PMID: 38409122 PMCID: PMC10898118 DOI: 10.1186/s13068-024-02477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Chitin, the main form of aminated polysaccharide in nature, is a biocompatible, polycationic, and antimicrobial biopolymer used extensively in industrial processes. Despite the abundance of chitin, applications thereof are hampered by difficulties in feedstock harvesting and limited structural versatility. To address these problems, we proposed a two-step cascade employing carbohydrate oxidoreductases and amine transaminases for plant polysaccharide aminations via one-pot reactions. Using a galactose oxidase from Fusarium graminearum for oxidation, this study compared the performance of CvATA (from Chromobacterium violaceum) and SpATA (from Silicibacter pomeroyi) on a range of oxidized carbohydrates with various structures and sizes. Using a rational enzyme engineering approach, four point mutations were introduced on the SpATA surface, and their effects on enzyme activity were evaluated. RESULTS Herein, a quantitative colorimetric assay was developed to enable simple and accurate time-course measurement of the yield of transamination reactions. With higher operational stability, SpATA produced higher product yields in 36 h reactions despite its lower initial activity. Successful amination of oxidized galactomannan by SpATA was confirmed using a deuterium labeling method; higher aminated carbohydrate yields achieved with SpATA compared to CvATA were verified using HPLC and XPS. By balancing the oxidase and transaminase loadings, improved operating conditions were identified where the side product formation was largely suppressed without negatively impacting the product yield. SpATA mutants with multiple alanine substitutions besides E407A showed improved product yield. The E407A mutation reduced SpATA activity substantially, supporting its predicted role in maintaining the dimeric enzyme structure. CONCLUSIONS Using oxidase-amine transaminase cascades, the study demonstrated a fully enzymatic route to polysaccharide amination. Although the activity of SpATA may be further improved via enzyme engineering, the low operational stability of characterized amine transaminases, as a result of low retention of PMP cofactors, was identified as a key factor limiting the yield of the designed cascade. To increase the process feasibility, future efforts to engineer improved SpATA variants should focus on improving the cofactor affinity, and thus the operational stability of the enzyme.
Collapse
Affiliation(s)
- Xuebin Feng
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Siyi Hong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Hongbo Zhao
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| |
Collapse
|
3
|
Aumala V, Mollerup F, Jurak E, Blume F, Karppi J, Koistinen AE, Schuiten E, Voß M, Bornscheuer U, Deska J, Master ER. Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades. CHEMSUSCHEM 2019; 12:848-857. [PMID: 30589228 PMCID: PMC6519198 DOI: 10.1002/cssc.201802580] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Plant-derived carbohydrates are an abundant renewable resource. Transformation of carbohydrates into new products, including amine-functionalized building blocks for biomaterials applications, can lower reliance on fossil resources. Herein, biocatalytic production routes to amino carbohydrates, including oligosaccharides, are demonstrated. In each case, two-step biocatalysis was performed to functionalize d-galactose-containing carbohydrates by employing the galactose oxidase from Fusarium graminearum or a pyranose dehydrogenase from Agaricus bisporus followed by the ω-transaminase from Chromobacterium violaceum (Cvi-ω-TA). Formation of 6-amino-6-deoxy-d-galactose, 2-amino-2-deoxy-d-galactose, and 2-amino-2-deoxy-6-aldo-d-galactose was confirmed by mass spectrometry. The activity of Cvi-ω-TA was highest towards 6-aldo-d-galactose, for which the highest yield of 6-amino-6-deoxy-d-galactose (67 %) was achieved in reactions permitting simultaneous oxidation of d-galactose and transamination of the resulting 6-aldo-d-galactose.
Collapse
Affiliation(s)
- Ville Aumala
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Filip Mollerup
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Edita Jurak
- Department of Aquatic Biotechnology and Bioproduct EngineeringUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Fabian Blume
- Department of Chemistry and Materials ScienceAalto UniversityKemistintie 102150EspooFinland
| | - Johanna Karppi
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Antti E. Koistinen
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Eva Schuiten
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Moritz Voß
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Uwe Bornscheuer
- Department of Biotechnology and Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Straße 417487GreifswaldGermany
| | - Jan Deska
- Department of Chemistry and Materials ScienceAalto UniversityKemistintie 102150EspooFinland
| | - Emma R. Master
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StreetTorontoOntarioM5S 3E5Canada
| |
Collapse
|
4
|
Enzyme oxidation of plant galactomannans yielding biomaterials with novel properties and applications, including as delivery systems. Appl Microbiol Biotechnol 2018; 102:4687-4702. [DOI: 10.1007/s00253-018-9028-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/25/2022]
|
5
|
Parikka K, Nikkilä I, Pitkänen L, Ghafar A, Sontag-Strohm T, Tenkanen M. Laccase/TEMPO oxidation in the production of mechanically strong arabinoxylan and glucomannan aerogels. Carbohydr Polym 2017; 175:377-386. [DOI: 10.1016/j.carbpol.2017.07.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
|
6
|
A Novel Colletotrichum graminicola Raffinose Oxidase in the AA5 Family. Appl Environ Microbiol 2017; 83:AEM.01383-17. [PMID: 28778886 DOI: 10.1128/aem.01383-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022] Open
Abstract
We describe here the identification and characterization of a copper radical oxidase from auxiliary activities family 5 (AA5_2) that was distinguished by showing preferential activity toward raffinose. Despite the biotechnological potential of carbohydrate oxidases from family AA5, very few members have been characterized. The gene encoding raffinose oxidase from Colletotrichum graminicola (CgRaOx; EC 1.1.3.-) was identified utilizing a bioinformatics approach based on the known modular structure of a characterized AA5_2 galactose oxidase. CgRaOx was expressed in Pichia pastoris, and the purified enzyme displayed the highest activity on the trisaccharide raffinose, whereas the activity on the disaccharide melibiose was three times lower and more than ten times lower activity was detected on d-galactose at a 300 mM substrate concentration. Thus, the substrate preference of CgRaOx was distinguished clearly from the substrate preferences of the known galactose oxidases. The site of oxidation for raffinose was studied by 1H nuclear magnetic resonance and mass spectrometry, and we confirmed that the hydroxyl group at the C-6 position was oxidized to an aldehyde and that in addition uronic acid was produced as a side product. A new electrospray ionization mass spectrometry method for the identification of C-6 oxidized products was developed, and the formation mechanism of the uronic acid was studied. CgRaOx presented a novel activity pattern in the AA5 family.IMPORTANCE Currently, there are only a few characterized members of the CAZy AA5 protein family. These enzymes are interesting from an application point of view because of their ability to utilize the cheap and abundant oxidant O2 without the requirement of complex cofactors such as FAD or NAD(P). Here, we present the identification and characterization of a novel AA5 member from Colletotrichum graminicola As discussed in the present study, the bioinformatics approach using the modular structure of galactose oxidase was successful in finding a C-6 hydroxyl carbohydrate oxidase having substrate preference for the trisaccharide raffinose. By the discovery of this activity, the diversity of the CAZy AA5 family is increasing.
Collapse
|
7
|
Bodenberger N, Paul P, Kubiczek D, Walther P, Gottschalk KE, Rosenau F. A Novel Cheap and Easy to Handle Protein Hydrogel for 3D Cell Culture Applications: A High Stability Matrix with Tunable Elasticity and Cell Adhesion Properties. ChemistrySelect 2016. [DOI: 10.1002/slct.201600206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nicholas Bodenberger
- Faculty of Natural Sciences; Centre for Pharmaceuticals; Ulm University; Albert-Einstein-Allee 11
| | - Patrick Paul
- Faculty of Natural Sciences; Institute of Experimental Physics; Ulm University; Albert-Einstein-Allee 11
| | - Dennis Kubiczek
- Faculty of Natural Sciences; Centre for Pharmaceuticals; Ulm University; Albert-Einstein-Allee 11
| | - Paul Walther
- Central Facility for Electron Microscopy; Ulm University; Albert-Einstein-Allee 11
| | - Kay-Eberhard Gottschalk
- Faculty of Natural Sciences; Institute of Experimental Physics; Ulm University; Albert-Einstein-Allee 11
| | - Frank Rosenau
- Faculty of Natural Sciences; Centre for Pharmaceuticals; Ulm University; Albert-Einstein-Allee 11
| |
Collapse
|
8
|
Joy J, Gupta A, Jahnavi S, Verma RS, Ray AR, Gupta B. Understanding thein situcrosslinked gelatin hydrogel. POLYM INT 2015. [DOI: 10.1002/pi.5042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jincy Joy
- Bioengineering Laboratory, Department of Textile Technology; Indian Institute of Technology; New Delhi 110016 India
- Centre for Biomedical Engineering; Indian Institute of Technology Delhi; New Delhi 110016 India
| | - Amlan Gupta
- Department of Pathology; Sikkim Manipal Institute of Medical Sciences; Gangtok 737102 India
| | - Sarvepalli Jahnavi
- Department of Biotechnology; Indian Institute of Technology Madras; Chennai 600036 India
| | - Rama S Verma
- Department of Biotechnology; Indian Institute of Technology Madras; Chennai 600036 India
| | - Alok R Ray
- Centre for Biomedical Engineering; Indian Institute of Technology Delhi; New Delhi 110016 India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile Technology; Indian Institute of Technology; New Delhi 110016 India
| |
Collapse
|
9
|
Minjares-Fuentes R, Femenia A, Garau MC, Candelas-Cadillo MG, Simal S, Rosselló C. Ultrasound-assisted extraction of hemicelluloses from grape pomace using response surface methodology. Carbohydr Polym 2015; 138:180-91. [PMID: 26794751 DOI: 10.1016/j.carbpol.2015.11.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022]
Abstract
An ultrasound-assisted procedure was applied to the extraction of hemicelluloses from grape pomace at a mild temperature (20°C). A Central composite design (CCD) was employed to optimize the ultrasound-assisted extraction (UAE) of hemicelluloses from grape pomace with the aim to maximize their extraction yield, and, also, the obtention of the main polymers forming this fraction: Xyloglucans (XLG), Mannans (MAN) and Xylans (XN). Extraction time (X1), solid:liquid ratio (X2) and KOH concentration (X3) were the variables used to optimize the process. The conditions that maximize (1) the extraction yield of hemicelluloses and the contents of (2) XLG, (3) MAN and (4) XN, were: (1) X1=2.6h; X2=1:48 (w/v); X3=0.4M, (2) X1=2.9h; X2=1:57 (w/v); X3=2.25M, (3) X1=2.7h; X2=1:58(w/v);X3=2.2M, and (4) X1=3h; X2=1:60 (w/v); X3=2.3M, respectively. Under these conditions, the maximum extraction yield of hemicelluloses, XLG, MAN and XN contents were: ∼7.9±0.2%, ∼3.6±0.02%, ∼1.1±0.04% and ∼1.2±0.02%, respectively. Close agreement between experimental and predicted values was found. The results suggest that the ultrasound-assisted extraction could be a good option for the extraction of hemicellulosic polysaccharides from grape pomace at industrial level.
Collapse
Affiliation(s)
- R Minjares-Fuentes
- Área de Ingeniería Química, Departamento de Química, Universitat de les Illes Balears, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain; Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango., Av. Artículo 123 S/N, Fracc. Filadelfia, 35010 Gómez Palacio, DGO, Mexico
| | - A Femenia
- Área de Ingeniería Química, Departamento de Química, Universitat de les Illes Balears, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain.
| | - M C Garau
- Área de Ingeniería Química, Departamento de Química, Universitat de les Illes Balears, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - M G Candelas-Cadillo
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango., Av. Artículo 123 S/N, Fracc. Filadelfia, 35010 Gómez Palacio, DGO, Mexico
| | - S Simal
- Área de Ingeniería Química, Departamento de Química, Universitat de les Illes Balears, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - C Rosselló
- Área de Ingeniería Química, Departamento de Química, Universitat de les Illes Balears, Ctra Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
10
|
Mollerup F, Parikka K, Vuong TV, Tenkanen M, Master E. Influence of a family 29 carbohydrate binding module on the activity of galactose oxidase from Fusarium graminearum. Biochim Biophys Acta Gen Subj 2015; 1860:354-62. [PMID: 26518347 DOI: 10.1016/j.bbagen.2015.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 10/02/2015] [Accepted: 10/23/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Galactose oxidase (GaO) selectively oxidizes the primary hydroxyl of galactose to a carbonyl, facilitating targeted chemical derivatization of galactose-containing polysaccharides, leading to renewable polymers with tailored physical and chemical properties. Here we investigate the impact of a family 29 glucomannan binding module on the activity and binding of GaO towards various polysaccharides. Specifically, CBM29-1-2 from Piromyces equi was separately linked to the N- and C-termini of GaO. RESULTS Both GaO-CBM29 and CBM29-GaO were successfully expressed in Pichia pastoris, and demonstrated enhanced binding to galactomannan, galactoglucomannan and galactoxyloglucan. The position of the CBM29 fusion affected the enzyme function. Particularly, C-terminal fusion led to greatest increases in galactomannan binding and catalytic efficiency, where relative to wild-type GaO, kcat/Km values increased by 7.5 and 19.8 times on guar galactomannan and locust bean galactomannan, respectively. The fusion of CBM29 also induced oligomerization of GaO-CBM29. MAJOR CONCLUSIONS Similar to impacts of cellulose-binding modules associated with cellulolytic enzymes, increased substrate binding impeded the action of GaO fusions on more concentrated preparations of galactomannan, galactoglucomannan and galactoxyloglucan; this was especially true for GaO-CBM29. Given the N-terminal positioning of the native galactose-binding CBM32 in GaO, the varying impacts of N-terminal versus C-terminal fusion of CBM29-1-2 may reflect competing action of neighboring CBMs. GENERAL SIGNIFICANCE This study thoroughly examines and discusses the effects of CBM fusion to non-lignocellulytic enzymes on soluble polysaccharides. Herein kinetics of GaO on galactose containing polysaccharides is presented for the first time.
Collapse
Affiliation(s)
- Filip Mollerup
- Department of Biotechnology and Chemical Technology, Aalto University, 00076 Aalto, Finland
| | - Kirsti Parikka
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, Helsinki 00014, Finland
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, Helsinki 00014, Finland
| | - Emma Master
- Department of Biotechnology and Chemical Technology, Aalto University, 00076 Aalto, Finland; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada.
| |
Collapse
|
11
|
Parikka K, Master E, Tenkanen M. Oxidation with galactose oxidase: Multifunctional enzymatic catalysis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Ghafar A, Parikka K, Sontag-Strohm T, Österberg M, Tenkanen M, Mikkonen KS. Strengthening effect of nanofibrillated cellulose is dependent on enzymatically oxidized polysaccharide gel matrices. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Martínez-Abad A, Ruthes AC, Vilaplana F. Enzymatic-assisted extraction and modification of lignocellulosic plant polysaccharides for packaging applications. J Appl Polym Sci 2015. [DOI: 10.1002/app.42523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Antonio Martínez-Abad
- Division of Glycoscience; School of Biotechnology; KTH Royal Institute of Technology; AlbaNova University Centre; Stockholm Sweden
| | - Andrea C. Ruthes
- Division of Glycoscience; School of Biotechnology; KTH Royal Institute of Technology; AlbaNova University Centre; Stockholm Sweden
| | - Francisco Vilaplana
- Division of Glycoscience; School of Biotechnology; KTH Royal Institute of Technology; AlbaNova University Centre; Stockholm Sweden
- Wallenberg Wood Science Centre; KTH Royal Institute of Technology; Stockholm Sweden
| |
Collapse
|
14
|
|
15
|
Mikkonen KS, Parikka K, Suuronen JP, Ghafar A, Serimaa R, Tenkanen M. Enzymatic oxidation as a potential new route to produce polysaccharide aerogels. RSC Adv 2014. [DOI: 10.1039/c3ra47440b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Parikka K, Leppänen AS, Xu C, Pitkänen L, Eronen P, Österberg M, Brumer H, Willför S, Tenkanen M. Functional and Anionic Cellulose-Interacting Polymers by Selective Chemo-Enzymatic Carboxylation of Galactose-Containing Polysaccharides. Biomacromolecules 2012; 13:2418-28. [DOI: 10.1021/bm300679a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kirsti Parikka
- Department of Food
and Environmental Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | - Ann-Sofie Leppänen
- Process Chemistry
Centre, Laboratory of Wood and Paper Chemistry, Åbo Akademi University, Porthansgatan 3, FI-20500
Turku, Finland
| | - Chunlin Xu
- Process Chemistry
Centre, Laboratory of Wood and Paper Chemistry, Åbo Akademi University, Porthansgatan 3, FI-20500
Turku, Finland
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-10691 Stockholm,
Sweden
- Wallenberg
Wood
Science Center, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - Leena Pitkänen
- Department of Food
and Environmental Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | - Paula Eronen
- Department of Forest
Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo,
Finland
| | - Monika Österberg
- Department of Forest
Products Technology, School of Chemical Technology, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo,
Finland
| | - Harry Brumer
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-10691 Stockholm,
Sweden
- Wallenberg
Wood
Science Center, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - Stefan Willför
- Process Chemistry
Centre, Laboratory of Wood and Paper Chemistry, Åbo Akademi University, Porthansgatan 3, FI-20500
Turku, Finland
| | - Maija Tenkanen
- Department of Food
and Environmental Sciences, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| |
Collapse
|