1
|
Bajac J, Nikolovski B, Petrović L, Nemeš T, Kostić M, Milovac Ž, Gvozdenac S, Mitrović I. Antimicrobial and insecticidal activity of spray dried juniper berry (Juniperus communis L.) essential oil microcapsules prepared by using gum arabic and maltodextrin. Int J Biol Macromol 2025; 306:141128. [PMID: 39993683 DOI: 10.1016/j.ijbiomac.2025.141128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/20/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
This study was carried out to optimize spray drying conditions for juniper berry essential oil (JBEO) microencapsulation. The coating material for encapsulation was a combination of maltodextrin (MD) and gum arabic (GA). The wall material content, inlet air temperature and feed flow rate were optimized to obtain small particle size and high level of powder production, with high JBEO loading and encapsulation efficiency, small powder moisture and hygroscopicity. The optimal formulation was characterized by FTIR spectroscopy and used for investigation of antimicrobial and insecticidal activities. The obtained optimal conditions for JBEO microencapsulation were inlet air temperature of 140 °C, feed flow rate of 2.43 cm3 min-1 and wall/core ratio of 3:1. The considerably greater JBEO oil retention was obtained by using spray dried GA compared to GA in a form of the branched polysaccharide. Microencapsulated JBEO showed antibacterial and antifungal activities at oil concentrations 1-5 %. Strong repellency against S. oryzae and A. obtectus were achieved at concentration of JBEO of 2 %, while for mortality of 65.5 % (S. oryzae) and 85.5 % (A. obtectus) after 72 h, the 5 % of JBEO were required. JBEO microencapsulation could be a promising method for the production of biopesticides to reduce the use of chemical preparations.
Collapse
Affiliation(s)
- Jelena Bajac
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Branislava Nikolovski
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Lidija Petrović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Tomas Nemeš
- University of Novi Sad, Faculty of Technical science, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Marija Kostić
- University of Novi Sad, Institute Biosense, Zorana Djindjića 1, 21000 Novi Sad, Serbia
| | - Željko Milovac
- Institute of Field and Vegetable Crops, Maksima Gorkog, 30, Novi Sad, Serbia
| | - Sonja Gvozdenac
- Institute of Field and Vegetable Crops, Maksima Gorkog, 30, Novi Sad, Serbia
| | - Ivana Mitrović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Rajabi H, Razavi SMA. Incorporation of co-encapsulated extracts of saffron petal and Stachys schtschegleevii into chitosan/basil seed gum/graphene oxide bionanocomposite: Effects on physical, mechanical, antioxidant, and antibacterial properties. Int J Biol Macromol 2025; 309:143116. [PMID: 40246102 DOI: 10.1016/j.ijbiomac.2025.143116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The effects of encapsulation order and concentration (25 % & 50 %) of saffron petal (SPE) and Stachys schtschegleevii (SSE) extracts on the properties of bionanocomposites (BNCs) composed of basil seed gum (BSG), chitosan (CH), and graphene oxide (GO) were evaluated. Two encapsulation approaches were employed: in the first, SPE was encapsulated via complex coacervation using CH and gum Arabic, then mixed with SSE, maltodextrin, BSG, and GO (0.1-0.2 %) before spray drying; in the second, the encapsulation order of SPE and SSE was reversed. Encapsulation order and GO concentration significantly increased thickness (by 20 %), water vapor permeability (by 50 %), and solubility (by 45 %). Thermal stability improved by 10 % in bionanocomposites containing 50 % co-encapsulated extracts. Fourier transform infrared spectroscopy confirmed the successful incorporation of co-encapsulated extracts, while microscopic analysis revealed small cracks with micro- and nano-sized particles (219 nm to 8.3 μm) in BNCs with spray-dried coacervates. Co-encapsulation enhanced antibacterial and antioxidant activity, while encapsulation order regulated the sequential release of bioactive compounds, enabling controlled antimicrobial or antioxidant release based on food deterioration patterns. These findings highlight the potential of co-encapsulated extracts in developing advanced BNCs for active food packaging, where controlled release of bioactive compounds is essential for preserving food quality.
Collapse
Affiliation(s)
- Hamid Rajabi
- Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran; Incubator Center of Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of Iran, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran.
| |
Collapse
|
3
|
Lu J, Ge Y, Zhu X, Ma Y, Chiou BS, Liu F. Enhancing the stability of spray-dried vitamin A acetate: the role of synergistic wall materials in microencapsulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40165452 DOI: 10.1002/jsfa.14257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Vitamin A is a fat-soluble vitamin that is susceptible to environmental factors, which can result in reduced activity. The stability of vitamins directly affects the shelf life and market competitiveness of products in the nutrient-fortified foods/drugs sector. Encapsulation via emulsion spray drying is a commonly utilized method to enhance the stability of active substances. It boasts a wide range of applications and capability for automated and continuous production. The wall material of microcapsules represents one of the pivotal factors influencing their properties, potentially mitigating the degradation of active substances during storage. RESULTS This study aimed to investigate the characteristics of vitamin A acetate (VAA) high-loading-capacity emulsions and microcapsules formulated with different encapsulating agents (gum arabic (GA), gelatin (GEL), white sugar (WS) and octenyl succinic acid-modified starch) prepared by spray drying. According to the accelerated storage experiment formula, the shelf life of microcapsules stored at 60 °C for 35 days is about 1 year, and the retention rate of GA + GEL/WS microcapsules with a loading capacity of 100 g kg-1 reaches over 90%. The performance of microcapsules with different wall materials was investigated and the reasons for the enhanced stability through the interaction between wall materials were analyzed. CONCLUSION The results showed that spray drying of microcapsules improved the water solubility and storage stability of VAA. At high loading levels, the synergistic effect between wall materials can improve the density of microcapsules, thereby enhancing the storage stability of VAA microcapsules. Such higher storage stability is beneficial for extending the shelf life of fortified foods and pharmaceuticals, thereby expanding the application of VAA in the food sector. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaxin Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Yi Ge
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Xiaoyong Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
- Zhejiang NHU Company Ltd, Xinchang, China
| | - Yun Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, US Department of Agriculture, Albany, CA, USA
| | - Fei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| |
Collapse
|
4
|
Sereti F, Alexandri M, Papapostolou H, Papadaki A, Kopsahelis N. Recent progress in carotenoid encapsulation: Effects on storage stability, bioaccessibility and bioavailability for advanced innovative food applications. Food Res Int 2025; 203:115861. [PMID: 40022383 DOI: 10.1016/j.foodres.2025.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
The incorporation of bioactive ingredients in food products has attracted considerable interest in recent years because of the numerous health benefits these compounds can offer to the human body. Carotenoids are a group of functional components with notable antioxidant and anti-inflammatory properties. Their addition to food products not only provides coloration but can also deliver certain bioactive effects, leading to both increased shelf life and beneficial health benefits. However, carotenoids are prone to oxidation, as they can be easily degraded from light or heat treatments. To address this, encapsulation has emerged as an effective method to protect carotenoids during their incorporation into foods as well as during storage. This review provides a comprehensive overview of the current state of the art regarding encapsulation methods utilized for carotenoids entrapment. The effect of various techniques- such as microemulsification, freeze- drying, spray- drying, and novel nanoencapsulation methods like electrospinning and formation of solid-liquid nanoparticles- are discussed with respect to their positive and negative impacts on carotenoid antioxidant activity, bioaccessibility, bioavailability and the shelf life of the final product. Depending on the type of carotenoid or its intended application, different methods could be employed, which could significantly enhance the overall biological activities of the final food product. This review critically presents the advantages and limitations of each method and highlights the potential health implications that nanoencapsulation techniques might pose before introducing new encapsulated products to the food market.
Collapse
Affiliation(s)
- Fani Sereti
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100, Kefalonia, Greece.
| |
Collapse
|
5
|
Hoseini SA, Vazifedoost M, Hajirostamloo B, Didar Z, Nematshahi MM. Supercritical fluid extraction and encapsulation of Rivas ( Rheum ribes) flower: Principal component analysis (PCA). Heliyon 2025; 11:e41746. [PMID: 39872459 PMCID: PMC11770504 DOI: 10.1016/j.heliyon.2025.e41746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Supercritical CO2 modified by polar solvents can extract a wide variety of polar and non-polar chemical components compared to conventional methods. The current study aims to extract Rivas (Rheum ribes) flower using the ethanol modified supercritical CO2 (SCO2-EOH) method; analyze its chemical compounds and bioactivity, encapsulate the extract in maltodextrin, gum-Arabic (GA), and their combination (GA + MD) using the spray drying method and investigate the differences among microparticles using Principal Component Analysis (PCA). The Rivas extract obtained by the SCO2-EOH method was a rich source of unsaturated fatty acids (mainly linoleic acid: 57.58 %), phytosterols (mainly sitosterol: 197.02 and campesterol: 144.47 mg/100g), terpenoids (mainly camphor: 17.52 %; and 1,8-cineol: 10.91 %) and phenolics (mainly m-coumaric acid: 48.22; luteolin: 38.07 and gallic acid: 26.25 mg/g). The yield of Rivas extract was 1.62 ± 0.27 %. The extract bioactivity was as follows: antioxidant activity of 89.6 ± 1.39 %; total phenolic content of 306.19 ± 13.59 mg GAE/g; total flavonoid content of179.84 ± 5.77 mg QE/g and a comparable antimicrobial effect to synthetic antimicrobials against E. coli, L. monocytogenes, and A. fumigatus. The encapsulation efficiency of microparticles was 90.53 % for MD to 93.23 % for GA + MD (P < 0.05). The microparticles had irregular semi-spherical shapes with wrinkled surfaces. According to the PCA, MD showed the best solubility and the lowest price, making it a cost-effective ingredient to improve the nutritional-value of food formulations. If the stability of bioactive compounds is more important, GA + MD will be the best choice.
Collapse
Affiliation(s)
- Seyyed Ali Hoseini
- Department of Food Science and Technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mohsen Vazifedoost
- Department of Food Science and Technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Bahareh Hajirostamloo
- Department of Food Science and Technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Zohreh Didar
- Department of Food Science and Technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mohamad Mehdi Nematshahi
- Department of Food Science and Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
6
|
Najafi Z, Altay F, Şahin-Yeşilçubuk N. In vitro transdermal release of crocin from electrospun saffron and its comparison with in vitro digestion. Food Res Int 2025; 199:115279. [PMID: 39658144 DOI: 10.1016/j.foodres.2024.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Saffron extract (SE) was electrospun into pullulan-pectin (Pl-Pc), pullulan-pea protein-pectin (Pl-Pp-Pc), or zein nanofibers (NFs) for transdermal food supplement. The in vitro transdermal permeation mechanism and kinetics of SE from NFs were studied and compared with those of in vitro digestion. The ATR-FTIR spectra of NFs provided information on the interactions between SE and wall biopolymers. The release of SE from NFs was investigated in stimulated gastrointestinal media (SGF and SIF) using a dialysis bag, and transdermal permeation studies were performed via a membrane in a Franz diffusion cell. The wettability and swelling ratio of the NFs were determined. The Pl-Pc-SE sample, which has the lowest contact angle and the highest swelling index, resulted in the highest release of SE during digestion. The Ritger-Peppas and Higuchi models best represented the experimental release data from digestion and transdermal permeation. The release profile of SE from zein NFs in SGF was described using a non-Fickian mechanism. In contrast, the release mechanism for Pl-based NFs in SGF and all NFs during both release experiments was Fickian-controlled diffusion transport. The results indicate that NFs can be successfully used for the controlled delivery of SE and have the potential for transdermal applications as a dietary supplement.
Collapse
Affiliation(s)
- Zahra Najafi
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey
| | - Filiz Altay
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey.
| | - Neşe Şahin-Yeşilçubuk
- Istanbul Technical University, Department of Food Engineering, Maslak, 34469 Sariyer, Istanbul, Turkey
| |
Collapse
|
7
|
Mardani M, Siahtiri S, Besati M, Baghani M, Baniassadi M, Nejad AM. Microencapsulation of natural products using spray drying; an overview. J Microencapsul 2024; 41:649-678. [PMID: 39133055 DOI: 10.1080/02652048.2024.2389136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
AIMS This study examines microencapsulation as a method to enhance the stability of natural compounds, which typically suffer from inherent instability under environmental conditions, aiming to extend their application in the pharmaceutical industry. METHODS We explore and compare various microencapsulation techniques, including spray drying, freeze drying, and coacervation, with a focus on spray drying due to its noted advantages. RESULTS The analysis reveals that microencapsulation, especially via spray drying, significantly improves natural compounds' stability, offering varied morphologies, sizes, and efficiencies in encapsulation. These advancements facilitate controlled release, taste modification, protection from degradation, and extended shelf life of pharmaceutical products. CONCLUSION Microencapsulation, particularly through spray drying, presents a viable solution to the instability of natural compounds, broadening their application in pharmaceuticals by enhancing protection and shelf life.
Collapse
Affiliation(s)
- Mahshid Mardani
- Department of Civil, Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
- Department of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Saeed Siahtiri
- Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL, USA
| | - Masoud Besati
- Department of Medicinal Chemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mostafa Baghani
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Mahdavi Nejad
- Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA, USA
| |
Collapse
|
8
|
Rajabi H, Jafari SM. Synthesis and characterization of three-dimensional graphene oxide-chitosan/ glutaraldehyde nanocomposites: Towards adsorption of crocin from saffron. Int J Biol Macromol 2024; 281:136672. [PMID: 39426767 DOI: 10.1016/j.ijbiomac.2024.136672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Despite the unique properties of graphene oxide (GO) as a green adsorbent, its low structural stability presents a drawback. This study aimed to modify the properties of GO through its functionalization with chitosan (CH), cross-linked with glutaraldehyde (GLU), and synthesized via the freeze-drying method (GO-CH/GLU). Microscopic analysis illustrated that covering the GO sheets with CH and nanoparticles (NPs) resulted in a 15.8 % increase in d-spacing and a 600 % increase in sheet thickness. The GO-CH/GLU composite was utilized for the separation/purification of crocin from saffron extract under varying pH (5-9), temperature (298-318 K), stirring rate (100-300 rpm), and crocin concentration (25-200 mg/mL). The Freundlich isotherm and pseudo-second-order kinetic models provided a good fit for crocin adsorption. Thermodynamic analysis revealed that the process was endothermic, spontaneous, and physical. Optimal adsorption conditions in batch mode were pH 7, a stirring rate of 300 rpm, a temperature of 318 K, and a crocin concentration of 100 mg/mL. These conditions were applied in a continuous system, resulting in a crocin separation efficiency of 94.17 % at 180 mL/h. Additionally, HPLC data indicated that the purity of separated crocin exceeded 90 %. So, the GO-CH/GLU composite is a promising and economical adsorbent for the food industry.
Collapse
Affiliation(s)
- Hamid Rajabi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
9
|
Leyva-López R, Vargas-Torres A, Guzmán-Ortiz FA, Aparicio-Saguilán A, Madariaga-Navarrete A, Palma-Rodríguez HM. Microencapsulation of Hibiscus sabdariffa L. extract using porous starch and gum Arabic: Optimized process, characterization, stability, and simulated gastrointestinal conditions. Int J Biol Macromol 2024; 277:133754. [PMID: 39084984 DOI: 10.1016/j.ijbiomac.2024.133754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Hibiscus extract exhibits considerable antioxidant activity and a high anthocyanin content, which suggesting potential health benefits. However, these compounds are highly susceptible to environmental factors. The aim of this study was to establish the optimal conditions for the encapsulation of Hibiscus sabdariffa extract (HSE) using mixed porous maize starch-gum Arabic to enhance the stability of bioactive compounds under accelerated aging conditions. Response surface methodology (RSM) was used to optimize microencapsulation conditions through spray drying. The optimal conditions for microencapsulation of HSE by RSM were determined to be 126 °C at the inlet temperature (IT) and 8.5 % at the total solid content (TSC). Using these conditions, the amount of bioactive compounds in optimized microcapsules (OMs) was 2368 mg GAE/100 g, 694 mg QE/100 g, and 930 mg EC3G/100 g, of phenolic compounds, flavonoids, and anthocyanin, respectively. The release rate of anthocyanins during in vitro digestion was more effectively regulated in the OM sample, which retained up to 40 % of anthocyanins compared with 10 % in the HSE. The experimental values in this study exhibit high assertiveness, which renders the optimization model technologically and financially viable for the encapsulation of bioactive compounds with potential use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Román Leyva-López
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Rancho Universitario, CP 43600 Tulancingo, Hidalgo, Mexico
| | - Apolonio Vargas-Torres
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Rancho Universitario, CP 43600 Tulancingo, Hidalgo, Mexico.
| | - Fabiola A Guzmán-Ortiz
- CONACYT-Universidad Autónoma del Estado de Hidalgo, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, Mexico
| | - Alejandro Aparicio-Saguilán
- Instituto de Biotecnología, Universidad Del Papaloapan, Circuito Central #200. Colonia Parque Industrial, Apartado Postal 68301, Tuxtepec, Oax., Mexico
| | - Alfredo Madariaga-Navarrete
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Rancho Universitario, CP 43600 Tulancingo, Hidalgo, Mexico
| | - Heidi M Palma-Rodríguez
- Centro de Investigación en Ciencia y Tecnología de Alimentos, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km 1, Rancho Universitario, CP 43600 Tulancingo, Hidalgo, Mexico
| |
Collapse
|
10
|
Oo N, Shiekh KA, Jafari S, Kijpatanasilp I, Assatarakul K. Characterization of Marigold Flower ( Tagetes erecta) Extracts and Microcapsules: Ultrasound-Assisted Extraction and Subsequent Microencapsulation by Spray Drying. Foods 2024; 13:2436. [PMID: 39123627 PMCID: PMC11311638 DOI: 10.3390/foods13152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Ultrasound-assisted extraction using response surface methodology was employed to extract marigold flower, resulting in a marigold flower extract (MFE) with elevated levels of total phenolic compounds (TPCs), total flavonoid content (TFC), total carotenoid content (TCC), and antioxidant activity, as assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays, under conditions of 40 °C temperature, 15 min extraction time, and 68% ethanol concentration. The MFE was subsequently encapsulated using spray drying with 45% maltodextrin (MD) (MFE-MD; 1:1, 1:2) and 20% gum arabic (GA) (MFE-GA; 1:2, 1:3). The MD (1:2 ratio) sample showed the highest encapsulation yield, while the 45% MD (1:1 ratio) sample exhibited the highest encapsulation efficiency (p ≤ 0.05). Samples containing 45% MD (1:1 ratio) and 20% GA (1:2 ratio) had the highest moisture content, with the 45% MD (1:1 ratio) sample showing the lowest water activity (p > 0.05). These samples also displayed higher L* and a* values compared to the 20% GA samples, which had increased b* values (p ≤ 0.05). Micrographs of the 20% GA (1:3 ratio) and 45% MD (1:2 ratio) samples revealed spherical shapes with smooth surfaces. The 20% GA (1:2 ratio) microcapsules exhibited the highest total phenolic content (TPC) among the samples (p ≤ 0.05). Thus, ultrasound-enhanced extraction combined with response surface methodology proved effective in producing functional food ingredients from plants.
Collapse
Affiliation(s)
- Nilar Oo
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.O.); (K.A.S.); (S.J.); (I.K.)
| | - Khursheed Ahmad Shiekh
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.O.); (K.A.S.); (S.J.); (I.K.)
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Saeid Jafari
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.O.); (K.A.S.); (S.J.); (I.K.)
| | - Isaya Kijpatanasilp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.O.); (K.A.S.); (S.J.); (I.K.)
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.O.); (K.A.S.); (S.J.); (I.K.)
| |
Collapse
|
11
|
Sukri N, Putri TTM, Mahani, Nurhadi B. Characteristics of propolis encapsulated with gelatin and sodium alginate by complex coacervation method. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Nandi Sukri
- Department of Food Industrial Technology, Faculty of Agro-industrial Technology, Bandung, Indonesia
| | | | - Mahani
- Department of Food Industrial Technology, Faculty of Agro-industrial Technology, Bandung, Indonesia
| | - Bambang Nurhadi
- Department of Food Industrial Technology, Faculty of Agro-industrial Technology, Bandung, Indonesia
| |
Collapse
|
12
|
Singh P, Krishnaswamy K. Non-GMO-high oleic soybean meal value addition and studying the functional and reconstitution behavior. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2178457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- P. Singh
- Department of Biomedical, Biological and Chemical Engineering, Columbia, SC, USA
| | - K. Krishnaswamy
- Department of Biomedical, Biological and Chemical Engineering, Columbia, SC, USA
- Division of Food, Nutrition and Exercise Science, the University of Missouri, Columbia, SC, USA
| |
Collapse
|
13
|
Pusty K, Dash KK, Tiwari A, Balasubramaniam VM. Ultrasound assisted extraction of red cabbage and encapsulation by freeze-drying: moisture sorption isotherms and thermodynamic characteristics of encapsulate. Food Sci Biotechnol 2023; 32:2025-2042. [PMID: 37860738 PMCID: PMC10581982 DOI: 10.1007/s10068-023-01302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 10/21/2023] Open
Abstract
In the present study encapsulation of ultrasound assisted red cabbage extract was carried out using four different carrier agents such as maltodextrin, gum arbic, xanthan gum, and gellan gum. Among the four hydrocolloids investigated, maltodextrin was found to have the least destructive effect on anthocyanin content (14.87 mg C3G/g dw), TPC (54.51 ± 0.09 mg GAE/g dw), TFC (19.82 Mg RE/g dw) and antioxidant activity (74.15%) upon freeze-drying. Subsequently a storage study was conducted using maltodextrin as carrier agent at 25-50 °C. The Clausius-Clapeyron equation was used to evaluate the net isosteric heat (qst) of water adsorption. The differential entropy (ΔS) and qst decreased from 82.298 to 38.628 J/mol, and 27.518 kJ/mol to 12.505 kJ/mol, respectively as the moisture content increased from 2 to 14%. The value of isokinetic energy and Gibb's free energy were found to be 364.88 and - 1.596 kJ/mol for freeze dried red cabbage. Graphical abstract
Collapse
Affiliation(s)
- Kasturi Pusty
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
- Department of Agricultural Engineering, Assam University, Silchar, Assam India
| | - Kshirod K. Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
| | - Ajita Tiwari
- Department of Agricultural Engineering, Assam University, Silchar, Assam India
| | - V. M. Balasubramaniam
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210 USA
- Department of Food Agricultural and Biological Engineering, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210 USA
| |
Collapse
|
14
|
Liu C, Nguyen BV, Diep TT, Yoo MJY. Interaction between Bovine Serum Albumin in Fresh Milk Cream and Encapsulated and Non-Encapsulated Polyphenols of Tamarillo. Antioxidants (Basel) 2023; 12:1611. [PMID: 37627606 PMCID: PMC10451476 DOI: 10.3390/antiox12081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The fortification of dairy products with polyphenols is known to deliver additional health benefits. However, interactions between polyphenols may form complexes and cause a loss of functionality overall. This study aimed to investigate potential interactions between polyphenols, in encapsulated and non-encapsulated forms, extracted from tamarillo fruit and bovine serum albumin (BSA) from fresh milk cream. Fortification with tamarillo extract was made at 1, 2 and 3% (w/w), and the resultant changes in physicochemical, rheological and functional properties were studied. With an increase in fortification, the absorbance of protein-ligand in the protein-polyphenol complex was decreased by up to 55% and 67% in UV and fluorescent intensities, respectively. Chlorogenic acid and kaempferol-3-rutinoside were more affected than delphinidin-3-rutinoside and pelargonidin-3-rutinoside. Static quenching was the main mechanism in the fluorescence spectra. Tryptophan and tyrosine residues were the two major aromatic amino acids responsible for the interactions with BSA. There were at least three binding sites near the tryptophan residue on BSA. The rheological property remained unaffected after the addition of non-encapsulated tamarillo extracts. Antioxidant capacity was significantly decreased (p < 0.05) after the addition of encapsulated extracts. This may be explained by using a low concentration of maltodextrin (10% w/w) as an encapsulating agent and its high binding affinity to milk proteins.
Collapse
Affiliation(s)
- Chen Liu
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Bao Viet Nguyen
- Department of Chemical Engineering, Nong Lam University, Ho Chi Minh City 70000, Vietnam; (B.V.N.); (T.T.D.)
| | - Tung Thanh Diep
- Department of Chemical Engineering, Nong Lam University, Ho Chi Minh City 70000, Vietnam; (B.V.N.); (T.T.D.)
| | - Michelle Ji Yeon Yoo
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
15
|
Deng W, Li X, Ren G, Bu Q, Ruan Y, Feng Y, Li B. Stability of Purple Corn Anthocyanin Encapsulated by Maltodextrin, and Its Combinations with Gum Arabic and Whey Protein Isolate. Foods 2023; 12:2393. [PMID: 37372602 DOI: 10.3390/foods12122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Purple corn anthocyanins are important natural colourants with cheap prices and rich bioactivities. However, their stability is limited. Microencapsulation is an effective way to improve anthocyanin stability and the influence of the type of wall material on the stability of encapsulated anthocyanin is very important. In this study, maltodextrin (MD) and its combination with whey protein isolate (WPI) or gum arabic (GA) were utilised as wall materials to obtain encapsulated purple corn anthocyanins (PCAs) (MD-PCA, MD-WPI-PCA, MD-GA-PCA) using spray drying. The effect of the amount of the wall material was determined by encapsulation efficiency, anthocyanin content, and colour. On this basis, the effects of the types of wall materials on the physicochemical characteristics, storage, and digestion stabilities of encapsulated PCA, as well as their stabilities in chewing tablets, were investigated. The highest encapsulation efficiency, suitable colour, and anthocyanin content were obtained with the mass ratios 1:1 PCA to MD, 2:3 PCA to MD-GA, and 1:1 PCA to MD-WPI. Microencapsulation increased PCA storage and digestion stabilities. All three types of PCA microcapsules had low water content and hygroscopicity and good water solubility. MD-PCA had the strongest stability when stored at 25 °C; MD-GA-PCA-when stored at 40 °C, or in the presence of 5000 Lux light illumination; MD-WPI-PCA-when stored in 75% relative humidity or during gastric-intestinal digestion, but its resistance to 40 °C temperature and light illumination was lower than those for the two others. When used in chewing tablets, MD encapsulation was most stable in the presence of Ca2+, VC, or Fe2+ and improved PCA digestion stability. In conclusion, MD is a good choice for PCA encapsulation in regular conditions. MD-GA and MD-WPI can be used when considering high storage temperature (or light illumination) and high humidity (or for high digestion stability), respectively. The results of this study provide a reference for the storage and application of PCA.
Collapse
Affiliation(s)
- Wei Deng
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyi Li
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Guoqiu Ren
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Qingmei Bu
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Feng
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| | - Bin Li
- Food College, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
16
|
Weng Y, Li Y, Chen X, Song H, Zhao CX. Encapsulation of enzymes in food industry using spray drying: recent advances and process scale-ups. Crit Rev Food Sci Nutr 2023; 64:7941-7958. [PMID: 36971126 DOI: 10.1080/10408398.2023.2193982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Enzymes are widely used in the food industry due to their ability in improving the functional, sensory, and nutritional properties of food products. However, their poor stability under harsh industrial conditions and their compromised shelf-lives during long-term storage limit their applications. This review introduces typical enzymes and their functionality in the food industry and demonstrates spray drying as a promising approach for enzyme encapsulation. Recent studies on encapsulation of enzymes in the food industry using spray drying and the key achievements are summarized. The latest developments including the novel design of spray drying chambers, nozzle atomizers and advanced spray drying techniques are also analyzed and discussed in depth. In addition, the scale-up pathways connecting laboratory scale trials and industrial scale productions are illustrated, as most of the current studies have been limited to lab-scales. Enzyme encapsulation using spray drying is a versatile strategy to improve enzyme stability in an economical and industrial viable way. Various nozzle atomizers and drying chambers have recently been developed to increase process efficiency and product quality. A comprehensive understanding of the complex droplet-to-particle transformations during the drying process would be beneficial for both process optimization and scale-up design.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
On the Importance of the Starting Material Choice and Analytical Procedures Adopted When Developing a Strategy for the Nanoencapsulation of Saffron ( Crocus sativus L.) Bioactive Antioxidants. Antioxidants (Basel) 2023; 12:antiox12020496. [PMID: 36830054 PMCID: PMC9951940 DOI: 10.3390/antiox12020496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Saffron is known as the most expensive spice in the world. It is comprised of the dried stigmas of the pistil of the Crocus sativus L., which is a cultivated, sterile crocus plant. This plant material is now recognized as the unique edible source of certain bioactive apocarotenoids for which in-vivo antioxidant properties have been reported. Among the latter, crocins, red-orange natural colorants, and their parent molecule crocetin prevail in bioactivity significance. This review is focused on the strategies developed so far for their nanoencapsulation in relation to the characteristics of the starting material, extraction procedures of the bioactive antioxidants and analytical methods applied for their characterization and quantification throughout the process. The literature so far points out gaps that lead to publishable data, on one hand, but not necessarily to repeatable and meaningful processes due to incomplete characterization of the starting and the released material in efficiency and stability studies of the nanoencapsulates. Accurate terminology and quantitative chromatographic or spectrophotometric procedures for the determination of the core compounds are needed. Authenticity control and quality of saffron samples, and the verification of the concentrations of compounds in commercial preparations labeled as 'crocin,' are prerequisites in any experimental design setup.
Collapse
|
18
|
Ultrasound-Assisted Extraction of Bioactive Compounds from Cocoa Shell and Their Encapsulation in Gum Arabic and Maltodextrin: A Technology to Produce Functional Food Ingredients. Foods 2023; 12:foods12020412. [PMID: 36673504 PMCID: PMC9858131 DOI: 10.3390/foods12020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023] Open
Abstract
In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45−65 °C), extraction time (30−60 min), and ethanol concentration (60−100%) were the extraction parameters. The response surface methodology analysis revealed that the model was significant (p ≤ 0.05) in interactions between all variables (total phenolic compound, total flavonoid content, and antioxidant activity as measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP assays), with a lack of fit test for the model being insignificant (p > 0.05). Temperature (55 °C), time (45 min), and ethanol concentration (60%) were found to be the optimal extraction conditions. For spray-drying encapsulation, some quality metrics (e.g., water solubility, water activity) were insignificant (p > 0.05). The microcapsules were found to be spherical in shape using a scanning electron microscope. Thermogravimetric and differential thermogravimetric measurements of the microcapsules revealed nearly identical results. The gum arabic + maltodextrin microcapsule (GMM) showed potential antibacterial (zone of inhibition: 11.50 mm; lower minimum inhibitory concentration: 1.50 mg/mL) and antioxidant (DPPH: 1063 mM trolox/100g dry wt.) activities (p ≤ 0.05). In conclusion, the microcapsules in this study, particularly GMM, are promising antioxidant and antibacterial agents to be fortified as functional food ingredients for the production of nutraceutical foods with health-promoting properties.
Collapse
|
19
|
Azarpazhooh E, Sharayei P, Rui X, Gharibi-Tehrani M, Ramaswamy HS. Optimization of Wall Material of Freeze-Dried High-Bioactive Microcapsules with Yellow Onion Rejects Using Simplex Centroid Mixture Design Approach Based on Whey Protein Isolate, Pectin, and Sodium Caseinate as Incorporated Variables. Molecules 2022; 27:molecules27238509. [PMID: 36500604 PMCID: PMC9735820 DOI: 10.3390/molecules27238509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
For the food sector, onion rejects are an appealing source of value-added byproducts. Bioactive compounds were recovered from yellow onion rejects using a pulse electric field process at 6000 v and 60 pulses. The onion extract was encapsulated with whey protein isolate (WPI), pectin (P), and sodium caseinate (SC) with a mass ratio of 1:5 (extract/wall material, w/w). A Simplex lattice with augmented axial points in the mixture design was applied for the optimization of wall material for the encapsulation of onion reject extract by freeze-drying (FD). The optimal wall materials were 47.6 g/100 g (SC), 10.0 g/100 g (P), and 42.4 g/100 g (WPI), with encapsulation yield (EY) of 85.1%, total phenolic content (TPC) of 48.7 mg gallic acid equivalent/g DW, total flavonoid content (TFC) of 92.0 mg quercetin equivalent/g DW, and DPPH capacity of 76.1%, respectively. The morphological properties of the optimal encapsulate demonstrated spherical particles with a rough surface. At optimal conditions, the minimum inhibitory concentration (MIC) of the extract (mean diameter of inhibition zone: 18.8 mm) was shown as antifungal activity against Aspergillus niger.
Collapse
Affiliation(s)
- Elham Azarpazhooh
- Agricultural Engineering Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad P.O. Box 91735-488, Iran
- Correspondence: (E.A.); (H.S.R.)
| | - Parvin Sharayei
- Agricultural Engineering Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad P.O. Box 91735-488, Iran
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, 14 1 Weigang Road, Nanjing 211306, China
| | - Mehranoosh Gharibi-Tehrani
- Department of Food Science & Technology, Sabzevar Branch, Islamic Azad University, Sabzevar 9618956878, Iran
| | - Hosahalli S. Ramaswamy
- Department of Food Science and Agricultural Chemistry, Macdonald Campus of McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, QC H9X 3V9, Canada
- Correspondence: (E.A.); (H.S.R.)
| |
Collapse
|
20
|
Xiao Z, Xia J, Zhao Q, Niu Y, Zhao D. Maltodextrin as wall material for microcapsules: A review. Carbohydr Polym 2022; 298:120113. [DOI: 10.1016/j.carbpol.2022.120113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 09/11/2022] [Indexed: 11/02/2022]
|
21
|
Influence of Encapsulation Parameters on the Retention of Polyphenols in Blackthorn Flower Extract. Processes (Basel) 2022. [DOI: 10.3390/pr10122517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In order to utilize the benefits of blackthorn flower polyphenols and provide their stabilization during processing and storage, and to facilitate their application in functional food products, this study aimed to evaluate the encapsulation parameters during the spray-drying process of blackthorn flower extract. The effect of the type of wall material (maltodextrin (MD) and its mixtures with gum arabic (GA) and inulin (IN)), its ratio to extract dry matter (0.5, 1, and 2) and drying temperature (120, 150, and 180 °C) on the concentration of different polyphenolic groups was studied. While the lowest applied amount of wall material at the lowest drying temperature enabled efficient encapsulation of all polyphenolic groups, the type of wall material applied caused significant differences in retention. The highest concentrations of both phenolic acids and flavonoids were achieved with the addition of 25% of GA in MD. Unlike the addition of GA, mixtures of MD with IN did not show a positive effect on the retention of polyphenols. Selected encapsulation parameters ensured the high retention of total phenolics, namely 87.87% of the content determined in the liquid extract prior to spray drying, thereby providing a polyphenol-rich product with great potential for application in functional food and the nutraceutical industry.
Collapse
|
22
|
Najafi Z, Bildik F, Şahin-Yeşilçubuk N, Altay F. Enhancing oxidative stability of encapsulated echium oil by incorporation of saffron extract loaded nanoliposomes into electrospun pullulan-pea protein isolate-pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Raj GVSB, Dash KK. Microencapsulation of Dragon Fruit Peel Extract by Freeze-Drying Using Hydrocolloids: Optimization by Hybrid Artificial Neural Network and Genetic Algorithm. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
The assessment of microencapsulated Lactobacillus plantarum survivability in rose petal jam and the changes in physicochemical, textural and sensorial characteristics of the product during storage. Sci Rep 2022; 12:6200. [PMID: 35418196 PMCID: PMC9007973 DOI: 10.1038/s41598-022-10224-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to develop a probiotic rose petal jam containing microencapsulated L. plantarum. The attributes of L. plantarum microcapsules and bacteria viability in simulated gastrointestinal conditions and jam were assessed. In addition, L. plantarum effects on physicochemical, textural and sensorial properties of jam were studied. The microencapsulation yield, diameter, and zeta potential value of the microcapsules ranged from 90.23 to 92.75%, 14.80–35.02 µm, and − 16.83 to − 14.71 mV, respectively. The microencapsulation process significantly increases the survival of L. plantarum in simulated gastrointestinal tract and jam. In jam samples containing L. plantarum microencapsulated with 2% sodium alginate and 3.5% or 5% Arabic gum and stored for 90 days, the bacterial count was higher than the acceptable level (106 CFU/g). While there was no significant difference (P > 0.05) between physicochemical characteristics of non-probiotic and probiotic jams, taste and overall acceptance scores of microencapsulated probiotic jams were higher. The microencapsulation of L. plantarum in sodium alginate (2%) and Arabic gum (5%) and its inoculation into rose petal jam could yield a new probiotic product with increased health benefits.
Collapse
|
25
|
Prototypes of Nutraceutical Products From Microparticles Loaded With Stilbenes Extracted From Grape Cane. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Microencapsulation of juniper berry essential oil (Juniperus communis L.) by spray drying: microcapsule characterization and release kinetics of the oil. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Ștefănescu BE, Nemes SA, Teleky BE, Călinoiu LF, Mitrea L, Martău GA, Szabo K, Mihai M, Vodnar DC, Crișan G. Microencapsulation and Bioaccessibility of Phenolic Compounds of Vaccinium Leaf Extracts. Antioxidants (Basel) 2022; 11:antiox11040674. [PMID: 35453359 PMCID: PMC9030406 DOI: 10.3390/antiox11040674] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, Vaccinium spp. (bilberry-VMT, lingonberry-VVIT, and blueberry-VCS) have sparked particular interest for their prospective health benefits. The latest investigations have place them as important alternative sources of nutraceuticals as their leaves are the main by-products of berry harvesting. The present study is aimed at investigating the bioaccessibility of phenolic compounds from leaves of the Vaccinium species, both as microencapsulated powder and aqueous extracts, following exposure to in vitro simulated digestion. Moreover, the impact of maltodextrin and glucose microencapsulation carriers on the extracts’ phenolic content was assessed. Prior to encapsulation, the viscosity of the emulsions was shown at a shear stress of 50 s−1 dilatant and a Newtonian behaviour above this value with a final viscosity between 1.024 and 1.049 mPa·s. The final microencapsulation yield for the samples ranged between 79 and 81%. Although the microencapsulated forms presented a targeted release at the intestinal level, the phenolic content decreased after gastrointestinal digestion. The bioaccessibility of the microencapsulated extracts showed higher values than their non-encapsulated counterparts, with the highest value of 45.43% in the VVIT sample, followed by VCS with 41.07%. However, the non-encapsulated VCS sample presented high bioaccessibility after in vitro digestion (38.65%). As concluded, further in vivo research should be conducted on the leaves of the Vaccinium species.
Collapse
Affiliation(s)
- Bianca Eugenia Ștefănescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (B.E.Ș.); (G.C.)
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Silvia-Amalia Nemes
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Lavinia Florina Călinoiu
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Laura Mitrea
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Katalin Szabo
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
| | - Mihaela Mihai
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
- Correspondence: (M.M.); (D.C.V.); Tel.: +40-747-341-881 (D.C.V.)
| | - Dan Cristian Vodnar
- Institute of Life Sciences, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.-A.N.); (L.F.C.); (L.M.); (G.A.M.); (K.S.)
- Correspondence: (M.M.); (D.C.V.); Tel.: +40-747-341-881 (D.C.V.)
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (B.E.Ș.); (G.C.)
| |
Collapse
|
28
|
Xiao Z, Liu H, Zhao Q, Niu Y, Chen Z, Zhao D. Application of microencapsulation technology in silk fibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
- School of Agriculture and Biology Shanghai Jiaotong University Shanghai China
| | - Huiqin Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Yunwei Niu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Ziqian Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Di Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
29
|
Optimization of Saffron Essential Oil Nanoparticles Using Chitosan-Arabic Gum Complex Nanocarrier with Ionic Gelation Method. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4035033. [PMID: 35295821 PMCID: PMC8920706 DOI: 10.1155/2022/4035033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/18/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022]
Abstract
This study is aimed at optimizing the Saffron essential oil (SEO) nanoparticles using the ionic gelation method. Response surface methodology (RSM) with Box-Behnken design (BBD) was applied to investigate the optimum conditions and the effects of three independent variables: LWCS concentration (0.1-0.3%), Arabic gum concentration (9.6-9.8%), and ratio (core: wall material) (1 : 5, 1 : 7.5, 1 : 10) on the responses of z-average, polydispersity index (PDI), and zeta potential. The results showed that the quadratic model developed from the RSM was statistically significant (p value < 0.05). The quadratic model can be used to describe well the relationship between the variables on the response observed. The lack of fit was nonsignificant (p value > 0.05) relative to pure error for all response variables, indicating that the model fitted well. The model equation obtained for the process through RSM was adequate. The LWCS concentration and Arabic gum concentration had a significant effect on z-average and PDI. The ratio (oil: Arabic gum/LWCS) has a significant effect on zeta potential. The optimum condition was the LWCS concentration of 0.1% and Arabic gum concentration of 9.6%, and the ratio (oil: Arabic gum/LWCS) 1 : 5 produced the optimum SEO nanoparticles with a z-average value of 16.24, PDI of 0.495, and zeta potential of 15.76. The verification values were close to the predictive value given by the Design Expert® 12 program with p value > 0.05 at the 95% confidence level. Therefore, the application of the RSM with Box-Behnken was suitable for optimizing the saffron oil nanoparticles with desirable responses.
Collapse
|
30
|
zaaboul F, Zhao Q, Xu Y, Liu Y. Soybean oil bodies: A review on composition, properties, food applications, and future research aspects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Nguyen QD, Dang TT, Nguyen TVL, Nguyen TTD, Nguyen NN. Microencapsulation of roselle ( Hibiscus sabdariffa L.) anthocyanins: Effects of different carriers on selected physicochemical properties and antioxidant activities of spray-dried and freeze-dried powder. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2044846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Quoc-Duy Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thanh-Thuy Dang
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thi-Van-Linh Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thi-Thuy-Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nhu-Ngoc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
32
|
Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya K, Bashiry M, Ezzat SM, Setzer WN, Martorell M, Mileski KS, Bagiu IC, Docea AO, Calina D, Cho WC. The Pharmacological Activities of Crocus sativus L.: A Review Based on the Mechanisms and Therapeutic Opportunities of its Phytoconstituents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8214821. [PMID: 35198096 PMCID: PMC8860555 DOI: 10.1155/2022/8214821] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.
Collapse
Affiliation(s)
- Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timișoara, Romania
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Laxman Singh
- G.B. Pant National Institute of Himalayan Environment & Sustainable Development Kosi-Katarmal, Almora, Uttarakhand, India
| | - Nora M. Aborehab
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Alessandro Venditti
- Dipartimento di Chimica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Moein Bashiry
- Department of Food Science and Technology, Nutrition and Food Sciences Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Ksenija S. Mileski
- Department of Morphology and Systematic of Plants, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timișoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timișoara, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
33
|
Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031424] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of natural food ingredients has been increased in recent years due to the negative health implications of synthetic ingredients. Natural bioactive compounds are important for the development of health-oriented functional food products with better quality attributes. The natural bioactive compounds possess different types of bioactivities, e.g., antioxidative, antimicrobial, antihypertensive, and antiobesity activities. The most common method for the development of functional food is the fortification of these bioactive compounds during food product manufacturing. However, many of these natural bioactive compounds are heat-labile and less stable. Therefore, the industry and researchers proposed the microencapsulation of natural bioactive compounds, which may improve the stability of these compounds during processing and storage conditions. It may also help in controlling and sustaining the release of natural compounds in the food product matrices, thus, providing bioactivity for a longer duration. In this regard, several advanced techniques have been explored in recent years for microencapsulation of bioactive compounds, e.g., essential oils, healthy oils, phenolic compounds, flavonoids, flavoring compounds, enzymes, and vitamins. The efficiency of microencapsulation depends on various factors which are related to natural compounds, encapsulating materials, and encapsulation process. This review provides an in-depth discussion on recent advances in microencapsulation processes as well as their application in food systems.
Collapse
|
34
|
Fuzetti CG, Castilhos MBM, Nicoletti VR. Microencapsulation of natural blue dye from butterfly pea (
Clitoria ternatea
L.) flowers: the application of different carriers. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caroline Gregoli Fuzetti
- Food Engineering and Technology Department São Paulo State University São José do Rio Preto SP Brazil
- Departamento de Engenharia e Tecnologia de Alimentos Unesp ‐ Universidade Estadual Paulista São José do Rio Preto SP Brazil
| | - Maurício Bonatto Machado Castilhos
- Food Engineering and Technology Department São Paulo State University São José do Rio Preto SP Brazil
- Department of Agricultural Sciences and Biology Minas Gerais State University Frutal MG Brazil
- Departamento de Engenharia e Tecnologia de Alimentos Unesp ‐ Universidade Estadual Paulista São José do Rio Preto SP Brazil
| | - Vânia Regina Nicoletti
- Food Engineering and Technology Department São Paulo State University São José do Rio Preto SP Brazil
- Departamento de Engenharia e Tecnologia de Alimentos Unesp ‐ Universidade Estadual Paulista São José do Rio Preto SP Brazil
| |
Collapse
|
35
|
Anusha Siddiqui S, Redha AA, Esmaeili Y, Mehdizadeh M. Novel insights on extraction and encapsulation techniques of elderberry bioactive compounds. Crit Rev Food Sci Nutr 2022; 63:5937-5952. [PMID: 35021911 DOI: 10.1080/10408398.2022.2026290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Elderberry (Sambucus nigra L.) has been used in traditional medicine and as a supplement in many beverages and meals. Elderberry is a good source of bioactive flavonoids like quercetin, kaempferol, and rutin, as well as other phenolic compounds. Extraction techniques significantly influence the efficiency of extraction of bioactive compounds. Green chemistry elements such as safety, environmental friendliness, run-down or at least minimal contaminants, efficiency, and economic criteria should all be addressed by an effective bioactive extraction process. Furthermore, micro/nanoencapsulation technologies are particularly effective for increasing bioavailability and bioactive component stability. SCOPE AND APPROACH This review article comprehensively describes new developments in elderberry extraction and encapsulation. Elderberry is largely employed in the food and pharmaceutical industries due to its health-promoting and sensory characteristics. Elderberry has traditionally been used as a diaphoretic, antipyretic, diuretic, antidepressant, and antitumor agent in folk medicine. KEY FINDINGS AND CONCLUSIONS Conventional extraction methods (e.g. maceration and Soxhelt extraction) as well as advanced green techniques (e.g. supercritical fluids, pulsed electric field, emulsion liquid extraction, microwave, and ultrasonic extraction) have been used to extract bioactives from elderberry. Over the other protective measures, encapsulation techniques are particularly recommended to protect the bioactive components found in elderberry. Microencapsulation (spray drying, freeze drying, extrusion, emulsion systems) and nanoencapsulation (nanoemulsions, solid lipid nanoparticles and nanodispersions, nanohydrogels, electrospinning, nano spray drying) approaches for elderberry bioactives have been examined in this regard.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough, United Kingdom
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mohammad Mehdizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
36
|
Insang S, Kijpatanasilp I, Jafari S, Assatarakul K. Ultrasound-assisted extraction of functional compound from mulberry (Morus alba L.) leaf using response surface methodology and effect of microencapsulation by spray drying on quality of optimized extract. ULTRASONICS SONOCHEMISTRY 2022; 82:105806. [PMID: 34991963 PMCID: PMC8799475 DOI: 10.1016/j.ultsonch.2021.105806] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 05/08/2023]
Abstract
This study aimed to optimize the ultrasound-assisted extraction (UAE) condition of mulberry leaf extract (MLE) using response surface methodology and to microencapsulate MLE by spray drying using different coating materials and ratios of coating material and MLE. The extraction results showed that MLE from condition of 60 °C (X1, temperature), 30 min (X2, time) and 60% v/v (X3, ethanol concentration) exhibited the highest bioactive compound and antioxidant activity (DPPH and FRAP assay). Based on this optimal condition, MLE was further encapsulated by spray drying. It was found that MLE encapsulated with resistant maltodextrin at ratio of MLE and resistant maltodextrin 1:1 (w/w) showed the highest encapsulation yield (%) and encapsulation efficiency (%). Water solubility, moisture content and water activity were non-significant (p > 0.05) among the microcapsules. The scanning electron microscope (SEM) revealed that the types of coating material affected their microstructures and microcapsules prepared by resistant maltodextrin as coating material had a spherical shape, smooth surface and less shrinkage than microcapsules prepared by maltodextrin and gum arabic which had rough surfaces. The highest antioxidant activity was obtained from microcapsule prepared by gum arabic at ratio of MLE and gam arabic 1:2 (w/w). In conclusion, optimal condition from UAE and encapsulation by spray drying suggest the critical potential for production of functional food with improved bioactive compound stability and maximized antioxidant activity.
Collapse
Affiliation(s)
- Supasit Insang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Isaya Kijpatanasilp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saeid Jafari
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
37
|
Evaluation of Freeze Drying and Electrospinning Techniques for Saffron Encapsulation and Storage Stability of Encapsulated Bioactives. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5120326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Saffron extract was encapsulated into a gelatin matrix by means of electrospinning and freeze drying techniques and the degradation kinetics of bioactive compounds were evaluated during their storage at 4, 24, and 35 °C as compared to non-encapsulated control. The encapsulation efficiency, thermal properties, storage stability, morphology, and diameter distribution of the encapsulated saffron extract were evaluated as output parameters. In general, both encapsulation techniques demonstrated superior retention of bioactive compounds compared to samples without encapsulation during the entire storage period. Electrospinning and freeze drying techniques were able to retain at least 96.2 and 93.7% of crocin, respectively, after 42 days of storage at 35 °C with the 15% saffron extract. The half-life (t1/2) time parameter for the control sample (with 15% saffron extract without encapsulation) was 22 days at 4 °C temperature, while that encapsulated by electrospinning was 138 days and that obtained for freeze drying was 77 days, The half-lives were longer at lower temperatures. The encapsulation efficiency of crocin, picrocrocin, and safranal associated with the electro-spun gelatin fibers were 76.3, 86.0, and 74.2%, respectively, and in comparison, the freeze drying encapsulation efficiencies were relatively lower, at 69.0, 74.7, and 65.8%, respectively. Electro-spun gelatin fibers also had higher melting and denaturation temperatures of 78.3 °C and 108.1 °C, respectively, as compared to 65.4 °C and 93.2 °C, respectively, for freeze-dried samples. Thus, from all respects, it was concluded that electrospinning was a better and more effective technique than freeze drying in terms of preserving saffron bioactive compounds.
Collapse
|
38
|
Shahbazizadeh S, Naji-Tabasi S, Shahidi-Noghabi M, Pourfarzad A. Development of cress seed gum hydrogel and investigation of its potential application in the delivery of curcumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6505-6513. [PMID: 34002390 DOI: 10.1002/jsfa.11322] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bioactive compound delivery systems must provide stability against severe food processing and environmental conditions. Cress seed gum (CSG) with high thermal stability can be a promising polysaccharide for preparing physically cross-linked hydrogel as a curcumin delivery system. In the present study, CSG (0.05, 0.10 and 0.15 g kg-1 ) and calcium chloride (CaCl2 ) (0.00, 0.02, 0.04, 0.06 and 0.10 g kg-1 ) solutions were used for hydrogel fabrication. RESULTS Physicochemical properties of hydrogels were evaluated by entrapment efficiency, loading capacity and swelling degree, differential scanning calorimetry, scanning electron microscopy, in vitro release and free radical scavenging capacity assessments. Accordingly, 0.15 g kg-1 CSG-0.02 g kg-1 CaCl2 hydrogel was revealed to have high entrapment efficiency (93.6 ± 1.59%), loading capacity (0.92 ± 0.00%) and swelling degree (105.96 ± 12.99%), as well as heat stability above 103 °C. CSG hydrogel significantly (P < 0.05) protected the antioxidant activity of curcumin against thermal process. The curcumin release in the acidic stomach medium was negligible, although it increased significantly in the simulated intestinal environment (42.5 ± 0.75%), which followed the Peppas model. CONCLUSION As a result, CSG hydrogel can protect curcumin during food thermal processing and digestion time. Therefore, CSG hydrogel can play a valued role in modern-day food formulations with an increasing consumer preference for plant-derived materials. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Saeedeh Shahbazizadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Sara Naji-Tabasi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Mostafa Shahidi-Noghabi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Amir Pourfarzad
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
39
|
Impact of Product Formulation on Spray-Dried Microencapsulated Zinc for Food Fortification. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02721-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Pimpley VA, Maity S, Murthy PS. Green coffee polyphenols in formulations of functional yoghurt and their quality attributes. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Vaibhavi A Pimpley
- Spice and Flavour Science Department CSIR‐Central Food Technological Research Institute Mysuru Karnataka 570020India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh 201002 India
| | - Supriya Maity
- Spice and Flavour Science Department CSIR‐Central Food Technological Research Institute Mysuru Karnataka 570020India
| | - Pushpa S Murthy
- Spice and Flavour Science Department CSIR‐Central Food Technological Research Institute Mysuru Karnataka 570020India
| |
Collapse
|
41
|
Wang HH, Li MY, Dong ZY, Zhang TH, Yu QY. Preparation and Characterization of Ginger Essential Oil Microcapsule Composite Films. Foods 2021; 10:2268. [PMID: 34681317 PMCID: PMC8534594 DOI: 10.3390/foods10102268] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
New food packaging has shown research significance in the face of increasing demand for high-quality foods and growing attention paid to food safety. In this study, ginger essential oil microcapsule composite films were prepared by combining microcapsules prepared by a complex coacervation method with gelatin films, and the mechanical properties and active functions of the composite films were analyzed. Fourier-transform infrared spectroscopy and differential scanning calorimetry confirmed the successful encapsulation of ginger essential oil. The scanning electron microscopy of the composite films showed the microcapsules and gelatin film matrix were highly compatible. During the entire storage period, the antioxidant capacity of the ginger essential oil microcapsule films weakened more slowly than ginger essential oil microcapsules and could be maintained at a relatively high level for a long time. The microcapsule films had excellent inhibitory effects on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. Therefore, the direct addition of microcapsules to a film matrix can broaden the application range of microcapsules and increase the duration of the release of active ingredients. Ginger essential oil microcapsule films are potential biodegradable food packaging films with long-lasting activity.
Collapse
Affiliation(s)
- Hua-Hua Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (H.-H.W.); (M.-Y.L.); (T.-H.Z.)
| | - Meng-Yao Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (H.-H.W.); (M.-Y.L.); (T.-H.Z.)
| | - Zhou-Yong Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (H.-H.W.); (M.-Y.L.); (T.-H.Z.)
| | - Tie-Hua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China; (H.-H.W.); (M.-Y.L.); (T.-H.Z.)
| | - Qing-Yu Yu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130062, China;
| |
Collapse
|
42
|
Huang K, Yuan Y, Baojun X. A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1963978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kehao Huang
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Food Science And Agricultural Chemistry, McGill University, Quebec, Canada
| | - Yingzhi Yuan
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Biochemistry, University College London, London, UK
| | - Xu Baojun
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
43
|
Pullulan films loading saffron extract encapsulated in nanoliposomes; preparation and characterization. Int J Biol Macromol 2021; 188:62-71. [PMID: 34343589 DOI: 10.1016/j.ijbiomac.2021.07.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 07/25/2021] [Indexed: 01/16/2023]
Abstract
Nanoencapsulation of saffron extract (SE) components into the rapeseed lecithin nanoliposomes were performed by sonication of their aqueous dispersions as a green process. Dynamic light scattering (DLS) results exhibited that empty and SE loaded nanoliposomes (SENL) had average sizes in range of 118-138 nm, negative zeta potentials (-32.0 to -46.8 mV) and polydispersity index (PDI) less than 0.3 during storage for 28 days at 4 °C. Encapsulation efficiency of crocin was approximately 30%. The 70% of crocin released from SENLs within 5 h in PBS solution. Pullulan-based films were fabricated by incorporation of empty and SE loaded nanoliposomes into pullulan solution through casting method. The mechanical resistance and thermal stability of the films reduced by addition of nanoliposomes. FTIR and thermal characterizations indicated that SE was successfully encapsulated in the nanoliposomes and film matrix with high thermal stability. Incorporation of nanoliposomes enhanced the oxygen barrier properties of the films, while it didn't significantly affect the water vapor permeability (WVP) of the films. The obtained edible films or coatings can provide additional benefits due to unique flavor and color of saffron. In addition, the utilization of SE, can provide benefits for health-allegation from SE antioxidant capacity.
Collapse
|
44
|
Buljeta I, Pichler A, Ivić I, Šimunović J, Kopjar M. Encapsulation of Fruit Flavor Compounds through Interaction with Polysaccharides. Molecules 2021; 26:molecules26144207. [PMID: 34299482 PMCID: PMC8304777 DOI: 10.3390/molecules26144207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Production and storage, the influence of packaging materials and the presence of other ingredients in fruit products can cause changes in flavor compounds or even their loss. Due to these issues, there is a need to encapsulate flavor compounds, and polysaccharides are often used as efficient carriers. In order to achieve effective encapsulation, satisfactory retention and/or controlled release of flavor compounds, it is necessary to understand the nature of the coated and coating materials. Interactions that occur between these compounds are mostly non-covalent interactions (hydrogen bonds, hydrophobic interactions and van der Waals forces); additionally, the formation of the inclusion complexes of flavor compounds and polysaccharides can also occur. This review provides insight into studies about the encapsulation of flavor compounds, as well as basic characteristics of encapsulation such as the choice of coating material, the effect of various factors on the encapsulation efficiency and an explanation of the nature of binding.
Collapse
Affiliation(s)
- Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
| | - Ivana Ivić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
- Correspondence:
| |
Collapse
|
45
|
Rajabi H, Jafari SM, Feizi J, Ghorbani M, Mohajeri SA. Surface-decorated graphene oxide sheets with nanoparticles of chitosan-Arabic gum for the separation of bioactive compounds: A case study for adsorption of crocin from saffron extract. Int J Biol Macromol 2021; 186:1-12. [PMID: 34242644 DOI: 10.1016/j.ijbiomac.2021.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/10/2021] [Accepted: 07/04/2021] [Indexed: 12/01/2022]
Abstract
This work provides a new perception toward the application of the graphenic-biopolymeric composites as a solid-bed for separation and purification of bioactive compounds. Graphene oxide nanocomposites with functionalized sheets by soluble and insoluble nanocomplexes of chitosan and Arabic gum, were successfully synthesized and employed for the adsorption and purification of crocin, a nutraceutical from saffron. The composites exhibited a nanostructured scaffold with a particle size of 10 nm and experienced an unprecedented increase in the surface area by about 300% and improved d-spacing sheets by 17%. The optimum conditions for crocin separation were temperature = 318 K, stirring rate = 300 rpm, initial concentration = 100 mg L-1 and pH = 6. Under these conditions, the nanocomposites separated 99.1% of crocin in an equilibrium time of 30 min. The adsorption data were best represented by Freundlich isotherm and pseudo-second-order kinetic models. The thermodynamic studies indicated that the crocin adsorption on nanocomposites was an endothermic, spontaneous and physisorption process. The high-performance liquid chromatography (HPLC) analysis revealed that produced nanocomposites adsorbed crocin efficiently from saffron extract with a purity similar to the standard sample. The possible interaction mechanisms between crocin and nanocomposites were electrostatic interactions and hydrogen bonding.
Collapse
Affiliation(s)
- Hamid Rajabi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Javad Feizi
- Department of Food Quality Control and Safety, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Mohammad Ghorbani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Ahmad Mohajeri
- Faculty of pharmaceuticals, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Wang X, Ding Z, Zhao Y, Prakash S, Liu W, Han J, Wang Z. Effects of lutein particle size in embedding emulsions on encapsulation efficiency, storage stability, and dissolution rate of microencapsules through spray drying. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Abstract
Essential oils (EOs) are known as any aromatic oily organic substances which are naturally synthesized in plants. Exhibiting a broad range of biological activities, EOs have played a key role in numerous industries for ages, including pharmaceutical, textile, and food. However, the volatility and high sensitivity to environmental influences pose challenges to the application of EOs on industrial scale. Microencapsulation via the spray-drying method is one of the promising techniques to overcome these challenges, thanks to the presence of wall materials that properly protect the core EOs from oxidation and evaporation. By optimization of key factors related to the infeed emulsion properties and spray-drying process, the encapsulation efficiency and retention of encapsulated EOs could be significantly improved, thus allowing a wide range of EO applications. This review attempts to discuss on different determining factors of the spray-drying process to develop an effective encapsulation formula for EOs. Furthermore, recent applications of encapsulated EOs in the fields of foods, pharmaceuticals, and textile industries are also thoroughly addressed.
Collapse
|
48
|
Angelis ED, Pilolli R, Bejjani A, Guagnano R, Garino C, Arlorio M, Monaci L. Optimization of an Untargeted DART-HRMS Method Envisaging Identification of Potential Markers for Saffron Authenticity Assessment. Foods 2021; 10:foods10061238. [PMID: 34072324 PMCID: PMC8230169 DOI: 10.3390/foods10061238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/15/2023] Open
Abstract
Saffron is one of the most expensive agricultural products in the world and as such, the most commonly adulterated spice, with undeclared plant-based surrogates or synthetic components simulating color and morphology. Currently, saffron quality is certificated in the international trade market according to specific ISO guidelines, which test aroma, flavor, and color strength. However, it has been demonstrated that specific adulterants such as safflower, marigold, or turmeric up to 20% (w/w) cannot be detected under the prescribed approach; therefore, there is still a need for advanced and sensitive screening methods to cope with this open issue. The current investigation aims to develop a rapid and sensitive untargeted method based on an ambient mass spectrometry ionization source (DART) and an Orbitrap™high-resolution mass analyzer to discriminate pure and adulterated saffron samples with either safflower or turmeric. The metabolic profiles of pure and adulterated model samples prepared at different inclusion levels were acquired. Unsupervised multivariate analysis was carried out based on hierarchical cluster analysis and principal component analysis as first confirmation of the discriminating potential of the metabolic profile acquired under optimized DART-HRMS conditions. In addition, a preliminary selection of potential markers for saffron authenticity was accomplished, identifying compounds able to discriminate the type of adulteration down to a concentration level of 5%.
Collapse
Affiliation(s)
- Elisabetta De Angelis
- Institute of Science of Food Production, National Research Council of Italy, Via G. Amendola 126/O, 70126 Bari, Italy; (E.D.A.); (R.P.); (R.G.)
| | - Rosa Pilolli
- Institute of Science of Food Production, National Research Council of Italy, Via G. Amendola 126/O, 70126 Bari, Italy; (E.D.A.); (R.P.); (R.G.)
| | - Alice Bejjani
- Lebanese Atomic Energy Commission, National Council for Scientific Research, Riad El Solh 107 2260 Beirut, Lebanon;
| | - Rocco Guagnano
- Institute of Science of Food Production, National Research Council of Italy, Via G. Amendola 126/O, 70126 Bari, Italy; (E.D.A.); (R.P.); (R.G.)
| | - Cristiano Garino
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”(UPO), Largo Donegani, 2, 28100 Novara, Italy; (C.G.); (M.A.)
- German Federal Institute for Risk Assessment (BfR), D-14191 Berlin, Germany
| | - Marco Arlorio
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”(UPO), Largo Donegani, 2, 28100 Novara, Italy; (C.G.); (M.A.)
| | - Linda Monaci
- Institute of Science of Food Production, National Research Council of Italy, Via G. Amendola 126/O, 70126 Bari, Italy; (E.D.A.); (R.P.); (R.G.)
- Correspondence: ; Tel.: +39-0805929343
| |
Collapse
|
49
|
Oreopoulou A, Choulitoudi E, Tsimogiannis D, Oreopoulou V. Six Common Herbs with Distinctive Bioactive, Antioxidant Components. A Review of Their Separation Techniques. Molecules 2021; 26:molecules26102920. [PMID: 34069026 PMCID: PMC8157015 DOI: 10.3390/molecules26102920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Rosemary, oregano, pink savory, lemon balm, St. John’s wort, and saffron are common herbs wildly grown and easily cultivated in many countries. All of them are rich in antioxidant compounds that exhibit several biological and health activities. They are commercialized as spices, traditional medicines, or raw materials for the production of essential oils. The whole herbs or the residues of their current use are potential sources for the recovery of natural antioxidant extracts. Finding effective and feasible extraction and purification methods is a major challenge for the industrial production of natural antioxidant extracts. In this respect, the present paper is an extensive literature review of the solvents and extraction methods that have been tested on these herbs. Green solvents and novel extraction methods that can be easily scaled up for industrial application are critically discussed.
Collapse
Affiliation(s)
- Antigoni Oreopoulou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou, 15780 Athens, Greece; (A.O.); (E.C.); (D.T.)
- Vioryl, Agricultural and Chemical Industry, Research S.A., 28th km National Road Athens-Lamia, 19014 Attiki, Greece
| | - Evanthia Choulitoudi
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou, 15780 Athens, Greece; (A.O.); (E.C.); (D.T.)
| | - Dimitrios Tsimogiannis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou, 15780 Athens, Greece; (A.O.); (E.C.); (D.T.)
- NFA (Natural Food Additives), Laboratory of Natural Extracts Development, 6 Dios st, 17778 Athens, Greece
| | - Vassiliki Oreopoulou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou, 15780 Athens, Greece; (A.O.); (E.C.); (D.T.)
- Correspondence: ; Tel.: +30-2107723166
| |
Collapse
|
50
|
Baysan U, Zungur Bastıoğlu A, Coşkun NÖ, Konuk Takma D, Ülkeryıldız Balçık E, Sahin-Nadeem H, Koç M. The effect of coating material combination and encapsulation method on propolis powder properties. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|