1
|
Xu Z, Liu X, Zhang C, Ma M, Sui Z, Corke H. Effect of Mild Alkali Treatment on the Structure and Physicochemical Properties of Normal and Waxy Rice Starches. Foods 2024; 13:2449. [PMID: 39123640 PMCID: PMC11312100 DOI: 10.3390/foods13152449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Mild alkali treatment can potentially be developed as a greener alternative to the traditional alkali treatment of starch, but the effect of mild alkali on starch is still understudied. Normal and waxy rice starches were subjected to mild alkali combined with hydrothermal treatment to investigate their changes in physicochemical properties. After mild alkali treatment, the protein content of normal and waxy rice starches decreased from 0.76% to 0.23% and from 0.89% to 0.23%, respectively. Mild alkali treatment decreased gelatinization temperature but increased the swelling power and solubility of both starches. Mild alkali treatment also increased the gelatinization enthalpy of waxy rice starch from 20.01 J/g to 25.04 J/g. Mild alkali treatment at room temperature increased the pasting viscosities of both normal and waxy rice starches, whereas at high temperature, it decreased pasting viscosities during hydrothermal treatment. Alkali treatment significantly changed the properties of normal and waxy rice starch by the ionization of hydroxyl groups and the removal of starch granule-associated proteins. Hydrothermal conditions promoted the effect of alkali. The combination of hydrothermal and alkali treatment led to greater changes in starch properties.
Collapse
Affiliation(s)
- Zekun Xu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.X.); (X.L.); (C.Z.)
| | - Xiaoning Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.X.); (X.L.); (C.Z.)
| | - Chuangchuang Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.X.); (X.L.); (C.Z.)
| | - Mengting Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.X.); (X.L.); (C.Z.)
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, China
| | - Zhongquan Sui
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.X.); (X.L.); (C.Z.)
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion—Israel Institute of Technology, Shantou 515063, China;
- Faculty of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
2
|
Xu Z, Liu X, Zhang C, Ma M, Gebre BA, Mekonnen SA, Corke H, Sui Z. Mild alkali treatment alters structure and properties of maize starch: The potential role of alkali in starch chemical modification. Int J Biol Macromol 2024; 274:133238. [PMID: 38897493 DOI: 10.1016/j.ijbiomac.2024.133238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Normal and waxy maize starches were treated with mild alkali treatment (pH 8.5, 9.9, 11.3) in two temperature-time combinations (25 °C for 1 h and 50 °C for 18 h) to investigate the effect on starch structure and properties. Mild alkali treatment partly removed the starch granule-associated proteins and lipids of normal (from 0.31 % to 0.24 % and from 0.77 % to 0.55 %, respectively) and waxy maize starches (from 0.22 % to 0.18 % and from 0.24 % to 0.15 %, respectively). Gelatinization enthalpy of waxy maize starch increased with alkali treatment from 16.20 J·g-1 to 21.95 J·g-1, indicating that amylopectin (AP) rearrangement and AP-AP double helices formation might occur. But amylose could inhibit these effects by restricting mobility of amylopectin, and no such changes occurred for normal maize starch. Alkali treatment decreased gelatinization temperature and increased peak and final viscosity. Alkali treatment decreased trough viscosity and increased setback of normal maize starch. The hydrothermal treatment promoted the effect of alkali, attributed to the more rapid molecular motion at higher temperature. Normal and waxy starches showed different changes after alkali treatment, indicating that amylose played an important role in controlling the effect of alkali and hydrothermal treatment, primarily as an obstructer of amylopectin rearrangement in mild alkali treatment.
Collapse
Affiliation(s)
- Zekun Xu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoning Liu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuangchuang Zhang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengting Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bilatu Agza Gebre
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Department of Food Science & Nutrition, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Solomon Abate Mekonnen
- Department of Food Science & Nutrition, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Zhongquan Sui
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Sun S, Guan B, Xing Y, Li X, Liu L, Li Y, Jia L, Ye S, Dossa K, Zheng L, Luan Y. Genome-wide association analysis and transgenic characterization for amylose content regulating gene in tuber of Dioscorea zingiberensis. BMC PLANT BIOLOGY 2024; 24:524. [PMID: 38853253 PMCID: PMC11163818 DOI: 10.1186/s12870-024-05122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Amylose, a prebiotic found in yams is known to be beneficial for the gut microflora and is particularly advantageous for diabetic patients' diet. However, the genetic machinery underlying amylose production remains elusive. A comprehensive characterization of the genetic basis of amylose content in yam tubers is a prerequisite for accelerating the genetic engineering of yams with respect to amylose content variation. RESULTS To uncover the genetic variants underlying variation in amylose content, we evaluated amylose content in freshly harvested tubers from 150 accessions of Dioscorea zingibensis. With 30,000 high-quality single nucleotide polymorphisms (SNP), we performed a genome-wide association analysis (GWAS). The population structure analysis classified the D. zingiberensis accessions into three groups. A total of 115 significant loci were detected on four chromosomes. Of these, 112 significant SNPs (log10(p) = 5, q-value < 0.004) were clustered in a narrow window on the chromosome 6 (chr6). The peak SNP at the position 75,609,202 on chr6 could explain 63.15% of amylose variation in the population and fell into the first exon of the ADP-glucose pyrophosphorylase (AGPase) small subunit gene, causing a non-synonymous modification of the resulting protein sequence. Allele segregation analysis showed that accessions with the rare G allele had a higher amylose content than those harboring the common A allele. However, AGPase, a key enzyme precursor of amylose biosynthesis, was not expressed differentially between accessions with A and G alleles. Overexpression of the two variants of AGPase in Arabidopsis thaliana resulted in a significantly higher amylose content in lines transformed with the AGPase-G allele. CONCLUSIONS Overall, this study showed that a major genetic variant in AGPase probably enhances the enzyme activity leading to high amylose content in D. zingiberensis tuber. The results provide valuable insights for the development of amylose-enriched genotypes.
Collapse
Affiliation(s)
- Shixian Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China
| | - Binbin Guan
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Yue Xing
- Department of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Lanlan Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Yanmei Li
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Lu Jia
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Shili Ye
- Faculty of Mathematics and Physics, Southwest Forestry University, Kunming, 650224, China
| | - Komivi Dossa
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34398, France
| | - Li Zheng
- Eco-development Academy, Southwest Forestry University, Kunming, 650224, China.
| | - Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
- Engineering Research Center for inheritance and innovation of Traditional Chinese Medicine, Kunming, 650034, China.
| |
Collapse
|
4
|
He Z, Zeng J, Hu J, Chen J, Peng D, Du B, Li P. Effects of cooking methods on the physical properties and in vitro digestibility of starch isolated from Chinese yam. Int J Biol Macromol 2024; 267:131597. [PMID: 38621567 DOI: 10.1016/j.ijbiomac.2024.131597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The objective of this study was to compare the structural and functional attributes of Chinese yam starches obtained via different domestic cooking methods. Cooking changed the crystalline type from the C type to the CB type, and disrupted the short- and long-range molecular order of Chinese yam starch. The average chain length of amylopectin in BOS (boiling starch) was the smallest at 22.78, while RWS had the longest average chain length, reaching 24.24. These alterations in molecular structure resulted in variations in functional properties such as solubility, swelling power (SP), pasting characteristics, and rheological properties. Among these alterations, boiling was the most effective method for increasing the water-binding capacity and SP of starch. Specifically, its water holding capacity was 2.12 times that of RWS. In vitro digestion experiments indicated that BOS has a higher digestion rate (k = 0.0272 min-1) and lower RDS (rapidly digestible starch), which may be related to its amylopectin chain length distribution. This study can guide us to utilize yam starch through suitable cooking methods, which is relevant for the processing and application of Chinese yam starch.
Collapse
Affiliation(s)
- Zhilin He
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jieyu Zeng
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianjun Hu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jiahuan Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Dong Peng
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
5
|
Hao M, Zhu X, Ji X, Shi M, Yan Y. Effect of Konjac Glucomannan on Structure, Physicochemical Properties, and In Vitro Digestibility of Yam Starch during Extrusion. Foods 2024; 13:463. [PMID: 38338597 PMCID: PMC10855837 DOI: 10.3390/foods13030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the effect of konjac glucomannan (KGM, 0-5%) on the structure, physicochemical properties, and in vitro digestibility of extruded yam starch (EYS) was investigated. The EYS became rougher on the surface and the particle size increased as observed using scanning electron microscopy and particle size analysis. X-ray diffraction and Raman results revealed that the relative crystallinity (18.30% to 22.30%) of EYS increased, and the full width at half maxima at 480 cm-1 decreased with increasing KGM content, indicating the increment of long-range and short-range ordered structure. Differential scanning calorimetry and rheological results demonstrated that KGM enhanced thermal stability and the gel strength of EYS due to enhanced interaction between KGM and YS molecules. Additionally, a decrease in the swelling power and viscosity of EYS was observed with increased KGM content. The inclusion of KGM in the EYS increased the resistant starch content from 11.89% to 43.51%. This study provides a dual-modified method using extrusion and KGM for modified YS with high thermal stability, gel strength, and resistance to digestion.
Collapse
Affiliation(s)
- Mengshuang Hao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Xiaopei Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
6
|
Xiao Y, Wang S, Ali A, Shan N, Luo S, Sun J, Zhang H, Xie G, Shen S, Huang Y, Zhou Q. Cultivation pattern affects starch structure and physicochemical properties of yam (Dioscorea persimilis). Int J Biol Macromol 2023; 242:125004. [PMID: 37217061 DOI: 10.1016/j.ijbiomac.2023.125004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Yam (Dioscorea spp.) is a major food source in many countries due to its tuber rich in starch (60 %-89 % of the dry weight) and various important micronutrients. Orientation Supergene Cultivation (OSC) pattern is a simple and efficient cultivation mode developed in China in recent years. However, little is known about its effect on yam tuber starch. In this study, the starchy tuber yield, starch structure and physicochemical properties were compared and analyzed in detail between OSC and Traditional Vertical Cultivation (TVC) with Dioscorea persimilis "zhugaoshu", a widely cultivated variety. The results proved that OSC significantly increased tuber yield (23.76 %-31.86 %) and commodity quality (more smooth skin) compared with TVC in three consecutive years of field experiments. Moreover, OSC increased amylopectin content, resistant starch content, granule average diameter and average degree of crystallinity by 2.7 %, 5.8 %, 14.7 % and 9.5 %, respectively, while OSC decreased starch molecular weight (Mw). These traits resulted in starch with lower thermal properties (To, Tp, Tc, ΔHgel), but higher pasting properties (PV, TV). Our results indicated that cultivation pattern affected the yam production and starch physicochemical properties. It would not only provide a practical basis for OSC promotion, but also provide valuable information on how to guide the yam starch end use in food and non-food industries.
Collapse
Affiliation(s)
- Yao Xiao
- Jiangxi Province Key Laboratory of Root and Tuber Crops Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shenglin Wang
- Jiangxi Province Key Laboratory of Root and Tuber Crops Biology, Jiangxi Agricultural University, Nanchang 330045, China; Queensland Department of Agriculture and Fisheries, PO Box 1054, Mareeba, QLD 4880, Australia
| | - Asjad Ali
- Queensland Department of Agriculture and Fisheries, PO Box 1054, Mareeba, QLD 4880, Australia
| | - Nan Shan
- Jiangxi Province Key Laboratory of Root and Tuber Crops Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Sha Luo
- Jiangxi Province Key Laboratory of Root and Tuber Crops Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jingyu Sun
- Jiangxi Province Key Laboratory of Root and Tuber Crops Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hongyu Zhang
- Jiangxi Province Key Laboratory of Root and Tuber Crops Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guoqiang Xie
- Jiujiang Academy of Agricultural Sciences, Jiujiang 332000, China
| | - Shaohua Shen
- Jiujiang Academy of Agricultural Sciences, Jiujiang 332000, China
| | - Yingjin Huang
- Jiangxi Province Key Laboratory of Root and Tuber Crops Biology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Qinghong Zhou
- Jiangxi Province Key Laboratory of Root and Tuber Crops Biology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
Zhao D, Zhang K, Guo D, Tong X. Effect of tea polyphenols on the physicochemical, structural and digestive properties of modified high amylose corn starch. Food Funct 2023. [PMID: 37191069 DOI: 10.1039/d2fo04089a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this study, starch-polyphenol complexes (CES-TPS complexes) were prepared using various ratios (0%, 2%, 4%, 6%, 8%, and 10%, based on starch) of tea polyphenols (TPS) and high amylose corn starch (HACS) pretreated with starch branching enzyme (SBE). It was aimed to determine the effects of TPS on the physicochemical and structural properties and digestibility of the CES-TPS complexes. Scanning electron microscopy and laser particle size analysis showed that the addition of a moderate amount of TPS will reinforce interaction force, while excessive TPS will cause a loose structural morphology, leading to an increase in starch particle size. Thermal property analysis indicated that SBE pre-treatment decreased TO, TP and TC of HACS, and the gelatinization temperature was further reduced after adding TPS. The digestion of CES-TPS complexes was investigated using an Artificial Gut analyzer; the predicted glycemic index of starch samples decreased with the addition of a low concentration of TPS (2-6%), while there was a significant increment in the pGI of starch samples when a high concentration of TPS (8-10%) was added. XRD analysis showed that the relative crystallinity of the CES-TPS complexes further increased to 21.91% and then decreased to 19.38% with the increase of TPS concentration. The ratios of 1047/1022 cm-1 presented the opposite trend to that determined by FT-IR.
Collapse
Affiliation(s)
- Di Zhao
- Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou 450002, China.
- Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou 450002, China
| | - Kangyi Zhang
- Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou 450002, China.
- Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou 450002, China
| | - Dongxu Guo
- Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou 450002, China.
- Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou 450002, China
| | - Xiaofeng Tong
- Henan Agricultural University, Zhengzhou 450002, China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, 116 Huayuan Road, Zhengzhou 450002, China
| |
Collapse
|
8
|
Mieles-Gómez L, Quintana SE, García-Zapateiro LA. Ultrasound-Assisted Extraction of Mango ( Mangifera indica) Kernel Starch: Chemical, Techno-Functional, and Pasting Properties. Gels 2023; 9:gels9020136. [PMID: 36826306 PMCID: PMC9956994 DOI: 10.3390/gels9020136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
(1) Background: Starch is the main component of mango (Mangifera indica) kernel, making it an alternative to obtain an ingredient from a non-conventional source with potential application in food and other industrial applications; however, reports on the use of new extraction techniques for this material are scarce. The main objective of this research was to evaluate the effect of ultrasound-assisted extraction (UAE) on the yield, chemical, techno-functional, rheological, and pasting properties of starch isolated from a non-conventional source such as a mango kernel. (2) Methods: Different power sonication conditions (120, 300, and 480 W) and sonication time (10, 20, and 30 min) were evaluated along with a control treatment (extracted by the wet milling method). (3) Results: Ultrasound-assisted extraction increases starch yield, with the highest values (54%) at 480 W and 20 min. A significant increase in the amylose content, water-holding capacity, oil-holding capacity, solubility, and swelling power of ultrasonically extracted starches was observed. Similarly, mango kernel starch (MKS) exhibited interesting antioxidant properties. The sol-gel transition temperature and pasting parameters, such as the breakdown viscosity (BD) and the setback viscosity (SB), decreased with ultrasound application; (4) Conclusion: indicating that ultrasound caused changes in physical, chemical, techno-functional, rheological, and pasting properties, depending on the power and time of sonication, so it can be used as an alternative starch extraction and modification technique, for example, for potential application in thermally processed food products such as baked goods, canned foods, and frozen foods.
Collapse
|
9
|
Li Y, Ji S, Xu T, Zhong Y, Xu M, Liu Y, Li M, Fan B, Wang F, Xiao J, Lu B. Chinese yam (Dioscorea): Nutritional value, beneficial effects, and food and pharmaceutical applications. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
10
|
Wang R, Wang J, Liu M, Strappe P, Li M, Wang A, Zhuang M, Liu J, Blanchard C, Zhou Z. Association of starch crystalline pattern with acetylation property and its influence on gut microbota fermentation characteristics. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Zhang K, Zhao D, Ma X, Guo D, Tong X, Zhang Y, Qu L. Effect of different starch acetates on the quality characteristics of frozen cooked noodles. Food Sci Nutr 2022; 10:678-688. [PMID: 35282008 PMCID: PMC8907727 DOI: 10.1002/fsn3.2692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/06/2022] Open
Abstract
The physicochemical properties of starch acetates with an equal degree of substitution prepared from pea, corn, and wheat starch and their effects on frozen cooked noodle (FCN) quality were investigated. The result showed that the three kinds of starch acetates had different effects on the quality of FCN due to their different blue values, freeze-thaw stability, and crystalline morphology analyzed by XRD (p < .05). The FCN with the addition of 20% CAS exhibited slow deterioration of textural properties during holding for 30 min. The analysis of the changes in the content of free SH group and glutenin macropolymer (GMP) demonstrated that the addition of CAS promoted protein disulfide cross-linking and decreased protein mobility during holding. Fourier transform infrared spectroscopy (FT-IR) revealed that FCN with the addition of CAS had low decrement in α-helix and β-sheet during holding, indicating that starch acetates contributed to the maintenance of the gluten network structure.
Collapse
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products ProcessingHenan Academy of Agricultural SciencesZhengzhouChina
| | - Di Zhao
- Center of Agricultural Products ProcessingHenan Academy of Agricultural SciencesZhengzhouChina
| | | | - Dongxu Guo
- Center of Agricultural Products ProcessingHenan Academy of Agricultural SciencesZhengzhouChina
| | | | - Yun Zhang
- Henan University of TechnologyZhengzhouChina
| | - Lingbo Qu
- School of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouChina
| |
Collapse
|
12
|
Zhang K, Zhao D, Huang Q, Huang J, Wen Q. Physicochemical, Structural Properties and In Vitro Digestibility of A‐ and B‐type Granules Isolated from Green Wheat and Mature Wheat Starch. STARCH-STARKE 2021. [DOI: 10.1002/star.202100065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products Processing Henan Academy of Agricultural Sciences Zhengzhou 450002 China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Di Zhao
- Center of Agricultural Products Processing Henan Academy of Agricultural Sciences Zhengzhou 450002 China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Qingrong Huang
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences Zhengzhou 450002 China
- Department of Food Science Rutgers University New Jersey, 65 Dudley Road New Brunswick New Jersey 08901 USA
| | - Jihong Huang
- College of Biological Engineering Henan University of Technology Zhengzhou 450002 China
| | - Qingyu Wen
- Center of Agricultural Products Processing Henan Academy of Agricultural Sciences Zhengzhou 450002 China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| |
Collapse
|
13
|
Zhang K, Zhao D, Guo D, Tong X, Zhang Y, Wang L. Physicochemical and digestive properties of A- and B-type granules isolated from wheat starch as affected by microwave-ultrasound and toughening treatment. Int J Biol Macromol 2021; 183:481-489. [PMID: 33933544 DOI: 10.1016/j.ijbiomac.2021.04.180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
In this study, the effect of microwave-ultrasound or/and toughening treatment on the physicochemical, structural properties, and in vitro digestibility of A- and B-type granules isolated from wheat starch were investigated. From the SEM, microwave-ultrasound and toughening treatment (MU-T) led to the appearance of irregular and disrupted structure significantly and an increment in the resistant starch content of A- and B-type granule. Furthermore, the MU-T starch possessed the lowest swelling power, light transmittance, and gelatinization temperature range (Tc -To) and the highest ΔH. After MU-T, the relative crystallinity (RC) of X-ray pattern, Fourier transform infrared ratio of 1047/1022 cm-1, and the content of double helix and single helix of 13C CP/MAS NMR had increased significantly. In particular, there was a difference in the content of RS and SDS between A-starch granules and B-starch granules as well as their changes after modification (from 69.305% to 82.93 for A-starch and form 74.97% to 88.17 for B-starch, respectively), which was a similar trend with RC and helix content. This study indicated that, for both A-type granule and B-type granule starches, microwave-ultrasound and toughening treated samples had unique properties compared to singly modified starches.
Collapse
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Di Zhao
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China.
| | - Dongxu Guo
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiaofeng Tong
- Henan Agricultural University, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Yun Zhang
- Henan University of Technology, Zhengzhou 450000, China; Henan International Union Laboratory for Whole Grain Wheat Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Li Wang
- School of Food Science, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
14
|
Zhang K, Zhao D, Zhang X, Qu L, Zhang Y, Huang Q. Effects of the Removal of Lipids and Surface Proteins on the Physicochemical and Structural Properties of Green Wheat Starches. STARCH-STARKE 2020. [DOI: 10.1002/star.202000046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products Processing Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Di Zhao
- Center of Agricultural Products Processing Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Xun Zhang
- Center of Agricultural Products Processing Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Lingbo Qu
- School of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450002 China
| | - Yayuan Zhang
- Institute of Agro‐Products Processing Science and Technology Guangxi Academy of Agricultural Science Nanning Guangxi 53000 China
| | - Qingrong Huang
- Department of Food Science Rutgers University, New Jersey 65 Dudley Road New Brunswick NJ 08901 USA
| |
Collapse
|
15
|
Wang K, Hong Y, Gu Z, Cheng L, Li Z, Li C. Stabilization of Pickering emulsions using starch nanocrystals treated with alkaline solution. Int J Biol Macromol 2020; 155:273-285. [DOI: 10.1016/j.ijbiomac.2020.03.219] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
|
16
|
Zhao C, Zhou B, Miao J, Li X, Jing S, Zhang D, Yijia Wang J, Li X, Huang L, Gao W. Multicomponent analysis and activities for evaluation of Dioscorea oppositifolia and Dioscorea hamiltonii. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1674786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Chengcheng Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Bin Zhou
- Shaoyang University, Hunan, People’s Republic of China
| | - Jing Miao
- College of Life Science and Technology, Xinjiang University, Xinjiang, People’s Republic of China
| | - Xuejiao Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Songsong Jing
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Ding Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China
| | | | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China
| | - Luqi Huang
- Institute of Chinese MateriaMedica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
17
|
Zhang B, Gilbert EP, Qiao D, Xie F, Wang DK, Zhao S, Jiang F. A further study on supramolecular structure changes of waxy maize starch subjected to alkaline treatment by extended-q small-angle neutron scattering. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Bharti I, Singh S, Saxena D. Exploring the influence of heat moisture treatment on physicochemical, pasting, structural and morphological properties of mango kernel starches from Indian cultivars. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Bharti I, Singh S, Saxena D. Influence of alkali treatment on physicochemical, pasting, morphological and structural properties of mango kernel starches derived from Indian cultivars. Int J Biol Macromol 2019; 125:203-212. [DOI: 10.1016/j.ijbiomac.2018.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/22/2018] [Accepted: 12/02/2018] [Indexed: 10/27/2022]
|
20
|
Effect of blanching and drying temperatures on starch-related physicochemical properties, bioactive components and antioxidant activities of yam flours. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Guo Z, Jia X, Zhao B, Zeng S, Xiao J, Zheng B. C-type starches and their derivatives: structure and function. Ann N Y Acad Sci 2017; 1398:47-61. [PMID: 28445585 DOI: 10.1111/nyas.13351] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/11/2017] [Accepted: 03/17/2017] [Indexed: 02/05/2023]
Abstract
The C-type starches are widely distributed in seeds or rhizomes of various legumes, medicinal plants, and crops. These carbohydrate polymers directly affect the application of starchy plant resources. The structural and crystal properties of starches are crucial parameters of starch granules, which significantly influence their physicochemical and mechanical properties. The unique crystal structure consisting of both A- and B-type polymorphs endows C-type starches with specific crystal adjustability. Furthermore, large proportions of resistant starches and slowly digestible starches are C-type starches, which contribute to benign glycemic response and proliferation of gut microflora. Here, we review the distribution of C-type starches in various plant sources, the structural models and crystal properties of C-type starches, and the behavior and functionality relevant to modified C-type starches. We outline recent advances, potential applications, and limitations of C-type starches in industry, aiming to provide a theoretical basis for further research and to broaden the prospects of its applications.
Collapse
Affiliation(s)
- Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, P. R. China
| | - Xiangze Jia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, P. R. China
| | - Beibei Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, P. R. China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, P. R. China
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, P. R. China
| |
Collapse
|
22
|
Li Y, Liu S, Liu X, Tang X, Zhang J. The Impact of Heat-Moisture Treatment on Physicochemical Properties and Retrogradation Behavior of Sweet Potato Starch. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2017. [DOI: 10.1515/ijfe-2017-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Starch isolated from sweet potato was subjected to different levels of HMT at 15, 20, 25, 30, and 35 %. HMT showed negligible effect on the swelling power of starch. The swelling power was decreased with the increasing of the initial moisture content of the starch. The apparent amylose contents of HMT starches decreased from 24.11 % to 20.56 % with the initial moisture content increasing from 15 % to 35 %. The pasting temperatures enhanced from 73.1 to 81°C (p < 0.05) with the rapidly digestible starch (RDS) contents decreasing from 86.97 to 70.24 % (p < 0.05). Avrami equation analysis showed that HMT reduced the rate of starch retrogradation. The Avrami exponents of native and HMT-35 starches were 0.70 and 0.98 with the recrystallization rates 0.22 and 0.10, respectively. HMT could restrain the starch retrogradation and these results could provide theoretical guidance on sweet potato starch modification.
Collapse
|
23
|
Qiao D, Xie F, Zhang B, Zou W, Zhao S, Niu M, Lv R, Cheng Q, Jiang F, Zhu J. A further understanding of the multi-scale supramolecular structure and digestion rate of waxy starch. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.10.041] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Mao X, Huang H, Li X, Wang T, Chen X, Gao W. Physicochemical characterisation, digestibility and anticonstipation activity of some high-resistant untraditional starches from zingiberaceae plants. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xinhui Mao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Hanhan Huang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Tingting Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Xuetao Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| |
Collapse
|
25
|
Chen X, Mao X, Jiang Q, Wang T, Li X, Gao W. Study on the physicochemical properties andin vitrodigestibility of starch from yam with different drying methods. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuetao Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Xinhui Mao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Qianqian Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Tingting Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 China
| |
Collapse
|
26
|
Qiao D, Yu L, Liu H, Zou W, Xie F, Simon G, Petinakis E, Shen Z, Chen L. Insights into the hierarchical structure and digestion rate of alkali-modulated starches with different amylose contents. Carbohydr Polym 2016; 144:271-81. [DOI: 10.1016/j.carbpol.2016.02.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 11/17/2022]
|
27
|
Effect of heat-moisture and acid treatment on physicochemical, pasting, thermal and morphological properties of Horse Chestnut (Aesculus indica) starch. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.01.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Effect of alkali-treatment on physicochemical, pasting, thermal, morphological and structural properties of Horse Chestnut (Aesculus indica) starch. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2016. [DOI: 10.1007/s11694-016-9351-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Chen X, Li X, Mao X, Huang H, Miao J, Gao W. Study on the effects of different drying methods on physicochemical properties, structure, and in vitro digestibility of Fritillaria thunbergii Miq. (Zhebeimu) flours. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Zhu F. Isolation, Composition, Structure, Properties, Modifications, and Uses of Yam Starch. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12134] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences; University of Auckland; Private Bag 92019 Auckland 1142 New Zealand
| |
Collapse
|