1
|
Chen Y, Guo J, Alamri AS, Alhomrani M, Huang Z, Zhang W. Recent research progress on locust bean gum (LBG)-based composite films for food packaging. Carbohydr Polym 2025; 348:122815. [PMID: 39562090 DOI: 10.1016/j.carbpol.2024.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 11/21/2024]
Abstract
In recent years, there has been an increasing demand for biodegradable/edible biopolymer food packaging films to mitigate the environmental damage caused by petroleum-based plastic food packaging. In this context, locust bean gum (LBG) or carob gum is a galactomannan extracted from the endosperm of carob (Ceratonia siliqua) seeds. Due to its excellent film-forming properties, LBG has been widely used in the development of biodegradable food packaging films. In addition, due to the rich hydroxyl groups in LBG, it can produce synergistic gelation with many biopolymers to form blended films, and LBG has also been used in combination with many additives to form composite films with excellent antibacterial, antioxidant, and barrier properties, including various nanoparticles and plant extracts. Functional composite films based on LBG can effectively extend the shelf life and monitor the freshness of fruits, meats, and other processed foods. Therefore, in this work, we briefly introduce the chemical properties and application progress of LBG, focusing on the performance of various composite LBG food packaging films. Finally, the practical applications of LBG-based composite films and edible coatings in food preservation are summarized.
Collapse
Affiliation(s)
- Yingjie Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Junyan Guo
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Zhaoxian Huang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
2
|
Sharkawy A, Rodrigues AE. Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydr Polym 2024; 332:121900. [PMID: 38431409 DOI: 10.1016/j.carbpol.2024.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Recently, there has been an increasing research interest in the development of Pickering emulsions stabilized with naturally derived biopolymeric particles. In this regard, plant gums, obtained as plant exudates or from plant seeds, are considered promising candidates for the development of non-toxic, biocompatible, biodegradable and eco-friendly Pickering stabilizers. The main objective of this review article is to provide a detailed overview and assess the latest advances in the formulation of Pickering emulsions stabilized with plant gum-based particles. The plant gum sources, types and properties are outlined. Besides, the current methodologies used in the production of plant gum particles formed solely of plant gums, or through interactions of plant gums with proteins or other polysaccharides are highlighted and discussed. Furthermore, the work compiles and assesses the innovative applications of plant gum-based Pickering emulsions in areas such as encapsulation and delivery of drugs and active agents, along with the utilization of these Pickering emulsions in the development of active packaging films, plant-based products and low-fat food formulations. The last part of the review presents potential future research trends that are expected to motivate and direct research to areas related to other novel food applications, as well as tissue engineering and environmental applications.
Collapse
Affiliation(s)
- Asma Sharkawy
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Alírio E Rodrigues
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Li S, Chen H, Zeng Z, Li C. Arabinoxylan hydrolysates improved physical and oxidative stability of oil-in-water emulsions. Int J Biol Macromol 2024; 258:128798. [PMID: 38104680 DOI: 10.1016/j.ijbiomac.2023.128798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
This study was to improve the physical and oxidative stability of sodium caseinate (NaCas)-stabilized oil-in-water (O/W) emulsions with arabinoxylan hydrolysates (AXHs). AXHs with different molecular sizes were prepared using xylanase treatment for 0 (AXH0), 30 (AXH30), 60 (AXH60), and 120 (AXH120) min, respectively. Compared with the emulsion without AXHs, all AXHs emulsions showed increased coalescence stability, evidenced by no change occurred in the droplet size with the pH variation from 7.0 to 5.0. Moreover, at pH 7.0 and 5.0, AXH60 and AXH120 emulsions showed no flocculation, coalescence, or creaming before and after 21 d storage. All the AXH samples showed excellent antioxidant capacities, demonstrated by the slow accumulation of lipid hydroperoxides and thiobarbituric acid reactive substances during storage. In sum, rice bran arabinoxylans hydrolyzed ≥60 min possess a potential as effective antioxidants to form physically and oxidatively stable O/W emulsions at pH above the emulsifier pI, and substances with high antioxidant activity below the emulsifier pI still need to be explored.
Collapse
Affiliation(s)
- Shanshan Li
- College of Food science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, People's Republic of China
| | - Hong Chen
- College of Food science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, People's Republic of China
| | - Zhen Zeng
- College of Food science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, People's Republic of China
| | - Cheng Li
- College of Food science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, People's Republic of China.
| |
Collapse
|
4
|
Habib A, Bibi Y, Qayyum I, Farooq M. Hierarchical plant extracts in silver nanoparticles preparation: Minuscular survey to achieve enhanced bioactivities. Heliyon 2024; 10:e24303. [PMID: 38293495 PMCID: PMC10824772 DOI: 10.1016/j.heliyon.2024.e24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Extracts obtained from M. longifolia (Lamiaceae) and R. ellipticus (Rosaceae) were selected to utilize in the reduction and stabilization of silver nanoparticles (AgNPs) for achieving remarkable bioactivities. In brief, the cytotoxic potential of the as synthesize AgNPs was high at higher concentrations. In DPPH assay, maximum antioxidant potential was shown by AgNPs synthesized from M. longifolia. Meanwhile, Methanolic extracts exhibited more antioxidant potential than chloroform based extracts. Further, brine shrimp lethality assay was carried out to achieve 34.6 μg/mL & 25.65 μg/mL LD50 values against the NPs prepared from M. and R., respectively. In addition, antioxidant activities were carried by ABTS Radical cation assay where 38.6 μg/mL and 47 μg/mL IC50 values were obtained for the NPs obtained from M. longifolia and R. ellipticus, respectively. Reducing power assay (0.370-0.15 and 0.37-0.26 mean absorbance) and DPPH (% scavenging: 88.91-46.48 and 88.91-44.78) percentages were recorded for M. and R. synthesized AgNPs, respectively. In brief, M. longifolia functionalized particles performed better in comparison to R. ellipticus treated particles. In addition, the nano assembly dispersed in polar solvent demonstrated better results in comparison to non-polar solvents. In conclusion, the as synthesized AgNPs were better in bioactivities than crude extracts of the selected plants. In future, this work could be extended to isolating active components for the nanofabrication of biologically intelligent nanoparticles for pharmacological interest. In the proposed investigation, the purified bioactivities fractions would be highlighted for further consideration in various medical treatments.
Collapse
Affiliation(s)
- Aroosa Habib
- Department of Plant Sciences, Quaid- i- Azam University Islamabad, 45320, Pakistan
| | - Yamin Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Pakistan
| | - Iqra Qayyum
- Department of Plant Sciences, Quaid- i- Azam University Islamabad, 45320, Pakistan
| | - Muhammad Farooq
- Pakistan Council of Scientific and Industrial Research (PCSIR), Ministry of Science and Technology, 1-Constitution Avenue, Sector G-5/2, Islamabad, 44000, Pakistan
| |
Collapse
|
5
|
Kang J, He C, Shi YC. Conformational properties of heterogeneous arabinoxylan protein gums from corn bran and distillers grains in comparison with gum arabic. Int J Biol Macromol 2024; 254:127469. [PMID: 37935289 DOI: 10.1016/j.ijbiomac.2023.127469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 11/09/2023]
Abstract
The molecular structure and conformation of arabinoxylan-protein gum, commonly referred as corn fiber gum (CFG) were analyzed by high-performance size-exclusion chromatography (HPSEC) coupled with RI, UV, light scattering and viscometer detectors. CFG had a heterogeneous structure. The detailed conformation of CFG at different molecular weights was compared with that of hemicellulose fiber gum (HFG) from dried distiller's grains with solubles and gum arabic. The CFG molecules mainly had random coil conformation; only 10 % of them exhibited rigid rod conformation. Approximately 80 % of the CFG had a molecular weight between 105 and 105.4 Da, while the other 20 % of molecules were between 105.4 and 1.5 × 107.7 Da. The overall conformational properties of CFG and HFG were closer but differed from that of gum arabic. The intrinsic viscosity and radius of gyration of both CFG and HFG were greater than those of gum arabic although the average molecular weight of CFG and HFG was lower. The protein and carbohydrate were covalently linked in CFG molecules as shown by the HPSEC-multiple detectors combined with partial acid hydrolysis. Based on the detailed conformation of CFG and the methylation analysis, 1D and 2D NMR spectroscopy results, the molecular structure of CFG was proposed.
Collapse
Affiliation(s)
- Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, China; Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Chao He
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, China
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
6
|
Chemical Characterization, Antioxidant, and Antihyperglycemic Capacity of Ferulated Arabinoxylan Extracted from “Chicha de Jora” Bagasse: An Ancestral Fermented Beverage from Zea mays L. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4015886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bagasse is a byproduct generated during the process of making the traditional Andean drink named “chicha de jora” in Peru, which is a potential source for the extraction of ferulated arabinoxylan (FAX). The aim of this study was to extract and characterize the FAX from bagasse and determine its antioxidant and antihyperglycemic capacity in vitro. As a result, FAX of molecular weight ≥3.5 kDa presented moisture content, pH, total ash, proteins, and total phenolic content with values of 8.00%, 5.81, 2.68%, 3.78%, and 5.72 mg EAG/g, respectively. Thin-layer chromatography identified the monosaccharides L-arabinose and D-xylose. HPLC-MS/MS analysis of FAX confirmed the presence of methyl-pentofuranosides or methyl-pentopyranosides. The FT-IR spectrum presented characteristic bands of FAX. The FAX showed antioxidant capacity determined by the DPPH assay (IC50 = 6.59 mg/mL and TEAC = 7.7844 μmol/g sample), ABTS (IC50 = 6.50 mg/mL and TEAC 35.34 μmol/g sample), and FRAP (14.08 μmol AA/g and 36.63 μmol FeSO4/g). On the other hand, FAX showed glucose adsorption capacity, inhibition of glucose diffusion, and inhibition of the enzyme α-amylase (IC50 = 4.73 mg/mL). The results showed that the FAX extracted from the bagasse generated during the production of the “chicha de jora” has in vitro antioxidant and antihyperglycemic capacity.
Collapse
|
7
|
Khalili S, Saeidi Asl MR, Khavarpour M, Vahdat SM, Mohammadi M. Comparative study on the effect of extraction solvent on total phenol, flavonoid content, antioxidant and antimicrobial properties of red onion (Allium cepa). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Ma Z, Yao J, Wang Y, Jia J, Liu F, Liu X. Polysaccharide-based delivery system for curcumin: Fabrication and characterization of carboxymethylated corn fiber gum/chitosan biopolymer particles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Wang Y, Wang S, Li R, Wang Y, Xiang Q, Qiu S, Xu W, Bai Y. Synergistic effect of corn fiber gum and chitosan in stabilization of oil in water emulsion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
QbD steered fabrication of Pullulan-Terminalia catappa-Carbopol®971P film forming gel for improved rheological, textural and biopharmaceutical aspects. Int J Biol Macromol 2021; 193:1301-1312. [PMID: 34743813 DOI: 10.1016/j.ijbiomac.2021.10.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022]
Abstract
In present work, a film forming gel (FFG) was developed through ingenious amalgamation of polymers: Pullulan, Terminalia catappa and Carbopol®971P ® for cutaneous delivery of clotrimazole (CTZ) employing D-optimal mixture design. The developed FFG possess pseudoplastic, viscoelastic, thixotropic characteristics leading to good spreadability (35.71 ± 1.72 g·s, work of shear; 452.73 ± 8.23 g, firmness). Upon solvent evaporation, FFG converted in situ into bioadhesive film (81.90 ± 3.24 g) leading to longer residence on skin surface, prolonged delivery and ~1.3 fold enhanced CTZ skin retention as compare to commercial cream as evident from biopharmaceutical analysis, which is ideal for skin infections treatment. The simulation analysis suggested ≥10 μg/mL (MIC against C. albicans) CTZ concentration maintained for 2 times the days in rat skin as well as human skin as compared to commercial cream. Overall, the developed FFG system ascertained to be promising delivery system for treatment of chronic skin conditions.
Collapse
|
11
|
Polysaccharide extracted from Althaea officinalis L. root: New studies of structural, rheological and antioxidant properties. Carbohydr Res 2021; 510:108438. [PMID: 34597979 DOI: 10.1016/j.carres.2021.108438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022]
Abstract
A water-soluble acidic polysaccharide (AOP-2) from Althaea officinalis L. root was isolated by water extraction and purified by ion exchange chromatography (Cellulose DEAE-52) and gel filtration (Sephadex G-200). The structure characteristics of AOP-2 was determined by gel permeation chromatography (GPC), high performance liquid chromatography (HPLC), fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR) spectrum and gas chromatography-mass spectrometry (GC_MS). The results indicated that the AOP-2 was an acidic hetropolysaccharide with the molecular weight of 639.27 kDa. The AOP-2 composed of 51% galacturonic acid, 32.56% rhamnose, 12.73% glucose and 3.71% galactose. It could be found that the main backbone chain of AOP-2 consisted of →3)-α-D-GalpA-(1→, →3)-α-D-Rhap-(1→ and→3,4)-β-D-Galp-(1→ with branches of →4)-α-D-Rhap-(1→, →4)-α-D-Glcp-(1→ and α-D-Rhap-(1 → . Thermal analysis revealed that the AOP-2 had high thermal stability and according to the results obtained from XRD analysis, it had a semi-crystalline structure. The results of Steady-shear flow and dynamical viscoelasticity showed that AOP-2 solutions exhibited shear-thinning behavior with high viscosity and a weak gel-like behavior at concentrations above 1% in linear viscoelastic region. In addition, it showed relatively high antioxidant property.
Collapse
|
12
|
Munir H, Bilal M, Khan MI, Iqbal HM. Gums‐Based Bionanostructures for Medical Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
13
|
Holistic review of corn fiber gum: Structure, properties, and potential applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Li S, Chen H, Cheng W, Yang K, Cai L, He L, Du L, Liu Y, Liu A, Zeng Z, Li C. Impact of arabinoxylan on characteristics, stability and lipid oxidation of oil-in-water emulsions: Arabinoxylan from wheat bran, corn bran, rice bran, and rye bran. Food Chem 2021; 358:129813. [PMID: 33940286 DOI: 10.1016/j.foodchem.2021.129813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
To investigate the impact of arabinoxylan (AX) on the physical and oxidative stability of oil-in-water emulsions, AX from wheat bran, corn bran, rice bran, or rye bran was incorporated into the production of whey protein isolate-stabilised emulsions. Decreased interfacial charge and increased mean particle diameters were recorded in all fresh emulsions with 0.1%-0.5% AX, as recorded by the ζ-potential and particle size measurement, indicating the adsorption of AX onto the oil droplets. No phase separation was observed in all emulsions with ≤0.3% AX after 14-day storage in dark. Spectrophotometric analysis demonstrated that all AX lowered the peroxide value and thiobarbituric acid reactive substance concentration in emulsions, with AX from rice bran being slightly more effective. Consequently, AX has the potential to be used as a natural interfacial antioxidant in emulsions, and the antioxidant capacity of AX varies with its source.
Collapse
Affiliation(s)
- Shanshan Li
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Wei Cheng
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Kuan Yang
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Lisha Cai
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Linfeng He
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Lei Du
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, No.46 Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China.
| |
Collapse
|
15
|
Arab K, Ghanbarzadeh B, Ayaseh A, Jahanbin K. Extraction, purification, physicochemical properties and antioxidant activity of a new polysaccharide from Ocimum album L. seed. Int J Biol Macromol 2021; 180:643-653. [PMID: 33744248 DOI: 10.1016/j.ijbiomac.2021.03.088] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
In this study, a novel polysaccharide fraction from Ocimum album seed was extracted and then purified by Cellulose DEAE-52 and Sephadex G-200 anion exchange chromatography. The structural, physicochemical and antioxidant properties of the main polysaccharide fraction (OAP-1A) were evaluated. The purified polysaccharide contained 94.3% carbohydrate, 3.56% moisture and 2.14% ash and result of gel permeation chromatography (GPC) showed average molecular weight of 593 kDa. The results of high-performance liquid chromatography (HPLC) showed that OAP-1A was a neutral hetero-polysaccharide composed of mannose (35.7%), glucose (33.32%), galactose (19.6%) and rhamnose (11.38%). In addition, GC-MS data, nuclear magnetic resonance (NMR) spectrum and Fourier transform infrared (FT-IR) analysis revealed that the backbone of OAP-1A consists of →3)-β-D-Manp-(1→, →3,4)-β-D-Manp-(1→, →3,6)-β-D-Manp-(1→, →3)-α-D-Glcp-(1→, →6)-β-D-Galp-(1→, →4)-α-L-Rhap-(1→ and α-D-Glcp-(1→. X-ray diffraction (XRD) analysis showed semi-crystalline structure in OAP-1A. Differential scanning colorimeter (DSC) and thermo-gravimetry analysis (TGA) indicated that OAP-1A had relatively high thermal stability. Moreover, OAP-1A showed strong scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals.
Collapse
Affiliation(s)
- Khaled Arab
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, P. O. Box 99138, Nicosia, Cyprus, Mersin 10, Turkey.
| | - Ali Ayaseh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Kambiz Jahanbin
- Department of Food Science and Technology, Faculty of Agriculture Engineering, Shahrood University of Technology, P.O. Box 361999-5161, Shahrood, Iran
| |
Collapse
|
16
|
Amiri S, Roshani Saray F, Rezazad-Bari L, Pirsa S. Optimization of extraction and characterization of physicochemical, structural, thermal, and antioxidant properties of mucilage from Hollyhock’s root: a functional heteropolysaccharide. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00870-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Assessment of Rosemary ( Rosmarinus officinalis L.) Extract as Antioxidant in Jelly Candies Made with Fructan Fibres and Stevia. Antioxidants (Basel) 2020; 9:antiox9121289. [PMID: 33339389 PMCID: PMC7767232 DOI: 10.3390/antiox9121289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/20/2023] Open
Abstract
Enrichment with rosemary antioxidants is proposed as a possible strategy to obtain healthier jelly candies. Two aqueous rosemary extracts (RE) containing 73.9 (RE74) and 145.6 (RE146) mg polyphenols per g fresh weight were assessed as antioxidants in jelly candies based on fructooligosaccharides, inulin and stevia. Up to 15 phenolic acids, flavonoids and diterpenes were determined in the extracts, with rosmarinic acid as the main active compound. Sensory tolerance, physical properties, rosmarinic acid recovery, polyphenol content, and antioxidant capacity were determined in jelly candies. The threshold of sensory detection was established at 0.26 g RE146/kg of raw candy, below which rosemary off-flavours were avoided without altering pH, brix, texture, CIELab colour, and consumer acceptance. Adding 0.26 g RE146 per kg increased (p < 0.001) polyphenol content from 197 to 411 µg GAE/g and the antioxidant capacity from 1.77 to 4.14 μmol Trolox/g. Rosemary polyphenols resulted in being resistant to cooking, acted as secondary antioxidants and showed good interaction with the other jelly ingredients. Aqueous extracts from rosemary distillation by-products can be incorporated at acceptable levels to jelly candy formulations leading to higher oxidative stability and an increased content of dietary polyphenols.
Collapse
|
18
|
Mangla B, Jain A, Malik DS. Exploring the Potentials of Corn Fiber Gum in Fabricating Mucoadhesive Floating Tablet of Poorly Gastro-retainable Drug. RECENT PATENTS ON ANTI-INFECTIVE DRUG DISCOVERY 2020; 16:PRI-EPUB-111425. [PMID: 33183208 DOI: 10.2174/1574891x15999201111200523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/30/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
AIM To formulate and preliminary evaluated polysaccharide based mucoadhesive floating tablets of Cinnarizine. BACKGROUND Gastro-retentive drug delivery systems has proved to be a successful approach to enhance the gastric residence with site specific targeting for achieving local or generalized effect. Various patents has also been filed globally employing gastro-retentive approach. OBJECTIVE The study is designed to explore the mucoadhesive and low density characteristics of corn fibre gum (CFG) for preparation of gastro-retentive floating tablets of cinnarizine. METHODS Floating tablets were prepared by direct compression technique using different concentrations of CFG (45, 50, 60% w/w). The formulated floating tablet batches were evaluated for their hardness, friability, drug content, floating duration/ lag time, swelling behavior, bioadhesive strength and in vitro drug release. RESULTS Mucoadhesive strength was found to increase with an increment in the polysaccharide concentration. Swelling index was found to increase both with the increase in CFG concentration and with duration for which tablet remains in medium. The in vitro drug release studies indicated decrease in drug release (91% to 77%) with the increase in polymer concentration. The release data was further fitted to various kinetic models which revealed the drug release to be in accordance with Zero-order and Higuchi models, indicating polymer to exhibit the swellable matrix forming abilities. The value of n (between 0.458 and 0.997) from Korsemeyer Peppas model depicted the possibility of drug to follow more than one mechanism of release from the formulation i.e. diffusion and erosion. Stability studies revealed the preparations to retain their integrity and pharmaceutical characteristics at variable storage conditions. CONCLUSION Thus from the research findings, CFG could be concluded to possess potential binder, release retardant and mucoadhesive characteristics which could be successfully employed for the formulation of gastro-retentive floating tablets.
Collapse
Affiliation(s)
- Bhumika Mangla
- Faculty of Pharmaceutical Science, Jayoti Vidyapeeth Women University, Jaipur,. India
| | - Anurekha Jain
- Faculty of Pharmaceutical Science, Jayoti Vidyapeeth Women University, Jaipur,. India
| | | |
Collapse
|
19
|
De A, Das B, Mitra D, Sen AK, Samanta A. Exploration of an arabinogalactan isolated from
Odina wodier
Roxb.: Physicochemical, compositional characterisations and functional attributes. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arnab De
- Department of Pharmaceutical TechnologyJadavpur University Kolkata India
| | - Bhaskar Das
- Department of Pharmaceutical TechnologyJadavpur University Kolkata India
| | - Debmalya Mitra
- Department of Pharmaceutical TechnologyJadavpur University Kolkata India
| | - Asish K Sen
- Emeritus Scientist (Rtd.), Department of ChemistryIndian Institute of Chemical Biology Kolkata India
| | - Amalesh Samanta
- Department of Pharmaceutical TechnologyJadavpur University Kolkata India
| |
Collapse
|
20
|
Keirouz A, Radacsi N, Ren Q, Dommann A, Beldi G, Maniura-Weber K, Rossi RM, Fortunato G. Nylon-6/chitosan core/shell antimicrobial nanofibers for the prevention of mesh-associated surgical site infection. J Nanobiotechnology 2020; 18:51. [PMID: 32188479 PMCID: PMC7081698 DOI: 10.1186/s12951-020-00602-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The state-of-the-art hernia meshes, used in hospitals for hernia repair, are predominantly polymeric textile-based constructs that present high mechanical strength, but lack antimicrobial properties. Consequently, preventing bacterial colonization of implanted prosthetic meshes is of major clinical relevance for patients undergoing hernia repair. In this study, the co-axial electrospinning technique was investigated for the development of a novel mechanically stable structure incorporating dual drug release antimicrobial action. Core/shell structured nanofibers were developed, consisting of Nylon-6 in the core, to provide the appropriate mechanical stability, and Chitosan/Polyethylene oxide in the shell to provide bacteriostatic action. The core/shell structure consisted of a binary antimicrobial system incorporating 5-chloro-8-quinolinol in the chitosan shell, with the sustained release of Poly(hexanide) from the Nylon-6 core of the fibers. Homogeneous nanofibers with a "beads-in-fiber" architecture were observed by TEM, and validated by FTIR and XPS. The composite nanofibrous meshes significantly advance the stress-strain responses in comparison to the counterpart single-polymer electrospun meshes. The antimicrobial effectiveness was evaluated in vitro against two of the most commonly occurring pathogenic bacteria; S. aureus and P. aeruginosa, in surgical site infections. This study illustrates how the tailoring of core/shell nanofibers can be of interest for the development of active antimicrobial surfaces.
Collapse
Affiliation(s)
- Antonios Keirouz
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Alex Dommann
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Visceral Surgery, Inselspital University Hospital Bern and University Bern, Freiburgstrasse 18, CH-3010, Bern, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - René M Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Giuseppino Fortunato
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
| |
Collapse
|
21
|
Chandel L, Sharma R, Rana V. Exploring the Protective Potential of Carboxymethyl Terminalia catappa Polysaccharide on Blue Light Light-Emitting Diode Induced Corneal Damage. ACTA ACUST UNITED AC 2019; 13:310-322. [PMID: 31849292 DOI: 10.2174/1872211314666191218110440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Excessive blue light light-emitting diode (LED) exposure and consequent oxidative stress causes corneal damage and corneal injuries are the major problem arising these days due to excessive use of mobile phone, TV, environment pollution, etc. Objective: In the present investigation, the protectiveness of carboxymethyl Terminalia catappa (CTC) from blue light LED-induced corneal damage was explored. METHODS For this purpose, Terminalia catappa (TC) was functionalized by carboxymethylation and its structural modification was confirmed by spectral attributes. Further, the CTC protective eye drop formulations (0.025-1%, w/v) were prepared and evaluated for their capability of protection from blue light LEDinduced corneal damage as compared to CTC protective eye gel (1.25-7%, w/v). The findings pointed towards excellent protection of CTC gel formulations as compared to CTC eye drop formulations. In addition, the prepared optimized CTC gel had thixotropic behavior as evident from percentage structural recovery which was 1.75 fold higher than marketed formulation (I-Comfort, HPMC 2%, w/v). The safety and non-toxicity of CTC protective eye drop and gel were confirmed by HET-CAM test. Further, a rat eye model was implemented that mimic blue light light-emitting diode induced corneal damage in day to day life to assess the protective effect of CTC protective eye drop and gel. RESULTS The order of protectiveness of CTC formulations was found to be CTC protective eye gel (4%, w/v) (no corneal damage)>marketed eye gel (12.34% corneal damage)=CTC protective eye drop (0.75%, w/v) (17.48% corneal damage)> marketed eye drop (51% corneal damage). The mechanism behind the protective effect of CTC eye drop and gel was associated with good free radical scavenging activity and corneal adhesive property of CTC. It is established from the present work that, carboxymethyl Terminalia catappa has protective action against blue light light-emitting diode induced corneal damage.
Collapse
Affiliation(s)
- Lalit Chandel
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Radhika Sharma
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Vikas Rana
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
22
|
Sources, structure, properties and health benefits of plant gums: A review. Int J Biol Macromol 2019; 135:46-61. [DOI: 10.1016/j.ijbiomac.2019.05.103] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/20/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
|
23
|
Pérez-Flores JG, Contreras-López E, Castañeda-Ovando A, Pérez-Moreno F, Aguilar-Arteaga K, Álvarez-Romero GA, Téllez-Jurado A. Physicochemical characterization of an arabinoxylan-rich fraction from brewers' spent grain and its application as a release matrix for caffeine. Food Res Int 2019; 116:1020-1030. [PMID: 30716884 DOI: 10.1016/j.foodres.2018.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 11/18/2022]
Abstract
The brewers' spent grain is a by-product generated during brewery process and is a potential source for arabinoxylans (AX) extraction. In the present work, the extraction and characterization of an arabinoxylan-rich fraction from brewers' spent grain (BSG-AX) were performed, and BSG-AX was evaluated as release matrix for caffeine. The BSG-AX showed an AX content of 72% (w/w), a ferulic acid content of 3.52 μg/mg BSG-AX, an Ara/Xyl ratio of 0.89, an intrinsic viscosity of 41.18 mL g-1, and a molecular weight of 43.80 kDa. The studied BSG-AX showed a good antioxidant capacity compared with other polysaccharide gums and was estimated by DPPH (114.41 μM Trolox equivalent/g BSG-AX) and FRAP (49.01 μmol Fe2+/g BSG-AX) assays. The partial specific volume (0.63 cm3 g-1), loss on drying (10.68%), swelling (10.87%), solubility (80.93%) and electrostatic interactions (by zeta potential, -3.44 to -9.17 mV) were determined and used to evaluate the application of the BSG-AX as release matrix. A film containing the BSG-AX, glycerol (as plasticizer) and caffeine (target drug) was prepared as release matrix. Glycerol promoted an increase in the extensibility and the surface smoothness of the BSG-AX-caffeine film. The drug was released (≈98%) in about 7 h. These results are promising to concern the design and use of BSG-AX based biofilms for the controlled release of bioactive compounds.
Collapse
Affiliation(s)
- Jesús Guadalupe Pérez-Flores
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km 4.5, Mineral de la Reforma, 42184, Hidalgo, Mexico
| | - Elizabeth Contreras-López
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km 4.5, Mineral de la Reforma, 42184, Hidalgo, Mexico
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km 4.5, Mineral de la Reforma, 42184, Hidalgo, Mexico.
| | - Fidel Pérez-Moreno
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km 4.5, Mineral de la Reforma, 42184, Hidalgo, Mexico
| | - Karina Aguilar-Arteaga
- Universidad Politécnica de Francisco I. Madero, Carr. Tepatepec-San Juan Tepa km. 2, Francisco I. Madero 42660, Hidalgo, Mexico
| | - Giaan A Álvarez-Romero
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo km 4.5, Mineral de la Reforma, 42184, Hidalgo, Mexico
| | - Alejandro Téllez-Jurado
- Universidad Politécnica de Pachuca, Carr. Pachuca-Cd. Sahagún km 20, Rancho Luna, Ex-Hacienda de Sta. Bárbara, Municipio de Zempoala, Hidalgo, Mexico
| |
Collapse
|
24
|
Nagpal M, Kaur M, Sharma D, Baldi A, Chandra R, Madan J. Optimization of sulfation of okra fruit gum for improved rheological and pharmacological properties. Int J Biol Macromol 2019; 122:1-9. [DOI: 10.1016/j.ijbiomac.2018.10.155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023]
|
25
|
Martins AJ, Silva P, Maciel F, Pastrana LM, Cunha RL, Cerqueira MA, Vicente AA. Hybrid gels: Influence of oleogel/hydrogel ratio on rheological and textural properties. Food Res Int 2018; 116:1298-1305. [PMID: 30716919 DOI: 10.1016/j.foodres.2018.10.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/14/2018] [Accepted: 10/07/2018] [Indexed: 11/30/2022]
Abstract
Hybrid gels can be used for controlled delivery of bioactives and for textural and rheological modification of foods. In this regard the hydrogel:oleogel ratio and gel development methodologies showed to be the aspects that influence most of their properties. The present study shows how different fractions of oleogel can influence the hydrogel matrix of an oleogel-in-hydrogel emulsified system in terms of polymorphic arrangement, microstructure, texture and rheology. The hydrogel was prepared by using an aqueous sodium alginate solution and the oleogel was prepared through the gelation of medium chain triglycerides with beeswax. Hybrid gels were prepared under constant shearing. Crystallinity was clearly changed as hydrogel and oleogel were combined. No polymorphism was observed in the X-Ray diffraction of hybrid gels, as these showed homogeneous results for all component ratios. The behaviour of samples with increasing oleogel-to-hydrogel ratio presented a decrease of both firmness and spreadability, and then, a decrease of gel adhesivity and cohesiveness. This textural response was a consequence of the disaggregated structure, stemming from the disruption of the hydrogel network, due to the inclusion of increasing amounts of oleogel. Rheological results showed that all hybrid gels presented a gel-like behaviour (G´ > G´´). Oleogel's strength influenced the overall textural and rheological performance of hybrid gels. This work demonstrates the possibility of producing hybrid gels aiming to tailor texture on food systems.
Collapse
Affiliation(s)
- Artur J Martins
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | - Pedro Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Filipe Maciel
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Rosiane Lopes Cunha
- Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, CEP: 13083-862 Campinas, SP, Brazil
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
26
|
Keshani-Dokht S, Emam-Djomeh Z, Yarmand MS, Fathi M. Extraction, chemical composition, rheological behavior, antioxidant activity and functional properties of Cordia myxa mucilage. Int J Biol Macromol 2018; 118:485-493. [DOI: 10.1016/j.ijbiomac.2018.06.069] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022]
|
27
|
Singh RS, Kaur N, Sharma R, Rana V. Carbamoylethyl pullulan: QbD based synthesis, characterization and corneal wound healing potential. Int J Biol Macromol 2018; 118:2245-2255. [DOI: 10.1016/j.ijbiomac.2018.07.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022]
|
28
|
Sethi S, Mangla B, Kamboj S, Rana V. A QbD approach for the fabrication of immediate and prolong buoyant cinnarizine tablet using polyacrylamide-g-corn fibre gum. Int J Biol Macromol 2018; 117:350-361. [DOI: 10.1016/j.ijbiomac.2018.05.178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 11/28/2022]
|
29
|
Saravana PS, Ho TC, Chae SJ, Cho YJ, Park JS, Lee HJ, Chun BS. Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydr Polym 2018; 195:622-630. [DOI: 10.1016/j.carbpol.2018.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2018] [Accepted: 05/05/2018] [Indexed: 10/16/2022]
|
30
|
Mendez-Encinas MA, Carvajal-Millan E, Rascon-Chu A, Astiazaran-Garcia HF, Valencia-Rivera DE. Ferulated Arabinoxylans and Their Gels: Functional Properties and Potential Application as Antioxidant and Anticancer Agent. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2314759. [PMID: 30186541 PMCID: PMC6116397 DOI: 10.1155/2018/2314759] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/19/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022]
Abstract
In the last years, biomedical research has focused its efforts in the development of new oral delivery systems for the treatment of different diseases. Ferulated arabinoxylans are polysaccharides from cereals that have been gaining attention in the pharmaceutical field due to their prebiotic, antioxidant, and anticancer properties. The antioxidant and anticancer properties of these polysaccharides make them attractive compounds for the treatment of cancer, particularly colon cancer. In addition, ferulated arabinoxylans can form covalent gels through the cross-linking of their ferulic acids. Due to their particular characteristics, ferulated arabinoxylan gels represent an excellent alternative as colon-targeted drug delivery systems. The aim of the present work is to review the physicochemical and functional properties of ferulated arabinoxylans and their gels and to present the future perspectives for potential application as antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Mayra Alejandra Mendez-Encinas
- Biopolymers, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | - Elizabeth Carvajal-Millan
- Biopolymers, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | - Agustín Rascon-Chu
- Biotechnology, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | | | - Dora Edith Valencia-Rivera
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, 83621 Caborca, SON, Mexico
| |
Collapse
|
31
|
Hamdani AM, Wani IA, Bhat NA, Masoodi F. Chemical composition, total phenolic content, antioxidant and antinutritional characterisation of exudate gums. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Bashir M, Usmani T, Haripriya S, Ahmed T. Biological and textural properties of underutilized exudate gums of Jammu and Kashmir, India. Int J Biol Macromol 2018; 109:847-854. [DOI: 10.1016/j.ijbiomac.2017.11.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
33
|
Liu R, Tian Z, Song Y, Wu T, Sui W, Zhang M. Optimization of the Production of Microparticulated Egg White Proteins as Fat Mimetic in Salad Dressings Using Uniform Design. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rui Liu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology), Ministry of Education
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center
| | - Zhaojie Tian
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
| | - Yingshi Song
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology)
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science & Technology), Ministry of Education
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center
| |
Collapse
|
34
|
Hamdani AM, Wani IA, Gani A, Bhat NA, Masoodi FA. Effect of gamma irradiation on physicochemical, structural and rheological properties of plant exudate gums. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Kurt A, Kahyaoglu T. Purification of glucomannan from salep: Part 2. Structural characterization. Carbohydr Polym 2017; 169:406-416. [DOI: 10.1016/j.carbpol.2017.04.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 01/04/2023]
|
36
|
Mumtaz Hamdani A, Ahmed Wani I. Guar and Locust bean gum: Composition, total phenolic content, antioxidant and antinutritional characterisation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bcdf.2017.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Peroxidase-mediated formation of corn fiber gum-bovine serum albumin conjugates: Molecular and structural characterization. Carbohydr Polym 2017; 166:114-122. [DOI: 10.1016/j.carbpol.2017.02.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 11/22/2022]
|
38
|
Li J, Shang W, Si X, Bu D, Strappe P, Zhou Z, Blanchard C. Carboxymethylation of corn bran polysaccharide and its bioactive property. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13382] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jing Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Wenting Shang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Xu Si
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Dandan Bu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Padraig Strappe
- School of Medical and Applied Sciences; Central Queensland University; Rockhampton Qld 4700 Australia
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science and Technology; Tianjin 300457 China
- ARC Industrial Transformation Training Centre for Functional Grains; Charles Sturt University; Wagga Wagga NSW 2678 Australia
| | - Chris Blanchard
- ARC Industrial Transformation Training Centre for Functional Grains; Charles Sturt University; Wagga Wagga NSW 2678 Australia
| |
Collapse
|
39
|
Jin Q, Cai Z, Li X, Yadav MP, Zhang H. Comparative viscoelasticity studies: Corn fiber gum versus commercial polysaccharide emulsifiers in bulk and at air/liquid interfaces. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Bouaziz F, Koubaa M, Ellouz Ghorbel R, Ellouz Chaabouni S. Biological properties of water-soluble polysaccharides and hemicelluloses from almond gum. Int J Biol Macromol 2017; 95:667-674. [DOI: 10.1016/j.ijbiomac.2016.11.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/05/2016] [Accepted: 11/27/2016] [Indexed: 11/15/2022]
|
41
|
QbD based synthesis and characterization of polyacrylamide grafted corn fibre gum. Carbohydr Polym 2017; 156:45-55. [DOI: 10.1016/j.carbpol.2016.08.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 11/21/2022]
|
42
|
Physico-chemical characterization of galactan exopolysaccharide produced by Weissella confusa KR780676. Int J Biol Macromol 2016; 93:822-828. [DOI: 10.1016/j.ijbiomac.2016.09.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 01/13/2023]
|
43
|
Razmkhah S, Razavi SMA, Mohammadifar MA, Ale MT, Gavlighi HA. Protein-free cress seed ( Lepidium sativum ) gum: Physicochemical characterization and rheological properties. Carbohydr Polym 2016; 153:14-24. [DOI: 10.1016/j.carbpol.2016.07.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/11/2016] [Accepted: 07/20/2016] [Indexed: 01/04/2023]
|
44
|
Razmkhah S, Razavi SMA, Mohammadifar MA, Koocheki A, Ale MT. Stepwise extraction of Lepidium sativum seed gum: Physicochemical characterization and functional properties. Int J Biol Macromol 2016; 88:553-64. [DOI: 10.1016/j.ijbiomac.2016.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/02/2016] [Accepted: 04/10/2016] [Indexed: 11/30/2022]
|
45
|
Si X, Zhou Z, Bu D, Li J, Strappe P, Blanchard C. Effect of sulfation on the antioxidant properties and in vitro cell proliferation characteristics of polysaccharides isolated from corn bran. CYTA - JOURNAL OF FOOD 2016. [DOI: 10.1080/19476337.2016.1176074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xu Si
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, Australia
| | - Dandan Bu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Padraig Strappe
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, Australia
| | - Chris Blanchard
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
46
|
Purification of cress seed ( Lepidium sativum ) gum: Physicochemical characterization and functional properties. Carbohydr Polym 2016; 141:166-74. [DOI: 10.1016/j.carbpol.2015.12.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/24/2015] [Accepted: 12/28/2015] [Indexed: 11/18/2022]
|
47
|
Kamboj S, Rana V. Formulation optimization of aprepitant microemulsion-loaded silicated corn fiber gum particles for enhanced bioavailability. Drug Dev Ind Pharm 2015; 42:1267-82. [PMID: 26592754 DOI: 10.3109/03639045.2015.1122611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present investigation was aimed at development of silicate corn fiber gum (SCFG) particles as superior solid carrier for the preparation of Aprepitant (APT)-loaded self-emulsifying powder (SEP) system. 2(4) D-optimal mixture design with three level process variables was employed to develop SCFG particles, utilizing flow descriptors and hydrophobicity descriptors as response variables. The results indicated that blending of CFG (51.4% w/w) and magnesium silicate (MS) (48.6% w/w) using freeze-drying technique was found to have highest desirability (0.904). The developed SEP showed highest oil desorbing capacity, low self-emulsification time and highest drug content. It was observed that SCFG-SEP (F2 formulation) showed lowest PDI (0.2445 ± 0.03) as well as smallest particle size (127 ± 5.8 nm). The droplets were uniform and maintain their integrity after reconstitution (TEM analysis). Furthermore, APT-loaded SEP showed enhanced in vitro dissolution (4 folds) and ex vivo performance (7-fold enhanced Papp) as compared to pure APT. Furthermore, in vivo pharmacokinetic study showed that significant enhancement (p > 0.05) in Cmax was evident with APT-loaded F2 (SCFG-SEP) (1.93-fold) and F4 (Aerosil 200-SEP) (1.58-fold). The data also suggested increase in absorption rate when APT incorporated into SCFG-SEP. Thus, findings pointed toward enhanced bioavailability of APT when loaded into SCFG particles. Overall, the developed SCFG particles could be considered as a better alternative to already available solid carrier(s).
Collapse
Affiliation(s)
- Sunil Kamboj
- a Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , Punjab , India
| | - Vikas Rana
- a Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , Punjab , India
| |
Collapse
|
48
|
Physicochemical and functional performance of pectin extracted by QbD approach from Tamarindus indica L. pulp. Carbohydr Polym 2015; 134:364-74. [DOI: 10.1016/j.carbpol.2015.07.073] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 02/07/2023]
|
49
|
Kamboj S, Singh K, Tiwary A, Rana V. Optimization of microwave assisted Maillard reaction to fabricate and evaluate corn fiber gum-chitosan IPN films. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|