1
|
Jiang G, He K, Chen M, Yang Y, Tang T, Tian Y. Development of multifunctional chitosan packaging film by plasticizing novel essential oil-based hydrophobic deep eutectic solvent: Structure, properties, and application. Carbohydr Polym 2025; 347:122701. [PMID: 39486942 DOI: 10.1016/j.carbpol.2024.122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
To improve the limited mechanical and water barrier properties of chitosan film while granting extra functionalities simultaneously, present study pioneered the incorporation of chitosan film with newly developed essential oil (EO)-based hydrophobic deep eutectic solvents (HDES, EO:octanoic acid (OA), EO:menthol (ME) and OA:ME:EO). The highest tensile strength (66.22 MPa) and elongation at break (45.99 %) were obtained in OA:ME:EO-40 and OA:ME:EO-80 films, respectively. The OA:EO-based films showed excellent and stable hydrophobicity. HDESs also endowed film with additional functionalities including thermal stability, bio-compatibility, controlled release, antioxidant, and antibacterial capacity. The extension of the storage period of strawberry treated with OA:EO-containing films confirmed their preservation ability. Compared with ME:EO and OA:ME:EO, OA:EO had better compatibility with chitosan matrix and could serve as a promising plasticizer for strengthening functionalities of chitosan film. These results also promote application of HDESs as emerging plasticizers in manufacture of other polymer-based packaging film.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Kaiwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China.
| | - Yichen Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China
| | - Tingting Tang
- College of agriculture and forestry science and technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
2
|
Zhao J, Xu S, Gu L, Yang F, Fang X, Gao S. High internal phase emulsions gels stabilized by soy protein isolate and rutin complexes: Encapsulation, interfacial properties and in vitro digestibility. Lebensm Wiss Technol 2024; 203:116317. [DOI: 10.1016/j.lwt.2024.116317] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
|
3
|
Ma Y, Cao Y, Zhang L, Yu Q. Preservation of chilled beef using active films based on bacterial cellulose and polyvinyl alcohol with the incorporation of Perilla essential oil Pickering emulsion. Int J Biol Macromol 2024; 271:132118. [PMID: 38811316 DOI: 10.1016/j.ijbiomac.2024.132118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024]
Abstract
In this study, Perilla essential oil (PEO) Pickering emulsions, prepared using soybean protein isolate-chitosan nanoparticles (SPI-CSNPs) as emulsifiers (SCEO), were used to improve the performance of bacterial cellulose/polyvinyl alcohol (BC/PVA) films for application in chilled beef preservation. The SCEO has a smaller particle size (185 nm), higher viscosity, a more uniform dispersion and was more stable at an oil phase volume fraction of 80 %. An increase in the films' surface roughness and in the hydrogen bonding between SCEO and the films' matrix was also observed, resulting in a lower tensile strength (TS, 94.75-62.02 MPa) and higher elongation at break (EAB, 26.78-55.62 %). Moreover, the thermal stability, water vapor permeability, antioxidant and antibacterial properties of the composite films improved as the SCEO content increased. Furthermore, the Pickering emulsion method was effective in preventing the loss of PEO during storage. Overall, one particular composite film, BP/SCEO3, could prolong the shelf life of chilled beef by up to 14 days, and hence was promising for food preservation.
Collapse
Affiliation(s)
- Yuying Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yinjuan Cao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Effects of pre-emulsion prepared using sucrose esters with different hydrophile-lipophile balances on characteristics of soy protein isolate emulsion films. Food Res Int 2023; 165:112542. [PMID: 36869455 DOI: 10.1016/j.foodres.2023.112542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/19/2022] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
The preparation of emulsion films using pre-emulsification has received extensive attention due to the enhancement of oil binding capacity. However, the different effects of water in oil (W/O) and oil in water (O/W) pre-emulsions on the physicochemical properties of films are still unclear. Therefore, the soy protein isolate (SPI) based emulsion films were prepared by W/O or O/W pre-emulsion using sucrose esters with different hydrophile-lipophile balances to investigate the properties of SPI emulsion (SPIE) films. The viscosity, storage moduli, and loss moduli of film-forming solutions (FFSs) with O/W pre-emulsion were higher than those of FFSs with W/O pre-emulsion. The oil droplets of FFSs with W/O pre-emulsion were large and uneven, and the oil droplet size increased after drying. Phase separation and macroporous network appeared in cross-sectional of SPIE films with W/O pre-emulsion according to scanning electron microscope images. Meanwhile, the SPIE films with W/O pre-emulsion demonstrated higher oil concentration and hydrophobicity on the upper surface compared with the SPIE films with O/W pre-emulsion. Low tensile strength, glass transition temperature, and high elongation at break and transparency value of SPIE films with O/W pre-emulsions were founded. The water vapor permeability of SPIE films with W/O pre-emulsion increased with the addition of oil, whereas the opposite trend appeared in that with O/W pre-emulsion. In conclusion, the structure and porosity of emulsion films could be affected by the pre-emulsion types, which can determine the application ranges.
Collapse
|
5
|
Das RP, Singh BG, Aishwarya J, Kumbhare LB, Kunwar A. 3,3'-Diselenodipropionic acid immobilised gelatin gel: a biomimic catalytic nitric oxide generating material for topical wound healing application. Biomater Sci 2023; 11:1437-1450. [PMID: 36602012 DOI: 10.1039/d2bm01964g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) plays a pivotal role in the wound healing process and promotes the generation of healthy endothelium. In this work, a simple method has been developed for fabricating a diselenide grafted gelatin gel, which reduces NO donors such as S-nitroso-N-acetylpenicillamine (SNAP) by glutathione peroxidase-like mechanism to produce NO. Briefly, the process involved covalently conjugating 3,3'-diselenodipropionic acid (DSePA) with gelatin via carbodiimide coupling. The resulting gelatin-DSePA conjugate (G-Se-Se-G) demonstrated NO production upon incubation with SNAP and glutathione (GSH) with the flux of 4.8 ± 0.6 nmol cm-2 min-1 and 1.6 ± 0.1 nmol cm-2 min-1 at 10 min and 40 min, respectively. The G-Se-Se-G recovered even after 5 days of incubation with the reaction mixture retaining catalytic activity up to 74%. Subsequently, G-Se-Se-G was suspended (5% w/v) in water with lecithin (6% w/w of gelatin) and F127 (3% w/w of gelatin) to prepare gel through temperature dependant gelation method. The fabricated G-Se-Se-G gel exhibited desirable rheological characteristics and excellent mechanical stability under storage conditions and did not cause any significant toxicity in normal human keratinocytes (HaCaT) and fibroblast cells (WI38) up to 50 μg ml-1 of selenium equivalent. Finally, mice studies confirmed that topically applied G-Se-Se-G gel and SNAP promoted faster epithelization and collagen deposition at the wound site. In conclusion, the development of a biomimetic NO generating gel with sustained activity and biocompatibility was achieved.
Collapse
Affiliation(s)
- Ram P Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - J Aishwarya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.,Advanced Centre for Treatment, Research and Education in Cancer, Mumbai-410210, India
| | - Liladhar B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
6
|
Gelatin films functionalized by lignocellulose nanocrystals-tannic acid stabilized Pickering emulsions: Influence of cinnamon essential oil. Food Chem 2023; 401:134154. [DOI: 10.1016/j.foodchem.2022.134154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/13/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023]
|
7
|
Cheng Y, Zhai X, Wu Y, Li C, Zhang R, Sun C, Wang W, Hou H. Effects of natural wax types on the physicochemical properties of starch/gelatin edible films fabricated by extrusion blowing. Food Chem 2023; 401:134081. [DOI: 10.1016/j.foodchem.2022.134081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
|
8
|
Zeng L, Lee J, Jo YJ, Choi MJ. Effects of micro- and nano-sized emulsions on physicochemical properties of emulsion–gelatin composite gels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Zhang M, Li X, Zhou L, Chen W, Marchioni E. Protein-Based High Internal Phase Pickering Emulsions: A Review of Their Fabrication, Composition and Future Perspectives in the Food Industry. Foods 2023; 12:482. [PMID: 36766011 PMCID: PMC9914728 DOI: 10.3390/foods12030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Protein-based high internal phase Pickering emulsions (HIPEs) are emulsions using protein particles as a stabilizer in which the volume fraction of the dispersed phase exceeds 74%. Stabilizers are irreversibly adsorbed at the interface of the oil phase and water phase to maintain the droplet structure. Protein-based HIPEs have shown great potential for a variety of fields, including foods, due to the wide range of materials, simple preparation, and good biocompatibility. This review introduces the preparation routes of protein-based HIPEs and summarizes and classifies the preparation methods of protein stabilizers according to their formation mechanism. Further outlined are the types and properties of protein stabilizers used in the present studies, the composition of the oil phase, the encapsulating substances, and the properties of the constituted protein-based HIPEs. Finally, future development of protein-based HIPEs was explored, such as the development of protein-based stabilizers, the improvement of emulsification technology, and the quality control of stabilizers and protein-based HIPEs.
Collapse
Affiliation(s)
- Minghao Zhang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Xiang Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Weilin Chen
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Eric Marchioni
- Inst Pluridisciplinaire Hubert Curien, CNRS, Equipe Chim Analyt Mol Bioact & Pharmacognoise, UMR 7178, UDS, F-67400 Illkirch Graffenstaden, France
| |
Collapse
|
10
|
Effect of W/O pre-emulsion prepared with different emulsifiers on the physicochemical properties of soy protein isolate-based emulsion films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Hou Y, Liu Q, Mian SM, Luo Y, Mu G, Jiang S, Zhou M, Wu X. Effects of treatment of dielectric barrier discharge cold plasma (DBD‐CP) on mechanical, barrier and functional characteristics of casein‐based films. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yaqi Hou
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Qi Liu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Safian Murad Mian
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Yanghe Luo
- Institute of Food Research Hezhou University Guangxi 542800 China
| | - Guangqing Mu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Shujuan Jiang
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Mingyi Zhou
- College of Food Science and Engineering Jinzhou Medical University Liaoning 121001 China
| | - Xiaomeng Wu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| |
Collapse
|
12
|
Chen M, Xu F, Nsor-Atindana J, Chen X, Liu F, Wu J, Zhong F. High protein and high oil emulsions: Phase diagram, stability and interfacial adsorption. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Zong X, Zhang X, Bi K, Zhou Y, Zhang M, Qi J, Xu X, Mei L, Xiong G, Fu M. Novel emulsion film based on gelatin/polydextrose/camellia oil incorporated with Lactobacillus pentosus: Physical, structural, and antibacterial properties. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Zeng C, Liu Y, Ding Z, Xia H, Guo S. Physicochemical properties and antibacterial activity of hydrophobic deep eutectic solvent-in-water nanoemulsion. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Cheng Y, Sun C, Zhai X, Zhang R, Zhang S, Sun C, Wang W, Hou H. Effect of lipids with different physical state on the physicochemical properties of starch/gelatin edible films prepared by extrusion blowing. Int J Biol Macromol 2021; 185:1005-1014. [PMID: 34217745 DOI: 10.1016/j.ijbiomac.2021.06.203] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
The effects of various physical state lipids (rapeseed oil (RO), shortening (ST), beeswax (BW)), on the physicochemical properties of starch (S) (hydroxypropyl distarch phosphate (HP), oxidized hydroxypropyl starch (OS))/gelatin (G) blown films were studied. S/G-lipid blends showed decreased storage modulus and complex viscosity. The formation of hydrogen bonds was inhibited by the ST and BW, but facilitated by the RO. Compared with BW and ST, RO was more effective to promote the melted and fractured of starch. Lipids addition promoted the compatibility of starch and gelatin. The presence of the lipids significantly improved the surface hydrophobicity, mechanical, water vapor barrier and water resistance properties of S/G films. S/G-RO films exhibited the strongest surface hydrophobicity and tensile strength, while HP/G-BW film showed the strongest water resistance and water vapor barrier properties. These results revealed that the appropriate lipids could be used to produce S/G-lipid films with desirable physicochemical properties.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Cong Sun
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaosong Zhai
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Rui Zhang
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shikai Zhang
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chanchan Sun
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science &Technology), Ministry of Education, Tianjin 300457, China
| | - Wentao Wang
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| | - Hanxue Hou
- Department of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
16
|
Said N, Howell NK, Sarbon N. A Review on Potential Use of Gelatin-based Film as Active and Smart Biodegradable Films for Food Packaging Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1929298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- N.S. Said
- School of Food Science and Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Nazlin K. Howell
- Department of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - N.M Sarbon
- School of Food Science and Technology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
17
|
Design of Sodium Alginate/Gelatin-Based Emulsion Film Fused with Polylactide Microparticles Charged with Plant Extract. MATERIALS 2021; 14:ma14040745. [PMID: 33562580 PMCID: PMC7915926 DOI: 10.3390/ma14040745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/29/2022]
Abstract
This study aimed at designing emulsion films based on sodium alginate, gelatin, and glycerol, and their modification by the addition of lipids (cottonseed oil and beeswax). Film composition with the most promising properties was further modified by the incorporation of polylactide (PLA) microparticles with Calendula officinalis flower extract. PLA microspheres were obtained by the emulsion/solvent evaporation method. The size distribution of oily particles in emulsions was investigated. Mechanical properties, moisture content, UV-Vis spectra, and the color of films were analyzed, while biophysical skin parameters were assessed after their application to the skin. Moreover, the contact angles were measured, and the surface free energy of polymeric films was determined. An investigation of the amount of Calendula officinalis flower extract which can be incorporated into PLA microparticles was performed. The modification of the composition of films significantly influenced their physicochemical properties. The selected active ingredient in the form of plant extract was successfully incorporated into polymeric microparticles that were further added into the developed emulsion film. The condition of the skin after the application of obtained emulsion films improved. The prepared materials, especially containing microparticles with plant extract, can be considered for designing new cosmetic forms, such as cosmetic masks, as well as new topical formulations for pharmaceutical delivery.
Collapse
|
18
|
Yousuf B, Wu S, Gao Y. Characteristics of karaya gum based films: Amelioration by inclusion of Schisandra chinensis oil and its oleogel in the film formulation. Food Chem 2020; 345:128859. [PMID: 33333356 DOI: 10.1016/j.foodchem.2020.128859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/19/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
This research was focused to develop novel karaya gum films, modified by adding Schisandra chinensis oil and its oleogel. The films produced were assessed for physicochemical, mechanical, thermal and structural characteristics. Glass transition temperature (Tg) of control karaya gum films was recorded as 145.70 °C. Insignificant (p < 0.05) changes occurred in Tg of films in which oil was incorporated, irrespective of the concentration. However, Tg decreased significantly (p < 0.05) as oleogel was added to the karaya gum films and lowest Tg occurred for the KGOG3 films which contained highest concentration of oleogel. X-ray diffraction test depicted an obsolete amorphous behavior of control karaya gum film whereas some peaks appeared in other film samples. Scanning electron micrography (SEM) revealed a reduction in roughness and grainy morphology when oil or oleogel was added to the films. Addition of oil/oleogel enhanced the phenolic content and DPPH radical scavenging activity of the films.
Collapse
Affiliation(s)
- Basharat Yousuf
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yuan Gao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
19
|
New approach in the development of edible films: The use of carnauba wax micro- or nanoemulsions in arrowroot starch-based films. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Sun H, Li S, Chen S, Wang C, Liu D, Li X. Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. Int J Biol Macromol 2020; 159:696-703. [DOI: 10.1016/j.ijbiomac.2020.05.118] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022]
|
21
|
Functional Properties of Biopolymer-Based Films Modified with Surfactants: A Brief Review. Processes (Basel) 2020. [DOI: 10.3390/pr8091039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An increase of environmental awareness recently has increased the interest of researchers in using of biopolymer-based films. The films have been prepared extensively by utilizing starch, carboxymethyl cellulose, chitosan, protein, gelatin, carrageenan, alginate, pectin, guar gum and pullulan. They are typically modified with surface-active agents (surfactants) such as glycerol monostearate, sucrose ester, sodium stearoyl lactate, sodium dodecyl sulfate, ethyl lauroyl arginate HCl, Span 20 to 80, Tween-20 to 80 and soy lecithin for improving the functional properties of the films. In this brief review, two types of biopolymer-based films that prepared through casting method were categorized, specifically solution- and emulsion-based films. The four types of surfactants, namely non-ionic, anionic, cationic and amphoteric surfactants that are regularly used to modify biopolymer-based films are also described. The functional properties of the films modified with different types of surfactants are briefly reviewed. This study enhances the attraction of researchers in biopolymer-based films and the improvement of new concepts in this niche area.
Collapse
|
22
|
Ocak B. Properties and characterization of thyme essential oil incorporated collagen hydrolysate films extracted from hide fleshing wastes for active packaging. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29019-29030. [PMID: 32424755 DOI: 10.1007/s11356-020-09259-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
In this investigation, collagen hydrolysate (CH) films extracted from hide fleshing wastes were successfully developed using solvent casting method by incorporating different concentrations of thyme essential oil (TO) (2%, 4%, 6%, and 8%) into the CH. Depending on the concentration of TO, thickness, tensile strength (TS), elongation at break (EAB), film solubility (FS), color, opacity, light transmittance, and thermal properties varied. Addition of TO resulted in the increases in the thickness, EAB (%), and light barrier performance of CH-TO films while there was a significant decrease in TS and FS of the CH films (p ≤ 0.05). According to our findings, the increment of TO content induced higher lightness and yellowness but lower redness values compared to CH film. Fourier-transform infrared spectroscopy was conducted to determine the molecular changes and interactions between CH extracted from hide fleshing wastes and TO. In order to analyze the thermal behavior of the films, differential scanning calorimetry analysis was conducted. Moreover, the structure-property relationships of CH and TO were examined by scanning electron microscopy and a reduction in the compact and homogenous structures of the films containing TO was observed. Promising results have been obtained showing that CH-based films can be used for active packaging purposes, thereby contributing to a significant reduction in the environmental impact of both leather solid waste and plastic packaging materials.
Collapse
Affiliation(s)
- Bugra Ocak
- Faculty of Engineering, Department of Leather Engineering, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
23
|
Li X, Tu Z, Sha X, Ye Y, Li Z. Flavor, antimicrobial activity, and physical properties of composite film prepared with different surfactants. Food Sci Nutr 2020; 8:3099-3109. [PMID: 32724574 PMCID: PMC7382177 DOI: 10.1002/fsn3.1526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/10/2022] Open
Abstract
Different surfactants (lecithin, Tween-20, and Tween-80) were added in composite film during the preparation. Flavor, antimicrobial activity, and physical properties of ginger essential oil -gelatin film were investigated, in order to study the effect of surfactants on the properties of film. The flavor of GEO was not detected in the film prepared with Tween-20 and film prepared with Tween-80, and these two films exhibited stronger antimicrobial activity; film prepared with lecithin possessed higher value in thickness, elongation at break, water solubility, ΔE and opacity, lower value in water vapor property, and tensile strength; attenuated total reflectance-Fourier transform infrared spectrum results suggested, Tween-20 and Tween-80 enhanced the strength of covalent bond, and lecithin weakened the strength of hydrogen bond; and the result of scanning electron microscope showed that Tween-20 and Tween-80 improved the dispersion of oil droplets in film. Therefore, this study suggested that surfactants had an influence on the physical properties and molecular structure of a resulting film; in addition, Tween-20 and Tween-80 could reduce the flavor of GEO in film, improving the antimicrobial activity of film.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangChina
- National R&D Center for Freshwater Fish ProcessingJiangxi Normal UniversityNanchangChina
- Engineering Research Center for Freshwater Fish High‐value Utilization of JiangxiJiangxi Normal UniversityNanchangChina
| | - Zong‐Cai Tu
- College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangChina
- National R&D Center for Freshwater Fish ProcessingJiangxi Normal UniversityNanchangChina
- Engineering Research Center for Freshwater Fish High‐value Utilization of JiangxiJiangxi Normal UniversityNanchangChina
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
| | - Xiao‐Mei Sha
- College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangChina
- National R&D Center for Freshwater Fish ProcessingJiangxi Normal UniversityNanchangChina
- Engineering Research Center for Freshwater Fish High‐value Utilization of JiangxiJiangxi Normal UniversityNanchangChina
| | - Yun‐Hua Ye
- College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangChina
- National R&D Center for Freshwater Fish ProcessingJiangxi Normal UniversityNanchangChina
- Engineering Research Center for Freshwater Fish High‐value Utilization of JiangxiJiangxi Normal UniversityNanchangChina
| | - Zhong‐Ying Li
- College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangChina
- National R&D Center for Freshwater Fish ProcessingJiangxi Normal UniversityNanchangChina
- Engineering Research Center for Freshwater Fish High‐value Utilization of JiangxiJiangxi Normal UniversityNanchangChina
| |
Collapse
|
24
|
Tonyali B, McDaniel A, Amamcharla J, Trinetta V, Yucel U. Release kinetics of cinnamaldehyde, eugenol, and thymol from sustainable and biodegradable active packaging films. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100484] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Zhang R, Wang W, Zhang H, Dai Y, Dong H, Kong L, Hou H. Effects of preparation conditions on the properties of agar/maltodextrin-beeswax pseudo-bilayer films. Carbohydr Polym 2020; 236:116029. [DOI: 10.1016/j.carbpol.2020.116029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/24/2020] [Accepted: 02/16/2020] [Indexed: 01/16/2023]
|
26
|
Jesus GL, Baldasso C, Marcílio NR, Tessaro IC. Demineralized whey–gelatin composite films: Effects of composition on film formation, mechanical, and physical properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.49282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Gabriela Leticia Jesus
- Laboratory of Packaging Technology and Membrane Development – LATEM Department of Chemical EngineeringFederal University of Rio Grande do Sul (UFRGS) Rua Ramiro Barcellos Porto Alegre Rio Grande do Sul Brazil
| | - Camila Baldasso
- EXATAS ‐ Area of Knowledge of Exact Sciences and EngineeringUniversity of Caxias do Sul (UCS) Caxias do Sul Rio Grande do Sul Brazil
| | - Nilson Romeu Marcílio
- Laboratory of Packaging Technology and Membrane Development – LATEM Department of Chemical EngineeringFederal University of Rio Grande do Sul (UFRGS) Rua Ramiro Barcellos Porto Alegre Rio Grande do Sul Brazil
| | - Isabel Cristina Tessaro
- Laboratory of Packaging Technology and Membrane Development – LATEM Department of Chemical EngineeringFederal University of Rio Grande do Sul (UFRGS) Rua Ramiro Barcellos Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
27
|
Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. Int J Biol Macromol 2020; 149:11-20. [PMID: 32007845 DOI: 10.1016/j.ijbiomac.2020.01.083] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/24/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022]
Abstract
Active packaging is designed to extend products shelf life by incorporating active components with biological properties in its structure. The main goal of this research was to develop a biodegradable whey protein isolate (WPI)-based film, incorporated with chitosan nanofiber (CSNF) and cinnamon essential oil (CiEO) (both emulsified and Nanostructured lipid carriers (NLC) form). Then, the physicochemical properties of developed bio-nanocomposite were fully characterized. Both water solubility and the water vapor permeability of WPI film decreased significantly (p < 0.05) by incorporating the CSNF into film structure. The good complexation between WPI and CSNF was confirmed by FTIR. Microstructure revealed that the fiber networks were well distributed throughout the films while the morphological heterogeneity and contributed to the reduction of the tensile strength were evident after addition of CiEO. These obtained results from SEM to be quite in accordance with FT-IR findings that confirmed the incorporation of NLCs into bio-nanocomposite structure have been through physical interactions. The film barrier properties to ultraviolet light were increased by adding all of nano-reinforcements. Moreover, the antibacterial activity of resulting films was enhanced by adding CiEO, especially NLC form. This study introduces a novel ecofriendly bio-nano composite in packaging industries for the shelf life extension of different perishable foods.
Collapse
|
28
|
Moula Ali AM, Prodpran T, Benjakul S. Effect of squalene as a glycerol substitute on morphological and barrier properties of golden carp (Probarbus Jullieni) skin gelatin film. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Moula Ali AM, Prodpran T, Benjakul S. Effect of squalene rich fraction from shark liver on mechanical, barrier and thermal properties of fish (Probarbus Jullieni) skin gelatin film. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Melo PE, Silva APM, Marques FP, Ribeiro PR, Souza Filho MDSM, Brito ES, Lima JR, Azeredo HM. Antioxidant films from mango kernel components. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Xiao J, Zhang M, Wang W, Teng A, Liu A, Ye R, Liu Y, Wang K, Ding J, Wu X. An Attempt of Using β-Sitosterol-Corn Oil Oleogels to Improve Water Barrier Properties of Gelatin Film. J Food Sci 2019; 84:1447-1455. [PMID: 31116427 DOI: 10.1111/1750-3841.14621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/16/2019] [Accepted: 03/21/2019] [Indexed: 11/27/2022]
Abstract
Oleogel with tailored viscoelasticity is a great interest for food structuring, while its potential benefits for edible film performance are not clear. In this study, β-sitosterol (0, 5, 10, 15, and 20 wt%)-corn oil oleogel was developed and used in the formation of gelatin-based films. Importantly, adding oleogel significantly decreased water vapor permeability of the gelatin films, however, it had little negative influence on film strength. In addition, the results of this study demonstrated that increasing the sitosterol in oleogels led to an increasing number of ordered crystals formed in the oleogel, which contributed to compact and smooth surface of the film. Moreover, the incorporation of oleogel also caused some changes in molecule conformation and film barrier property. Therefore, the superior mechanical performance and moisture resistance properties of the film were obtained when 15% β-sitosterol was used to prepare oleogel. PRACTICAL APPLICATION: Corn oil oleogels β-sitosterol was incorporated with gelatin to prepare the gelatin film aiming to improve the water resistance of the films for its variety of practical production. The enhanced vapor permeability and accepted strength of the emulsion film indicated the potential application of it with a variety of edible packaging forms, such as films, pouch and sachet in medium and high humid condition.
Collapse
Affiliation(s)
- Jingdong Xiao
- Key Lab. of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Ming Zhang
- Key Lab. of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Wenhang Wang
- Key Lab. of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Anguo Teng
- Key Lab. of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Anjun Liu
- Key Lab. of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Ran Ye
- 256 Magnolia trace Dr, Ballwin, MO, 63021, USA
| | - Yaowei Liu
- Key Lab. of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Kun Wang
- Key Lab. of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Junsheng Ding
- Key Lab. of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Xiaomeng Wu
- Key Lab. of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
32
|
Liu Q, Wu X, Qian F, Zhang T, Mu G. Influence of natamycin loading on the performance of transglutaminase‐induced crosslinked gelatin composite films. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi Liu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Xiaomeng Wu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Fang Qian
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Tao Zhang
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| | - Guangqing Mu
- School of Food Science and Technology Dalian Polytechnic University Liaoning 116000 China
| |
Collapse
|
33
|
Theerawitayaart W, Prodpran T, Benjakul S, Sookchoo P. Properties of films from fish gelatin prepared by molecular modification and direct addition of oxidized linoleic acid. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Rodrigues DC, Cunha AP, Silva LM, Rodrigues TH, Gallão MI, Azeredo HM. Emulsion films from tamarind kernel xyloglucan and sesame seed oil by different emulsification techniques. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Wijaya W, Van der Meeren P, Dewettinck K, Patel AR. High internal phase emulsion (HIPE)-templated biopolymeric oleofilms containing an ultra-high concentration of edible liquid oil. Food Funct 2018; 9:1993-1997. [DOI: 10.1039/c7fo01945a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oleofilms are produced via casting and drying of HIPEs stabilized using sodium caseinate (SC): alginate (ALG) complexes.
Collapse
Affiliation(s)
- Wahyu Wijaya
- Particle and Interfacial Technology Group
- Department of Applied Analytical and Physical Chemistry
- Faculty of Bioscience Engineering
- Ghent University
- B-9000 Gent
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group
- Department of Applied Analytical and Physical Chemistry
- Faculty of Bioscience Engineering
- Ghent University
- B-9000 Gent
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering
- Department of Food Safety and Quality
- Faculty of Bioscience Engineering
- Ghent University
- 9000 Gent
| | - Ashok R. Patel
- Laboratory of Food Technology and Engineering
- Department of Food Safety and Quality
- Faculty of Bioscience Engineering
- Ghent University
- 9000 Gent
| |
Collapse
|
36
|
Physicochemical, Antioxidant, In Vitro Release, and Heat Sealing Properties of Fish Gelatin Films Incorporated with β-Cyclodextrin/Curcumin Complexes for Apple Juice Preservation. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-2021-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Zhang L, Liu A, Wang W, Ye R, Liu Y, Xiao J, Wang K. Characterisation of microemulsion nanofilms based on Tilapia fish skin gelatine and ZnO nanoparticles incorporated with ginger essential oil: meat packaging application. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13441] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Le Zhang
- Key Laboratory of Food Nutrition and Safety; Ministry of Education; College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin Tianjin 300457 China
- Tianjin Modern Vocational Technology College; Tianjin Tianjin 300350 China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety; Ministry of Education; College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin Tianjin 300457 China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety; Ministry of Education; College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin Tianjin 300457 China
- Engineering Research Center of Food Biotechnology, Ministry of Education; Tianjin University of Science & Technology; Tianjin Tianjin 300457 China
| | - Ran Ye
- Department of Biosystems Engineering and Soil Science; University of Tennessee; 2506 E. J. Chapman Drive Knoxville TN 37996-4531 USA
| | - Yaowei Liu
- Key Laboratory of Food Nutrition and Safety; Ministry of Education; College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin Tianjin 300457 China
| | - Jindong Xiao
- Key Laboratory of Food Nutrition and Safety; Ministry of Education; College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin Tianjin 300457 China
| | - Kun Wang
- Key Laboratory of Food Nutrition and Safety; Ministry of Education; College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin Tianjin 300457 China
| |
Collapse
|
38
|
Improved thermal-stability and mechanical properties of type I collagen by crosslinking with casein, keratin and soy protein isolate using transglutaminase. Int J Biol Macromol 2017; 98:292-301. [DOI: 10.1016/j.ijbiomac.2017.01.127] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 11/21/2022]
|
39
|
Wu X, Wang K, Liu Y, Liu A, Ye R. Microstructure of transglutaminase-induced gelatin-natamycin fungistatic composite films. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1280679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiaomeng Wu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Kun Wang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yaowei Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Anjun Liu
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ran Ye
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
40
|
Lee KY, Song KB. Preparation and Characterization of an Olive Flounder (Paralichthys olivaceus) Skin Gelatin and Polylactic Acid Bilayer Film. J Food Sci 2017; 82:706-710. [DOI: 10.1111/1750-3841.13650] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Ka-Yeon Lee
- Dept. of Food Science and Technology; Chungnam Natl. Univ.; Daejeon 34134 Republic of Korea
| | - Kyung Bin Song
- Dept. of Food Science and Technology; Chungnam Natl. Univ.; Daejeon 34134 Republic of Korea
| |
Collapse
|
41
|
Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration. Int J Biol Macromol 2017; 94:258-265. [DOI: 10.1016/j.ijbiomac.2016.10.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 12/24/2022]
|
42
|
Effects of Cellulose Nanofibers Filling and Palmitic Acid Emulsions Coating on the Physical Properties of Fish Gelatin Films. FOOD BIOPHYS 2016. [DOI: 10.1007/s11483-016-9459-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
43
|
Abstract
This review discusses the latest advances in the composition of gelatin-based edible films and coatings, including nanoparticle addition, and their properties are reviewed along their potential for application in the food packaging industry. Gelatin is an important biopolymer derived from collagen and is extensively used by various industries because of its technological and functional properties. Nowadays, a very wide range of components are available to be included as additives to improve its properties, as well as its applications and future potential. Antimicrobials, antioxidants and other agents are detailed due to the fact that an increasing awareness among consumers regarding healthy lifestyle has promoted research into novel techniques and additives to prolong the shelf life of food products. Thanks to its ability to improve global food quality, gelatin has been particularly considered in food preservation of meat and fish products, among others.
Collapse
|
44
|
Wu X, Liu Y, Wang W, Han Y, Liu A. Improved mechanical and thermal properties of gelatin films using a nano inorganic filler. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12469] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiaomeng Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Yaowei Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Yue Han
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| |
Collapse
|