1
|
Yang X, Niu Y, Fan Y, Zheng T, Fan J. Green synthesis of Poria cocos polysaccharides-silver nanoparticles and their applications in food packaging. Int J Biol Macromol 2024; 269:131928. [PMID: 38688339 DOI: 10.1016/j.ijbiomac.2024.131928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
To reduce pollution caused by traditional plastic packaging and preparation of silver nanoparticles (AgNPs), this work aims to develop biological macromolecular packaging films with green synthesized AgNPs. In this study, a novel P. cocos polysaccharide (PCP) with a unique monosaccharide composition was extracted from Poria cocos (Schw.) Wolf. Then, this polysaccharide containing 24.68 % rhamnose was used as a stabilizer for the green synthesis of PCP-AgNPs for the first time. PCP-AgNPs exhibited excellent antibacterial activity against P. aeruginosa, E. coli, and S. aureus, with the highest antibacterial activity against E. coli (inhibition zone diameter = 11.14 ± 0.79 mm). Subsequently, PCP-AgNPs/chitosan (CS) film was successfully prepared by incorporating PCP-AgNPs into the CS film solution. Several experiments demonstrated that the addition of this nanomaterial promoted the formation of noncovalent interactions between CS and PCP-AgNPs, resulting in a more regular and denser film. Compared to the CS film and control group, the PCP-AgNPs/CS film significantly maintained the quality indexes of strawberries. Therefore, this composite film successfully extended the shelf life of strawberries. Regarding safety, these packaging films were not cytotoxic toward RAW264.7 cells. In conclusion, the environmentally friendly PCP-AgNPs/CS film has the potential to replace some traditional food packaging materials.
Collapse
Affiliation(s)
- Xiaoqian Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yun Niu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yingrun Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Mosoarca G, Vancea C, Popa S, Dan M, Boran S. Utilizing Novel Lignocellulosic Material from Hart's-Tongue Fern ( Asplenium scolopendrium) Leaves for Crystal Violet Adsorption: Characterization, Application, and Optimization. Polymers (Basel) 2023; 15:3923. [PMID: 37835973 PMCID: PMC10575424 DOI: 10.3390/polym15193923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In this work, a new lignocellulosic adsorbent was obtained and tested for crystal violet dye removal from water. The material was obtained from hart's-tongue fern (Asplenium scolopendrium) leaves after minimal processing, without chemical or thermal treatment. The surface of the material was characterized using a variety of techniques, including FTIR, SEM, and color analysis. The effect of various factors on the adsorption capacity was then investigated and discussed. The kinetic and equilibrium studies showed that the general-order kinetic model and the Sips isotherm are the most suitable to describe the adsorption process. The equilibrium time was reached after 20 min and the maximum calculated value of the adsorption capacity was 224.2 (mg g-1). The determined values for the thermodynamic parameters indicated physical adsorption as the main mechanism involved in the process. The Taguchi method was used to optimize the adsorption conditions and identify the most influential controllable factor, which was pH. ANOVA (general linear model) was used to calculate the percentage contribution of each controllable factor to dye removal efficiency. Analysis of all the results shows that hart's-tongue fern (Asplenium scolopendrium) leaves are a very inexpensive, readily available, and effective adsorbent for removing crystal violet dye from aqueous solutions.
Collapse
Affiliation(s)
| | | | | | - Mircea Dan
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan, No. 6, 300223 Timisoara, Romania; (G.M.); (C.V.); (S.P.)
| | - Sorina Boran
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan, No. 6, 300223 Timisoara, Romania; (G.M.); (C.V.); (S.P.)
| |
Collapse
|
3
|
Nawaz A, Rehman HU, Usman M, Wakeel A, Shahid MS, Alam S, Sanaullah M, Atiq M, Farooq M. Nanobiotechnology in crop stress management: an overview of novel applications. DISCOVER NANO 2023; 18:74. [PMID: 37382723 PMCID: PMC10214921 DOI: 10.1186/s11671-023-03845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 06/30/2023]
Abstract
Agricultural crops are subject to a variety of biotic and abiotic stresses that adversely affect growth and reduce the yield of crop plantss. Traditional crop stress management approaches are not capable of fulfilling the food demand of the human population which is projected to reach 10 billion by 2050. Nanobiotechnology is the application of nanotechnology in biological fields and has emerged as a sustainable approach to enhancing agricultural productivity by alleviating various plant stresses. This article reviews innovations in nanobiotechnology and its role in promoting plant growth and enhancing plant resistance/tolerance against biotic and abiotic stresses and the underlying mechanisms. Nanoparticles, synthesized through various approaches (physical, chemical and biological), induce plant resistance against these stresses by strengthening the physical barriers, improving plant photosynthesis and activating plant defense mechanisms. The nanoparticles can also upregulate the expression of stress-related genes by increasing anti-stress compounds and activating the expression of defense-related genes. The unique physico-chemical characteristics of nanoparticles enhance biochemical activity and effectiveness to cause diverse impacts on plants. Molecular mechanisms of nanobiotechnology-induced tolerance to abiotic and biotic stresses have also been highlighted. Further research is needed on efficient synthesis methods, optimization of nanoparticle dosages, application techniques and integration with other technologies, and a better understanding of their fate in agricultural systems.
Collapse
Affiliation(s)
- Ahmad Nawaz
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Sardar Alam
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.
| |
Collapse
|
4
|
Biological activity of silver nanoparticles synthesized with Paenibacillus polymyxa exopolysaccharides. Enzyme Microb Technol 2023; 164:110174. [PMID: 36508942 DOI: 10.1016/j.enzmictec.2022.110174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Recently, there has been increased interest in the synthesis of nanoparticles by using natural polysaccharides. These polysaccharides are eco-friendly, nontoxic, and cheap to prepare. On the other hand, the attention in hydrocolloids and films has significantly enhanced, and their application is very promising in the food, pharmaceutical, perfumery and cosmetics, oil, paper, and textile industries. In this context, the present study is aimed to prepare silver nanoparticles by using viscous and superviscous exopolysaccharides of the rhizobacterium Paenibacillus polymyxa strains, CCM 1465 and 88A, and examined the properties of the resultant nanoparticles. We examined the synthesis and properties of silver nanoparticles under variable synthetic conditions by using exopolysaccharides of the rhizobacteria Paenibacillus polymyxa CCM 1465 and 88A. To prepare nanoparticles, we used different combinations of exopolysaccharide and silver nitrate concentrations: 1-10 mg/mL and 1-40 mM, respectively. The resulting solutions were alkalinized from pH 7.5-12 and heated for 15, 30, and 60 min to determine the optimal synthetic conditions. We found that the exopolysaccharides of strains CCM 1465 and 88A reduced silver ions and acted as nanoparticle stabilizers. The prepared spherical, oval, and triangular particles were stable and ranged in size from 2 to 40 nm, depending on the strain and on the experimental conditions. The nanoparticles showed antibacterial and antifungal activity against Escherichia coli K-12, Pseudomonas aeruginosa 50.3, Bacillus subtilis 26-D, and Fusarium oxysporum. In addition, the nanoparticles were active against SK-MEL-2 human melanoma cells. This finding shows the promise of further research on the exopolysaccharides of P. polymyxa 1465 and 88А in different fields of science, including medicine.
Collapse
|
5
|
Concórdio-Reis P, Macedo AC, Cardeira M, Moppert X, Guézennec J, Sevrin C, Grandfils C, Serra AT, Freitas F. Selenium Bio-Nanocomposite Based on Alteromonas macleodii Mo169 Exopolysaccharide: Synthesis, Characterization, and In Vitro Antioxidant Activity. Bioengineering (Basel) 2023; 10:bioengineering10020193. [PMID: 36829687 PMCID: PMC9952589 DOI: 10.3390/bioengineering10020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In this study, the novel exopolysaccharide (EPS) produced by the marine bacterium Alteromonas macleodii Mo 169 was used as a stabilizer and capping agent in the preparation of selenium nanoparticles (SeNPs). The synthesized nanoparticles were well dispersed and spherical with an average particle size of 32 nm. The cytotoxicity of the EPS and the EPS/SeNPs bio-nanocomposite was investigated on human keratinocyte (HaCaT) and fibroblast (CCD-1079Sk) cell lines. No cytotoxicity was found for the EPS alone for concentrations up to 1 g L-1. A cytotoxic effect was only noticed for the bio-nanocomposite at the highest concentrations tested (0.5 and 1 g L-1). In vitro experiments demonstrated that non-cytotoxic concentrations of the EPS/SeNPs bio-nanocomposite had a significant cellular antioxidant effect on the HaCaT cell line by reducing ROS levels up to 33.8%. These findings demonstrated that the A. macleodii Mo 169 EPS can be efficiently used as a stabilizer and surface coating to produce a SeNP-based bio-nanocomposite with improved antioxidant activity.
Collapse
Affiliation(s)
- Patrícia Concórdio-Reis
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana Catarina Macedo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Martim Cardeira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Xavier Moppert
- Pacific Biotech BP 140 289, Arue Tahiti 98 701, French Polynesia
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d’Ouessant, 29280 Plouzané, France
| | - Chantal Sevrin
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - Christian Grandfils
- Interfaculty Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- Correspondence: ; Tel.: +351-212948357
| |
Collapse
|
6
|
Jiang H, Lu H, Zhou Y, Liu Y, Hao C. High-efficiency degradation catalytic performance of a novel Angelica sinensis polysaccharide-silver nanomaterial for dyes by ultrasonic cavitation. ULTRASONICS SONOCHEMISTRY 2023; 93:106289. [PMID: 36638651 PMCID: PMC9852643 DOI: 10.1016/j.ultsonch.2023.106289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Currently, the polluted wastewater discharged by industry accounts for the major part of polluted bodies of water. As one of the industrial wastewaters, dye wastewater is characterized by high toxicity, wide pollution, and difficulty in decolorization degradation. In this paper, a novel composite nanomaterial catalyst of silver was prepared by using Angelica sinensis polysaccharide (ASP) as a reducing and stabilizing agent. And the optimum reaction conditions explored are VAgNO3 = 5 mL (300 mM) and vASP = 7% (w/v) for 6 h at 90 °C. In addition, the ASP-Ag nanocatalyst was characterized by several techniques. The results demonstrated that ASP-Ag nanoparticles were successfully synthesized. Degradation rate, which provides a numerical visualization of the percentage reduction in pollutant concentration. With the wrapping of ASP, the ultrasonic catalytic degradation rates of different organic dyes including rhodamine B (RB), methylene blue (MB), and methyl orange (MO) were from 88.2%, 88.7%, and 85.2% to 96.1%, 95.2% and 93.5% at room temperature, respectively. After the experiments, when cdyes = 10 mg/L, the highest degradation rate can be observed under cAPS-AgNPs = 10 mg/L with the most powerful cavitation frequency f = 59 kHz. The effect of ultrasonic frequency on the acoustic pressure distribution in the reactor was investigated by using COMSOL Multiphysis@ software to propose the mechanism of ultrasonic degradation and the mechanism was confirmed by OH radical trapping experiments. It indicates that OH produced by the ultrasonic cavitation effect plays a determinant role in the degradation. And then, the intermediate products of the dye degradation process were analyzed by gas chromatography and mass spectrometry (GC-MS), and the possible degradation processes of dyes were proposed. The resulting products of degradation are SO42-, NH4+, NO3-, N2, CO2 and H2O. Finally, the recycling degradation experiments showed that catalyst maintains a high degradation rate within reusing 5 cycles. Thus, this catalyst is highly efficient and recyclable.
Collapse
Affiliation(s)
- Hao Jiang
- Shaanxi Key Laboratory of Ultrasound, Shaanxi Normal University, Xi'an 710062, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Haonan Lu
- Shaanxi Key Laboratory of Ultrasound, Shaanxi Normal University, Xi'an 710062, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yongshan Zhou
- Shaanxi Key Laboratory of Ultrasound, Shaanxi Normal University, Xi'an 710062, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yongfeng Liu
- Shaanxi Key Laboratory of Ultrasound, Shaanxi Normal University, Xi'an 710062, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Changchun Hao
- Shaanxi Key Laboratory of Ultrasound, Shaanxi Normal University, Xi'an 710062, China; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
7
|
Alvandi H, Hatamian-Zarmi A, Webster TJ. Bioactivity and applications of mushroom and polysaccharide-derived nanotherapeutics. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
8
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Biogenic Nanoparticles Obtained by the Fungi-Mediated Synthesis: A Review. Biomimetics (Basel) 2022; 8:biomimetics8010001. [PMID: 36648787 PMCID: PMC9844505 DOI: 10.3390/biomimetics8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungi are very promising biological objects for the green synthesis of nanoparticles. Biogenic synthesis of nanoparticles using different mycological cultures and substances obtained from them is a promising, easy and environmentally friendly method. By varying the synthesis conditions, the same culture can be used to produce nanoparticles with different sizes, shapes, stability in colloids and, therefore, different biological activity. Fungi are capable of producing a wide range of biologically active compounds and have a powerful enzymatic system that allows them to form nanoparticles of various chemical elements. This review attempts to summarize and provide a comparative analysis of the currently accumulated data, including, among others, our research group's works, on the variety of the characteristics of the nanoparticles produced by various fungal species, their mycelium, fruiting bodies, extracts and purified fungal metabolites.
Collapse
Affiliation(s)
| | - Elena P. Vetchinkina
- Correspondence: ; Tel.: +7-8452-970-444 or +7-8452-970-383; Fax: +7-8452-970-383
| | | |
Collapse
|
9
|
Yang X, Wu JY. Synthetic Conditions, Physical Properties, and Antibacterial Activities of Silver Nanoparticles with Exopolysaccharides of a Medicinal Fungus. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5620. [PMID: 36013754 PMCID: PMC9412466 DOI: 10.3390/ma15165620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 05/14/2023]
Abstract
Natural polysaccharides are attractive and promising biomacromolecules for the green synthesis of silver nanoparticles (Ag NPs) with a broad spectrum of useful functions. This study aims to evaluate the synthetic conditions and physical properties of Ag NPs using three fractions of exopolysaccharide (EPS), namely EPS-1, EPS-2, and EPS-3, produced by a medicinal fungus known as Cs-HK1, with variations in their chemical composition and molecular weight. Each of the EPS fractions had a unique set of optimal synthetic conditions (reaction time course, temperature, and reagent concentration), resulting in a specific range of Ag NP size distributions. The Ag NPs synthesized with the EPS-1 fraction had the smallest particle size (~160 nm) and the most significant antibacterial activities against Escherichia coli (Gram-) and Staphylococcus aureus (Gram+), with a minimal inhibitory concentration (MIC) of 0.2 mg/mL on E. coli and 0.075 mg/mL on S. aureus. The results proved the success of the scheme of this green synthesis scheme with all three EPS fractions and the potential antibacterial application of EPS-coated Ag NPs.
Collapse
Affiliation(s)
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
10
|
Microbe-fabricated nanoparticles as potent biomaterials for efficient food preservation. Int J Food Microbiol 2022; 379:109833. [PMID: 35914405 DOI: 10.1016/j.ijfoodmicro.2022.109833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
In recent years, cutting-edge nanotechnology research has revolutionized several facets of the food business, including food processing, packaging, transportation, preservation, and functioning. Nanotechnology has beginning to loom large in the food business as the industry's demand for biogenic nanomaterial grows. The intracellular and extracellular synthesis of metal, metal oxide, and other essential NPs has recently been explored in a variety of microorganisms, including bacteria, actinomycetes, fungi, yeasts, microalgae, and viruses. These microbes produce a variety extracellular material, exopolysaccharides, enzymes, and secondary metabolites which play key roles in synthesizing as well as stabilizing the nanoparticle (NPs). Furthermore, genetic engineering techniques can help them to improve their capacity to generate NPs more efficiently. As a result, using microorganisms to manufacture NPs is unique and has a promising future. Microbial-mediated synthesis of NPs has lately been popular as a more environmentally friendly alternative to physical and chemical methods of nanomaterial synthesis, which require higher prices, more energy consumption, and more complex reaction conditions, as well as a potentially dangerous environmental impact. It is critical to consider regulatory measures implemented at all stages of the process, from production through refining, packaging, preservation, and storage, when producing bionanomaterials derived from culturable microbes for efficient food preservation. The current review discusses the synthesis, mechanism of action, and possible food preservation uses of microbial mediated NPs, which can assist to minimize food deterioration from the inside out while also ensuring that food is safe and free of contaminants. Despite the numerous benefits, there are looming debates concerning their usage in food items, particularly regarding its aggregation in human bodies and other risks to the environment. Other applications and impacts of these microbe-fabricated NPs in the context of future food preservation prospects connected with regulatory problems and potential hazards are highlighted.
Collapse
|
11
|
Zhang D, Zhou Z, Du J, Liao X, Xu G, Hong Y, Xiong J. Evaluation of Antibacterial and Antifungal Properties of
Lonicera japonica Thunb
. Leaves mediated Silver Nanoparticles and Mechanism Investigation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dan‐Feng Zhang
- College of Food Science & Engineering Jiangxi Agricultural University Nanchang 330045 Jiangxi People’s Republic of China
| | - Zhi‐E Zhou
- College of Food Science & Engineering Jiangxi Agricultural University Nanchang 330045 Jiangxi People’s Republic of China
| | - Juan Du
- College of Food Science & Engineering Jiangxi Agricultural University Nanchang 330045 Jiangxi People’s Republic of China
- Jiangxi key Laboratory of Natural Product and Functional Food, College of Food Science & Engineering Jiangxi Agricultural University Nanchang 330045 Jiangxi People’s Republic of China
| | - Xiao‐Ning Liao
- Research center of Mycotoxin Jiangxi Agricultural University Nanchang 330045 Jiangxi People’s Republic of China
| | - Gao‐Ding Xu
- College of Food Science & Engineering Jiangxi Agricultural University Nanchang 330045 Jiangxi People’s Republic of China
| | - Yan‐Ping Hong
- College of Food Science & Engineering Jiangxi Agricultural University Nanchang 330045 Jiangxi People’s Republic of China
- Jiangxi key Laboratory of Natural Product and Functional Food, College of Food Science & Engineering Jiangxi Agricultural University Nanchang 330045 Jiangxi People’s Republic of China
| | - Jian‐Hua Xiong
- College of Food Science & Engineering Jiangxi Agricultural University Nanchang 330045 Jiangxi People’s Republic of China
| |
Collapse
|
12
|
Narayanan M, Priya S, Natarajan D, Alahmadi TA, Alharbi SA, Krishnan R, Chi NTL, Pugazhendhi A. Phyto-fabrication of Silver nanoparticle using leaf extracts of Aristolochia bracteolata Lam and their mosquito larvicidal potential. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Zeng A, Wang B, Zhang C, Yang R, Yu S, Zhao W. Physicochemical properties and antibacterial application of silver nanoparticles stabilized by whey protein isolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Eze FN, Ovatlarnporn C, Jayeoye TJ, Nalinbenjapun S, Sripetthong S. One-pot biofabrication and characterization of Tara gum/Riceberry phenolics-silver nanogel: A cytocompatible and green nanoplatform with multifaceted biological applications. Int J Biol Macromol 2022; 206:521-533. [PMID: 35231534 DOI: 10.1016/j.ijbiomac.2022.02.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 11/05/2022]
Abstract
This work proposed a one-pot green route for the development of a biocompatible Tara gum-Riceberry phenolics‑silver nanosphere hybrid nanocomposite (TG/RiPE-SNG) with manifold biological potentialities. The reaction system comprised of AgNO3 as nanosilver precursor, Riceberry phenolic extract as the green in situ reductant, and Tara gum as stabilizing and anchoring agent. TG/RiPE-SNG was extensively characterized using UV-vis spectroscopy, FTIR, RAMAN, TEM, FESEM, EDX, DLS/zeta potential, XRD, and TGA analyses. Small, stable, spherical, well-dispersed SNP with an average particle size of 13.01 nm and λmax of 421 nm were synthesized in situ, and uniformly distributed within the gel-like TG/RiPE composite. The prepared nanocomposite demonstrated superior antibacterial properties (MIC of 12.5 μg/mL) against S. aureus and S. epidermidis compared to the gum or extract. Additionally, TG/RiPE-SNG exhibited strong light barrier, tyrosinase inhibitory and antioxidant functionalities. TG/RiPE-SNG also exhibited high stability at different pH and was more thermally stable relative to the plain TG/RiPE composite. Furthermore, TG/RiPE-SNG showed good biocompatibility towards mouse L929 fibroblasts and rat erythrocytes. The obtained findings revealed a simple, benign, and inexpensive approach using only natural ingredients for the preparation of gum-based biopolymer-nanosilver hybrid nanocomposite and underscored the strong attributes of TG/RiPE-SNP as a nanomaterial with desirable biomedical potentials.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Chitchamai Ovatlarnporn
- Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Physical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike (AE-FUNAI), P.M.B. 1010, Abakaliki, Ebonyi State, Nigeria
| | - Sirinporn Nalinbenjapun
- Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sasikarn Sripetthong
- Drug Delivery System Excellence Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
15
|
Antioxidant, Antibacterial, and Antiparasitary Activities of Green Nanoparticles Synthesized Using Water-Soluble Melanins of Fruits. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00940-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Patar M, Moyon NS, Sinha T. Biogenic Fabrication of Silver Nanoparticles: A Potent and Ideal Candidate for Wastewater Treatment and Water Disinfection. ChemistrySelect 2022. [DOI: 10.1002/slct.202103374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Madhumita Patar
- Department Of Chemistry National Institute Of Technology Silchar Assam 788010 India
| | | | - Tanur Sinha
- School of Chemistry University of Bristol Cantock's close Bristol BS81TS UK
| |
Collapse
|
17
|
Michael OS, Adetunji CO, Ayeni AE, Akram M, Inamuddin, Adetunji JB, Olaniyan M, Muhibi MA. Marine Polysaccharides: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
18
|
Li K, Liu Z, Liu X, Wang L, Zhao J, Zhang X, Kong Y, Chen M. An anti-biofilm material: polysaccharides prevent the precipitation reaction of silver ions and chloride ions and lead to the synthesis of nano silver chloride. NANOTECHNOLOGY 2021; 32:315601. [PMID: 33836506 DOI: 10.1088/1361-6528/abf68e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The formation of biofilm is one of the causes of bacterial pathogenicity and drug resistance. Recent studies have reported a variety of anti-biofilm materials and achieved good results. However, it is still very important to develop some materials with wider application scenarios or higher biofilm resistance. In this study, a new method to rapidly synthesize nano silver chloride with anti-biofilm activity is proposed. It is a generalizable method in which bacterial extracellular polysaccharides are used to adsorb silver ions, thereby inhibiting the formation of white large-size silver chloride precipitates, and then ultraviolet light is used to induce the synthesis of small-sized nano silver chloride. A variety of polysaccharides can be utilized in the synthesis of nano silver chloride particles. The generated complex was characterized by XRD, UV-vis, EDX, FTIR and TEM methods. Further, the novel complex was found to show highly effective anti-biofilm and bactericidal activity within the biosafety concentration. In view of the high stability of nano sliver chloride, we propose that the novel nano material has the potential as a long-term antibacterial material.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Zhaoxi Liu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiaoyu Liu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Lei Wang
- School of Life Sciences, Ludong University, Yantai, Shandong, People's Republic of China
| | - Jiayu Zhao
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Xunlian Zhang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Yun Kong
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| | - Min Chen
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, 266237, People's Republic of China
| |
Collapse
|
19
|
Yilmaz MT, İspirli H, Taylan O, Dertli E. A green nano-biosynthesis of selenium nanoparticles with Tarragon extract: Structural, thermal, and antimicrobial characterization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Silver nanocomposites based on the bacterial fucose-rich polysaccharide secreted by Enterobacter A47 for wound dressing applications: Synthesis, characterization and in vitro bioactivity. Int J Biol Macromol 2020; 163:959-969. [DOI: 10.1016/j.ijbiomac.2020.07.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
|
21
|
Green and facile fabrication of silver nanoparticles using Konjac Glucomannan by photocatalytic strategy. Carbohydr Polym 2020; 245:116576. [DOI: 10.1016/j.carbpol.2020.116576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022]
|
22
|
Silva Viana RL, Pereira Fidelis G, Jane Campos Medeiros M, Antonio Morgano M, Gabriela Chagas Faustino Alves M, Domingues Passero LF, Lima Pontes D, Cordeiro Theodoro R, Domingos Arantes T, Araujo Sabry D, Lanzi Sassaki G, Fagundes Melo-Silveira R, Rocha HAO. Green Synthesis of Antileishmanial and Antifungal Silver Nanoparticles Using Corn Cob Xylan as a Reducing and Stabilizing Agent. Biomolecules 2020; 10:E1235. [PMID: 32854282 PMCID: PMC7565311 DOI: 10.3390/biom10091235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
Corn cob is an agricultural byproduct that produces an estimated waste burden in the thousands of tons annually, but it is also a good source of xylan, an important bioactive polysaccharide. Silver nanoparticles containing xylan (nanoxylan) were produced using an environmentally friendly synthesis method. To do this, we extracted xylan from corn cobs using an ultrasound technique, which was confirmed by both chemical and NMR analyses. This xylan contained xylose, glucose, arabinose, galactose, mannose, and glucuronic acid in a molar ratio of 50:21:14:9:2.5:2.5, respectively. Nanoxylan synthesis was analyzed using UV-vis spectroscopy at kmax = 469 nm and Fourier transform infrared spectroscopy (FT-IR), which confirmed the presence of both silver and xylan in the nanoxylan product. Dynamic light scattering (DLS) and atomic force microscopy (AFM) revealed that the nanoxylan particles were ~102.0 nm in size and spherical in shape, respectively. DLS also demonstrated that nanoxylan was stable for 12 months and coupled plasma optical emission spectrometry (ICP-OES) showed that the nanoxylan particles were 19% silver. Nanoxylan reduced Leishmania amazonensis promastigote viability with a half maximal inhibitory concentration (IC50) value of 25 μg/mL, while xylan alone showed no effective. Additionally, nanoxylan exhibited antifungal activity against Candida albicans (MIC = 7.5 μg/mL), C. parapsilosis (MIC = 7.5 μg/mL), and Cryptococcus neoformans (MIC = 7.5 μg/mL). Taken together, these data suggest that it is possible to synthesize silver nanoparticles using xylan and that these nanoxylan exert improved antileishmanial and antifungal activities when compared to the untreated polysaccharide or silver nitrate used for their synthesis. Thus, nanoxylan may represent a promising new class of antiparasitic agents for use in the treatment of these microorganisms.
Collapse
Affiliation(s)
- Rony Lucas Silva Viana
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Rio Grande do Norte 59078-970, Brazil; (R.L.S.V.); (G.P.F.); (M.G.C.F.A.); (R.C.T.); (T.D.A.); (D.A.S.); (R.F.M.-S.)
| | - Gabriel Pereira Fidelis
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Rio Grande do Norte 59078-970, Brazil; (R.L.S.V.); (G.P.F.); (M.G.C.F.A.); (R.C.T.); (T.D.A.); (D.A.S.); (R.F.M.-S.)
| | - Mayara Jane Campos Medeiros
- Departamento de Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Rio Grande do Norte 59078-970, Brazil; (M.J.C.M.); (D.L.P.)
| | - Marcelo Antonio Morgano
- Centro de Ciências e Qualidade dos Alimentos (CCQA), Instituto de Tecnologia dos Alimentos (ITAL), Campinas 13070-178, SP, Brazil;
| | - Monique Gabriela Chagas Faustino Alves
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Rio Grande do Norte 59078-970, Brazil; (R.L.S.V.); (G.P.F.); (M.G.C.F.A.); (R.C.T.); (T.D.A.); (D.A.S.); (R.F.M.-S.)
| | - Luiz Felipe Domingues Passero
- Instituto de Biociências, Universidade Estadual de São Paulo (Unesp), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil;
| | - Daniel Lima Pontes
- Departamento de Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Rio Grande do Norte 59078-970, Brazil; (M.J.C.M.); (D.L.P.)
| | - Raquel Cordeiro Theodoro
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Rio Grande do Norte 59078-970, Brazil; (R.L.S.V.); (G.P.F.); (M.G.C.F.A.); (R.C.T.); (T.D.A.); (D.A.S.); (R.F.M.-S.)
| | - Thales Domingos Arantes
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Rio Grande do Norte 59078-970, Brazil; (R.L.S.V.); (G.P.F.); (M.G.C.F.A.); (R.C.T.); (T.D.A.); (D.A.S.); (R.F.M.-S.)
| | - Diego Araujo Sabry
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Rio Grande do Norte 59078-970, Brazil; (R.L.S.V.); (G.P.F.); (M.G.C.F.A.); (R.C.T.); (T.D.A.); (D.A.S.); (R.F.M.-S.)
| | | | - Raniere Fagundes Melo-Silveira
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Rio Grande do Norte 59078-970, Brazil; (R.L.S.V.); (G.P.F.); (M.G.C.F.A.); (R.C.T.); (T.D.A.); (D.A.S.); (R.F.M.-S.)
| | - Hugo Alexandre Oliveira Rocha
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Rio Grande do Norte 59078-970, Brazil; (R.L.S.V.); (G.P.F.); (M.G.C.F.A.); (R.C.T.); (T.D.A.); (D.A.S.); (R.F.M.-S.)
| |
Collapse
|
23
|
Vazquez-Rodriguez A, Vasto-Anzaldo XG, Leon-Buitimea A, Zarate X, Morones-Ramirez JR. Antibacterial and Antibiofilm Activity of Biosynthesized Silver Nanoparticles Coated With Exopolysaccharides Obtained From Rhodotorula mucilaginosa. IEEE Trans Nanobioscience 2020; 19:498-503. [DOI: 10.1109/tnb.2020.2985101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Yilmaz MT, İspirli H, Taylan O, Dertli E. Synthesis and characterisation of alternan-stabilised silver nanoparticles and determination of their antibacterial and antifungal activities against foodborne pathogens and fungi. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Garza-Cervantes JA, Mendiola-Garza G, de Melo EM, Dugmore TIJ, Matharu AS, Morones-Ramirez JR. Antimicrobial activity of a silver-microfibrillated cellulose biocomposite against susceptible and resistant bacteria. Sci Rep 2020; 10:7281. [PMID: 32350328 PMCID: PMC7190717 DOI: 10.1038/s41598-020-64127-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Antibiotic Microbial Resistance (AMR) is a major global challenge as it constitutes a severe threat to global public health if not addressed. To fight against AMR bacteria, new antimicrobial agents are continually needed, and their efficacy must be tested. Historically, many transition metals have been employed, but their cytotoxicity is an issue and hence must be reduced, typically by combination with organic polymers. Cellulose of natural origin, especially those derived from unavoidable residues in the food supply chain, appears to be a good capping agent for the green synthesis of silver nanoparticles. Herein, we describe a green synthesis method to produce a novel biocomposite, using ascorbic acid as reducing agent and microfibrillated cellulose as a capping agent and demonstrate this material to be an efficient antimicrobial agent. Silver nanoparticles were obtained in the cellulose matrix with an average size of 140 nm and with antimicrobial activity against both sensitive and resistant Gram positive (using 1500 ppm) as well as sensitive and resistant Gram negative (using 125 ppm) bacteria. Also, an inverted disk-diffusion methodology was applied to overcome the low-solubility of cellulose compounds. This novel silver nanoparticle-cellulose biocomposite synthesized by a green methodology shows the potential to be applied in the future development of biomedical instruments and therapeutics.
Collapse
Affiliation(s)
- Javier Alberto Garza-Cervantes
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas. Av. Universidad s/n. CD. Universitaria, 66455, San Nicolás de los Garza, NL, México
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, México
| | - Gricelda Mendiola-Garza
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas. Av. Universidad s/n. CD. Universitaria, 66455, San Nicolás de los Garza, NL, México
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, México
| | - Eduardo Macedo de Melo
- Institute of Bio- and Geosciences 1 (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tom I J Dugmore
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, YO10 5DD, York, England, United Kingdom
| | - Avtar S Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, YO10 5DD, York, England, United Kingdom.
| | - Jose Ruben Morones-Ramirez
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas. Av. Universidad s/n. CD. Universitaria, 66455, San Nicolás de los Garza, NL, México.
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, México.
| |
Collapse
|
26
|
Irshad A, Sarwar N, Sadia H, Malik K, Javed I, Irshad A, Afzal M, Abbas M, Rizvi H. Comprehensive facts on dynamic antimicrobial properties of polysaccharides and biomolecules-silver nanoparticle conjugate. Int J Biol Macromol 2019; 145:189-196. [PMID: 31838065 DOI: 10.1016/j.ijbiomac.2019.12.089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023]
Abstract
Based on progress for the green synthesis of nanoparticle (NPs), the mushrooms have also been utilized extensively for the biogenic synthesis of NPs. In recent years, silver NPs have been fabricated using mushrooms. The antimicrobial drugs are efficient to control the infectious diseases, but due to widespread of drugs, microbes became resistant to drugs, which demands develop of new bioactive agents. The silver NPs have been recognized as efficient broad spectrum antimicrobial agents, which have been fabricated using polysaccharides from mushrooms as reducing and capping agent. This review focused on the comprehensive study that deals silver NPs polysaccharides from Pleurotus mushroom, their synthesis mechanism, action mechanism of silver NPs and their characterization using advanced techniques i.e., ultraviolet-visible (UV-Vis), dynamic light scattering, Fourier transformation infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and XRD. The Pleurotus mushroom showed promising efficiency for the biogenic synthesis of polysaccharides‑silver NPS and as-prepared NPs showed excellent antimicrobial activity.
Collapse
Affiliation(s)
- Asma Irshad
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Nadeem Sarwar
- Department of Computer Science, Bahria University (Lahore Campus), Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Kausar Malik
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Irum Javed
- Department of Biochemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Abdullah Irshad
- Department of General Surgery, Indus Hospital, Karachi, Pakistan
| | - Muhammad Afzal
- Department of Biochemistry, University of Central Punjab, Lahore, Pakistan
| | - Mazhar Abbas
- Department of Biochemistry, College of Veterinary and Animal Sciences (Jhung Campus), Pakistan
| | - Hina Rizvi
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| |
Collapse
|
27
|
SIMBINE EO, RODRIGUES LDC, LAPA-GUIMARÃES J, KAMIMURA ES, CORASSIN CH, OLIVEIRA CAFD. Application of silver nanoparticles in food packages: a review. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.36318] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Green Synthesis and Characterization of Pullulan Mediated Silver Nanoparticles through Ultraviolet Irradiation. MATERIALS 2019; 12:ma12152382. [PMID: 31357398 PMCID: PMC6696301 DOI: 10.3390/ma12152382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 01/11/2023]
Abstract
Nanoparticles (NPs) are, frequently, being utilized in multi-dimensional enterprises. Silver nanoparticles (AgNPs) have attracted researchers in the last decade due to their exceptional efficacy at very low volume and stability at higher temperatures. Due to certain limitations of the chemical method of synthesis, AgNPs can be obtained by physical methods including sun rays, microwaves and ultraviolet (UV) radiation. In the current study, the synthesis of pullulan mediated silver nanoparticles (P-AgNPs) was achieved through ultraviolet (UV) irradiation, with a wavelength of 365 nm, for 96 h. P-AgNPs were formed after 24 h of UV-irradiation time and expressed spectra maxima as 415 nm, after 96 h, in UV-vis spectroscopy. The crystallographic structure was “face centered cubic (fcc)” as confirmed by powder X-ray diffraction (PXRD). Furthermore, high resolution transmission electron microscopy (HRTEM) proved that P-AgNPs were covered with a thin layer of pullulan, with a mean crystalline size of 6.02 ± 2.37. The average lattice fringe spacing of nanoparticles was confirmed as 0.235 nm with quasi-spherical characteristics, by selected area electron diffraction (SAED) analysis. These green synthesized P-AgNPs can be utilized efficiently, as an active food and meat preservative, when incorporated into the edible films.
Collapse
|
29
|
Irshad A, Sarwar N, Sadia H, Riaz M, Sharif S, Shahid M, Khan JA. Silver nano-particles: synthesis and characterization by using glucans extracted from Pleurotus ostreatus. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01103-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Kritchenkov AS, Egorov AR, Dubashynskaya NV, Volkova OV, Zabodalova LA, Suchkova EP, Kurliuk AV, Shakola TV, Dysin AP. Natural polysaccharide-based smart (temperature sensing) and active (antibacterial, antioxidant and photoprotective) nanoparticles with potential application in biocompatible food coatings. Int J Biol Macromol 2019; 134:480-486. [PMID: 31063784 DOI: 10.1016/j.ijbiomac.2019.04.194] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
Smart and active nanoparticles are of increasing interest in food films and coatings application. In the current study, we purpose novel nanoparticles NPs-4(1:5) and NPs-4(1:5.5), which possess simultaneously both smart (temperature sensitive) and active (antibacterial, light absorbing and antioxidant) properties. The obtained nanoparticles are based on PEG/MC core with anthocyanidin and sodium acetate, and chitosan/gallotannin-based shell. The nanoparticles have hydrodynamic diameter ca. 450 nm and are positively charged (ζ-potential is 21 mV for NPs-4(1:5) and +23 mV for NPs-4(1:5.5). NPs-4(1:5) and NPs-4(1:5.5) are thermochromic and turn from colorless to purple at ca. 20 °C 0 °C respectively. The nanoparticles possess antibacterial activity much more than the starting chitosan (MIC, μg/mL, E. coli: 1.35 (NPs-4(1:5)), 1.18 (NPs-4(1:5.5)) and 10.12 (chitosan); S. aureus: 1.14 (NPs-4(1:5)), 1.10 (NPs-4(1:5.5)) and 6.20 (chitosan)). The nanoparticles efficiently absorb ultraviolet light, have high antioxidant effect (0.051 trolox equivalents), are non-toxic and fully composed of substances approved for use in the food industry.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation; Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation; Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation.
| | - Anton R Egorov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation; Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Olga V Volkova
- Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Ludmila A Zabodalova
- Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Elena P Suchkova
- Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Tatsiana V Shakola
- Vitebsk State Medical University, Frunze av. 27, Vitebsk 210009, Belarus
| | - Artem P Dysin
- Saint-Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101 St. Petersburg, Russian Federation
| |
Collapse
|
31
|
Jian W, Ma Y, Wu H, Zhu X, Wang J, Xiong H, Lin L, Wu L. Fabrication of highly stable silver nanoparticles using polysaccharide-protein complexes from abalone viscera and antibacterial activity evaluation. Int J Biol Macromol 2019; 128:839-847. [DOI: 10.1016/j.ijbiomac.2019.01.197] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 02/04/2023]
|
32
|
Wang X, Yan L, Ye T, Cheng R, Tian J, Ma C, Wang Y, Cui W. Osteogenic and antiseptic nanocoating by in situ chitosan regulated electrochemical deposition for promoting osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:415-426. [PMID: 31147012 DOI: 10.1016/j.msec.2019.04.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/01/2019] [Accepted: 04/20/2019] [Indexed: 01/09/2023]
Abstract
Ti and titanium alloy have been extensively utilized in the areas of orthopedics and other related fields, however, limited abilities in antibiosis, ossification and vascularization restrict the application of these materials in clinical. In this research, pulse electrochemical deposition was used as a method to make chitosan regulate Ag+ and Ca2+ in situ, achieving ions' dual regulations and coprecipitation of HA nanoparticles (HA-NPs) and Ag nanoparticles (Ag-NPs) on the surface of Ti. The spherical nanoparticles with even distribution were fabricated by optimizing deposition potential and the concentration of Ag+. The physical stabilities of coatings were significantly improved by the chelation among CS, Ag+ and Ca2+ reducing the release rate of Ag+, Ca2+. The coatings also exhibited noticeable abilities in anti-bacteria. Bone marrow mesenchymal stem cells (BMSCs) displayed adhesion, proliferation and differentiation abilities on the surface of coatings, at the same time the composite coatings revealed promising capability in inducing BMSCs differentiation to osteoblast, which is proved by the results of fluorescent dye. Similar results also can be found in investigations about vascular endothelial cells, desirable adhesion between cells and materials and proliferation are able to prove that this kind of materials has outstanding biocompatibility with VECs cells. The animal experiments indicated that the composite coatings were biocompatible with smooth muscle, myocardium and lung with slightly negative impacts on liver and kidney. According to the results of alizarin red staining, the calcified nodules were dyed red, which reveal that this material can promote bone formation. Electrochemical method was utilized in this research to successfully construct multifunctional composite coatings, such as antibiosis, osteogenesis and angiogenesis, on the surface of Ti.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Ling Yan
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China
| | - Tingjun Ye
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Ruoyu Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Juling Tian
- Laboratory Department of the First People's Hospital of Urumqi, 1 Jiankang Road, Urumqi 830002, PR China
| | - Chuang Ma
- Department of Orthopedics Center, the First Affiliated Hospital of Xinjiang Medical University, 393 Xinyi Road, Urumqi 830054, PR China.
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, Urumqi 830054, Xinjiang, PR China.
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
33
|
Zhou FF, Zhang YD, Zhang Q, Lu J, Liu Y, Wang JH. Structure characterization and immunological activity of a β-glucan from White H. marmoreus and its silver nanoparticle derivatives. Carbohydr Polym 2019; 210:1-8. [DOI: 10.1016/j.carbpol.2019.01.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
34
|
Zhang J, Yue X, Zeng Y, Hua E, Wang M, Sun Y. Bacillus amyloliquefaciens levan and its silver nanoparticles with antimicrobial properties. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1523690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jiangang Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P.R. China
| | - Xiaoping Yue
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P.R. China
| | - Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P.R. China
| | - Erbin Hua
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Min Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, P.R. China
| |
Collapse
|
35
|
El Enshasy HA, Joel D, Singh DP, Malek RA, Elsayed EA, Hanapi SZ, Kumar K. Mushrooms: New Biofactories for Nanomaterial Production of Different Industrial and Medical Applications. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019:87-126. [DOI: 10.1007/978-3-030-16383-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
36
|
Jamróz E, Kopel P, Juszczak L, Kawecka A, Bytesnikova Z, Milosavljević V, Kucharek M, Makarewicz M, Adam V. Development and characterisation of furcellaran-gelatin films containing SeNPs and AgNPs that have antimicrobial activity. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Cunha FA, Cunha MDCSO, da Frota SM, Mallmann EJJ, Freire TM, Costa LS, Paula AJ, Menezes EA, Fechine PBA. Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World J Microbiol Biotechnol 2018; 34:127. [PMID: 30084085 DOI: 10.1007/s11274-018-2514-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/01/2018] [Indexed: 01/14/2023]
Abstract
Silver nanoparticles (AgNPs) have several technological applications and may be synthetized by chemical, physical and biological methods. Biosynthesis using fungi has a wide enzymatic range and it is easy to handle. However, there are few reports of yeasts with biosynthetic ability to produce stable AgNPs. The purpose of this study was to isolate and identify soil yeasts (Rhodotorula glutinis and Rhodotorula mucilaginosa). After this step, the yeasts were used to obtain AgNPs with catalytic and antifungal activity evaluation. Silver Nanoparticles were characterized by UV-Vis, DLS, FTIR, XRD, EDX, SEM, TEM and AFM. The AgNPs produced by R. glutinis and R. mucilaginosa have 15.45 ± 7.94 nm and 13.70 ± 8.21 nm (average ± SD), respectively, when analyzed by TEM. AgNPs showed high catalytic capacity in the degradation of 4-nitrophenol and methylene blue. In addition, AgNPs showed high antifungal activity against Candida parapsilosis and increase the activity of fluconazole (42.2% for R. glutinis and 29.7% for R. mucilaginosa), while the cytotoxicity of AgNPs was only observed at high concentrations. Finally, two yeasts with the ability to produce AgNPs were described and these particles showed multifunctionality and can represent a technological alternative in many different areas with potential applications.
Collapse
Affiliation(s)
- Francisco A Cunha
- Grupo de Química de Materiais Avançados (GQMat)- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970, Fortaleza, CE, Brazil.,Laboratório de Microbiologia de Leveduras - Departamento de Análises Clínicas, Universidade Federal do Ceará - UFC, Fortaleza, Brazil
| | - Maria da C S O Cunha
- Laboratório de Microbiologia de Leveduras - Departamento de Análises Clínicas, Universidade Federal do Ceará - UFC, Fortaleza, Brazil
| | - Sabrina M da Frota
- Laboratório de Microbiologia de Leveduras - Departamento de Análises Clínicas, Universidade Federal do Ceará - UFC, Fortaleza, Brazil
| | - Eduardo J J Mallmann
- Grupo de Química de Materiais Avançados (GQMat)- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970, Fortaleza, CE, Brazil
| | - Tiago M Freire
- Grupo de Química de Materiais Avançados (GQMat)- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970, Fortaleza, CE, Brazil
| | - Luelc S Costa
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa Em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Amauri J Paula
- Solid-Biological Interface Group (SolBIN), Departamento de Física, Universidade Federal do Ceará, P.O. Box 6030, Fortaleza, CE, 60455-900, Brazil
| | - Everardo A Menezes
- Laboratório de Microbiologia de Leveduras - Departamento de Análises Clínicas, Universidade Federal do Ceará - UFC, Fortaleza, Brazil
| | - Pierre B A Fechine
- Grupo de Química de Materiais Avançados (GQMat)- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará - UFC, Campus do Pici, CP 12100, CEP 60451-970, Fortaleza, CE, Brazil.
| |
Collapse
|
38
|
Abinaya M, Vaseeharan B, Divya M, Sharmili A, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J Trace Elem Med Biol 2018; 45:93-103. [PMID: 29173489 DOI: 10.1016/j.jtemb.2017.10.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/20/2017] [Accepted: 10/07/2017] [Indexed: 01/16/2023]
Abstract
In this study, a novel and effective approach was performed to synthesize ZnO nanoparticles (ZnO NPs) using the exopolysaccharides (EPS) from the probiotic strain Bacillus licheniformis Dahb1. EPS acted as reducing and stabilizing agent for the formation of EPS-ZnO NPs by co-precipitation method. Structural characterization was investigated by a surface plasma resonance centered at 375nm in UV-vis spectrum. FTIR spectrum exhibited functional groups with strong absorption peak at 3814.7-420cm-1. XRD showed the crystalline nature of EPS-ZnO NPs. TEM showed that the EPS-ZnO NPs were hexagonal in shape, with size within the range of 10-100nm. The presence of Zn was confirmed by EDX analysis. Antibacterial activity of EPS-ZnO NPs was demonstrated as 100μg/ml significantly inhibited the effective growth control of Gram-negative (Pseudomonas aeruginosa and Proteus vulgaris) and Gram-positive (Bacillus subtilis and Bacillus pumilus) bacteria. Light microscopy and confocal laser scanning microscopy evidenced that the antibiofilm activity of EPS-ZnO NPs was higher against Gram-negative bacteria over Gram positive bacteria. EPS-ZnO NPs also inhibited the biofilm growth of Candida albicans at the concentration of 75μg/ml. The hemolytic test showed low cytotoxicity of EPS-ZnO NPs at 5mg/ml. In addition, EPS-ZnO NPs achieved 100% mortality against third instars mosquito larvae of Anopheles stephensi and Aedes aegypti at very low doses. Moreover, histology studies revealed the presence of damaged cells and tissues in the mid-gut of treated mosquito larvae. The multipurpose properties of EPS-ZnO NPs revealed in the present study can be further considered for pharmaceutical, parasitological and entomological applications.
Collapse
Affiliation(s)
- Muthukumar Abinaya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 6th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 6th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India.
| | - Mani Divya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Science Block 6th Floor, Burma Colony, Karaikudi 630004, Tamil Nadu, India
| | - Aruna Sharmili
- Department of Biotechnology, Stella Maris College, Chennai 625 003, Tamil Nadu, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
39
|
Fernandes-Negreiros MM, Araújo Machado RI, Bezerra FL, Nunes Melo MC, Alves MGCF, Alves Filgueira LG, Morgano MA, Trindade ES, Costa LS, Rocha HAO. Antibacterial, Antiproliferative, and Immunomodulatory Activity of Silver Nanoparticles Synthesized with Fucans from the Alga Dictyota mertensii. NANOMATERIALS 2017; 8:nano8010006. [PMID: 29295570 PMCID: PMC5791093 DOI: 10.3390/nano8010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022]
Abstract
In this study, we aimed to synthesize silver nanoparticles containing fucans from Dictyota mertensii (Martius) Kützing using an environmentally friendly method and to characterize their structure as well as antiproliferative, immunomodulatory, and antibacterial effects. Fucan-coated silver nanoparticles (FN) were characterized by Fourier-transform infrared analysis, dynamic light scattering, zeta potential, atomic force microscopy, energy dispersive X-ray spectroscopy, and inductively coupled plasma emission spectrometry. They were evaluated for their effect on cell viability, minimum inhibitory bactericidal concentration, and release of nitric oxide and cytokines. The FN were successfully synthesized using an environmentally friendly method. They were size-stable for 16 months, of a spherical shape, negative charge (-19.1 mV), and an average size of 103.3 ± 43 nm. They were able to inhibit the proliferation of the melanoma tumor cell line B16F10 (60%). In addition, they had immunomodulatory properties: they caused an up to 7000-fold increase in the release of nitric oxide and cytokines (IL-10; IL-6 and TNF-α) up to 7000 times. In addition, the FN showed inhibitory effect on Gram-positive and -negative bacteria, with MIC values of 50 µg/mL. Overall, the data showed that FN are nanoparticles with the potential to be used as antitumor, immunomodulatory, and antibacterial agents.
Collapse
Affiliation(s)
| | - Raynara Iusk Araújo Machado
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil.
| | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil.
| | - Maria Celeste Nunes Melo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil.
| | | | | | - Marcelo Antonio Morgano
- Food Science and Quality Center (CCQA), Institute of Food Technology (ITAL), Campinas 13070-178, Brazil.
| | | | - Leandro Silva Costa
- Federal Institute of Education, Science and Technology of Rio Grande do Norte (IFRN), Ceara-Mirim, Rio Grande do Norte 59900-000, Brazil.
| | - Hugo Alexandre Oliveira Rocha
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil.
| |
Collapse
|
40
|
Wang C, Gao X, Chen Z, Chen Y, Chen H. Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review. Polymers (Basel) 2017; 9:E689. [PMID: 30965987 PMCID: PMC6418682 DOI: 10.3390/polym9120689] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
Polysaccharides are natural biopolymers that have been recognized to be the most promising hosts for the synthesis of metallic nanoparticles (MNPs) because of their outstanding biocompatible and biodegradable properties. Polysaccharides are diverse in size and molecular chains, making them suitable for the reduction and stabilization of MNPs. Considerable research has been directed toward investigating polysaccharide-based metallic nanoparticles (PMNPs) through host⁻guest strategy. In this review, approaches of preparation, including top-down and bottom-up approaches, are presented and compared. Different characterization techniques such as scanning electron microscopy, transmission electron microscopy, dynamic light scattering, UV-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and small-angle X-ray scattering are discussed in detail. Besides, the applications of PMNPs in the field of wound healing, targeted delivery, biosensing, catalysis and agents with antimicrobial, antiviral and anticancer capabilities are specifically highlighted. The controversial toxicological effects of PMNPs are also discussed. This review can provide significant insights into the utilization of polysaccharides as the hosts to synthesize MPNs and facilitate their further development in synthesis approaches, characterization techniques as well as potential applications.
Collapse
Affiliation(s)
- Cong Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Xudong Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
41
|
Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH. Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. ACTA ACUST UNITED AC 2017; 15:33-40. [PMID: 28664148 PMCID: PMC5479957 DOI: 10.1016/j.btre.2017.02.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 11/26/2022]
Abstract
In this study, the synthesis and characterization of exopolysaccharide-stabilized sliver nanoparticles (AgNPs) was carried out for the degradation of industrial textile dyes. Characterization of AgNPs was done using surface plasmon spectra using UV-Vis spectroscopy, X-ray diffraction (XRD) and Raman spectroscopy. The morphological nature of AgNPs was determined through transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), which indicated that the AgNPs were spherical in shape, with an average size of 35 nm. The thermal behaviour of AgNPs revealed that it is stable up to 437.1 °C and the required energy is 808.2J/g in TGA-DTA analysis. Ability of EPS stabilized AgNPs for degradation of azo dyes such as Methyl orange (MO) and Congo red (CR) showed that EPS stabilized AgNPs were found to be efficient in facilitating the degradation process of industrial textile dyes. The electron transfer takes place from reducing agent to dye molecule via nanoparticles, resulting in the destruction of the dye chromophore structure. This makes EPS-AgNPs a suitable, cheap and environment friendly candidate for biodegradation of harmful textile dyes.
Collapse
Affiliation(s)
| | - Rajendiran Rajesh
- Department of Chemistry, Pondicherry University, Pondicherry 605014, India
| | | | | | - Digambar Kavitake
- Department of Food Science and Technology, Pondicherry University, Pondicherry 605014, India
| | | |
Collapse
|
42
|
Ma Y, Liu C, Qu D, Chen Y, Huang M, Liu Y. Antibacterial evaluation of sliver nanoparticles synthesized by polysaccharides from Astragalus membranaceus roots. Biomed Pharmacother 2017; 89:351-357. [DOI: 10.1016/j.biopha.2017.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 01/03/2023] Open
|
43
|
Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. Int J Biol Macromol 2017; 99:483-491. [PMID: 28274870 DOI: 10.1016/j.ijbiomac.2017.03.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 01/16/2023]
Abstract
A Cordyceps sinensis exopolysaccharide (EPS)-conjugated selenium nanoparticles (SeNPs) were successfully constructed through the reduction of SeO32-. The EPS-SeNPs were characterized in terms of formation, morphology, size, Se distribution and phase by UV-vis, FT-IR, transmission electron microscopy (TEM), dynamic light scattering (DLS), energy dispersive X-ray (EDX) and wide angle X-ray diffraction (WAXD) measurements. Results revealed that the SeNPs conjugated to EPS were amorphous and could be well dispersed at a size range of 80-125nm. The interactions between the OH groups of EPS and SeNPs substituted for intermolecular interaction in native EPS to form new CO⋯Se bonds, resulting in good dispersion of SeNPs in the EPS matrix. Besides, the EPS-SeNPs at different Se/P ratios exhibited significant scavenging ability on superoxide anion radical (O2-) and ABTS radical cation (ABTS+) when compared to pure EPS, indicating that the conjugated SeNPs reinforced antioxidant effect of EPS. This work not only provides a simple and efficient way to construct well-dispersed SeNPs in aqueous system, and demonstrates the vital role of the EPS as a biopolymer template for dispersion, stabilization and size control of SeNPs, but also finds the EPS-SeNPs can potentially serve as a good antioxidant towards O2- and ABTS+.
Collapse
|
44
|
Jian W, Zhang L, Siu KC, Song A, Wu JY. Formation and Physiochemical Properties of Silver Nanoparticles with Various Exopolysaccharides of a Medicinal Fungus in Aqueous Solution. Molecules 2016; 22:molecules22010050. [PMID: 28036086 PMCID: PMC6155925 DOI: 10.3390/molecules22010050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 02/05/2023] Open
Abstract
Natural polysaccharides are the most widely used biopolymers for green synthesis of eco-friendly silver nanoparticles (AgNPs). In a previous study, a high molecular weight (MW) fraction of exopolysaccharides (EPS) produced by a medicinal fungus Cs-HK1 has been shown useful for green and facile synthesis of AgNPs in water. This study was to further evaluate the effects of molecular properties of EPS on the formation, stability and properties of AgNPs with different EPS fractions at various pH conditions. Three EPS fractions (P0.5, P2.0 and P5.0: MW high to low and protein content low to high) were reacted with silver nitrate at various pH 3.0-8.0 in water. The most favorable pH range was 5.5-8.0 for the formation and stable dispersion of AgNPs. At a given pH, the maximum amount of AgNPs was produced with P5.0, and the minimum with P0.5. The shape, size and physiochemical properties of AgNPs were strongly affected by the molecular characteristics of EPS (MW and conformation). The results may be helpful for understanding the factors and mechanisms for formation of stable AgNPs with natural polysaccharides and the interactions between AgNPs and the polysaccharide hydrocolloids in water.
Collapse
Affiliation(s)
- Wenjie Jian
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
- Department of Medical Technology, Xiamen Medical College, Xiamen 361000, China.
| | - Lu Zhang
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Ka-Chai Siu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Angxin Song
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
45
|
Rocha Amorim MO, Lopes Gomes D, Dantas LA, Silva Viana RL, Chiquetti SC, Almeida-Lima J, Silva Costa L, Oliveira Rocha HA. Fucan-coated silver nanoparticles synthesized by a green method induce human renal adenocarcinoma cell death. Int J Biol Macromol 2016; 93:57-65. [PMID: 27543345 DOI: 10.1016/j.ijbiomac.2016.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 12/22/2022]
Abstract
Polysaccharides containing sulfated L-fucose are often called fucans. The seaweed Spatoglossum schröederi synthesizes three fucans, among which fucan A is the most abundant. This polymer is not cytotoxic against various normal cell lines and is non-toxic to rats when administered at high doses. In addition, it exhibits low toxicity against tumor cells. With the aim of increasing the toxicity of fucan A, silver nanoparticles containing this polysaccharide were synthesized using a green chemistry method. The mean size of these nanoparticles was 210nm. They exhibited a spherical shape and negative surface charge and were stable for 14 months. When incubated with cells, these nanoparticles did not show any toxic effects against various normal cell lines; however, they decreased the viability of various tumor cells, especially renal adenocarcinoma cells 786-0. Flow cytometry analyses showed that the nanoparticles induced cell death responses of 786-0 cells through necrosis. Assays performed with several renal cell lines (HEK, VERO, MDCK) showed that these nanoparticles only induce death of 786-0 cells. The data obtained herein leads to the conclusion that fucan A nanoparticles are promising agents against renal adenocarcinoma.
Collapse
Affiliation(s)
- Monica Oliveira Rocha Amorim
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte - RN 59078-970, Brazil
| | - Dayanne Lopes Gomes
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte - RN 59078-970, Brazil
| | - Larisse Araujo Dantas
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Rony Lucas Silva Viana
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Samanta Cristina Chiquetti
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Jailma Almeida-Lima
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Leandro Silva Costa
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Intituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), Ceara-Mirim, Rio Grande do Norte - RN, 59580-000, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte - RN 59078-970, Brazil.
| |
Collapse
|