1
|
Korin A, Youssef M, Elkhedir A, Li Y, Albahi A, Abd Elazim E, Khalifa I, Maqsood S, Li B. Effect of different anionic polysaccharides on whey protein's S/O/W bilayer emulsions containing EGCG: Molecular interaction and stability under various environmental stresses. Int J Biol Macromol 2025; 284:138209. [PMID: 39617226 DOI: 10.1016/j.ijbiomac.2024.138209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/09/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
We aimed at investigating the effect of different anionic polysaccharides (pectin, carboxymethylcellulose, and gum Arabic) on the physicochemical properties and stability of whey protein isolate (WPI)- stabilized solid-in-oil-in-water (S/O/W) bilayer emulsions loaded with epigallocatechin gallate (EGCG). S/O/W emulsions were prepared by homogenizing EGCG-loaded oil with an aqueous phase containing WPI and the selected polysaccharides. The emulsions were characterized for their particle size, zeta potential, microstructure, and rheological properties. Results noted that WPI-pectin stabilized emulsions demonstrated the best stability, with the smallest mean particle diameter (0.46 μm), highest zeta potential (-26.13 mV), and improved viscoelastic properties. Most importantly, WPI-pectin stabilized emulsions achieved the highest EGCG encapsulation efficiency (84.50 %) and adsorbed protein content (64.98 %), where their values in WPI-gum and WPI-carboxymethylcellulose were (57.87 and 67.33 %) and (44.57 and 53.22 %), respectively. Molecular docking simulations also provided insights into the interactions between WPI, lecithin, and polysaccharides in the presence of EGCG, elucidating the interfacial layer formation. This study highlights the potential of tailored protein complexes for developing stable delivery systems for polyphenols in functional food and beverage applications.
Collapse
Affiliation(s)
- Ali Korin
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China; Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China; Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Abdeen Elkhedir
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China; Agro-Industries, Industrial Research and Consultancy Centre (IRCC), Khartoum, Sudan
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China
| | - Amgad Albahi
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China; National Food Research Centre, Ministry of Agriculture and Natural Resources, Khartoum 113, Sudan
| | - Essam Abd Elazim
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, 13736 Moshtohor, Benha University, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, No. 1, Shuzishan Road, Wuhan 8430070, China.
| |
Collapse
|
2
|
Kouravand F, Shahidi F, Fathi M, Koocheki A, Roshanak S. Physicochemical stability and controlled release of vitamin D 3-loaded emulsions stabilised by whey protein isolate-basil seed gum conjugates. J Microencapsul 2024; 41:770-781. [PMID: 39565049 DOI: 10.1080/02652048.2024.2418615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024]
Abstract
AIM The present study was conducted to produce a new carrier containing whey protein isolate-basil seed gum (WPI-BSG) conjugate to achieve superior physicochemical stability of emulsions containing vitamin D3 (Vit-D3). METHODS Zeta-potential and particle size analysis, spectrophotometric method, encapsulation efficiency, loading capacity and dialysis bag method were used to examined physicochemical stability and Vit-D3 release from the emulsions. RESULTS The conjugate-stabilised emulsion showed maximum encapsulation efficiency (87.05 ± 3.37% (w/w)) and loading capacity (5.43 ± 0.08% (w/w)) at the Vit-D3 concentration of 200 and 300 mg/kg. This emulsion also demonstrated good physical stability after 30 days of storage with the zeta potential and mean droplet size of -79.60 ± 0.62 mV and 1346.82 ± 5.95 nm, respectively. Additionally, the conjugate-stabilised emulsion had a maximum Vit-D3 retention (chemical stability) of 72.79 ± 3.58% after a 15-day storage period. CONCLUSION Our findings suggest that the conjugate-stabilised emulsion has a good stabilising capacity as a carrier for hydrophobic compounds such as Vit-D3.
Collapse
Affiliation(s)
- Farzaneh Kouravand
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Milad Fathi
- Department of Food Science and Technology, Collage of Agriculture, Isfahan University of Technology (IUT), Isfahan, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
3
|
Akhtar G, Masoodi FA, Muzaffar S. Fabrication of ultrafine Himalayan walnut oil Pickering emulsions by ultrasonic emulsification: Techno-functional properties of emulsions and microcapsules. ULTRASONICS SONOCHEMISTRY 2024; 111:107081. [PMID: 39368413 PMCID: PMC11488444 DOI: 10.1016/j.ultsonch.2024.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/07/2024]
Abstract
In present scenario, much of the attention has been put on the production and utilization of Pickering emulsions deciphering enhanced stability and applicability over wide environmental conditions. In this context the present study was carried out to elaborate effect of different wall materials and pH systems on the physicochemical, structural and morphological properties of Himalayan walnut oil Pickering emulsions by ultrasonic emulsification. In this study, concentrated Pickering emulsion of Himalayan walnut oil (HWO) was prepared utilizing soy protein isolate (SPI), maltodextrin (MD) stabilized by pectin at varying concentrations and pH systems (4.0, 7.0). With increase in pectin and SPI concentration and lowering MD, stable emulsions were obtained as deciphered by an Emulsion stability index (ESI) of 100 for 7 days at ambient storage. HWO Pickering emulsions were analysed for particle size measurements (2.13-13.64 µm) and depicted negative zeta potential values (-3.70 to -18.58). Lyophilized HWO microcapsules depicted moderate encapsulation efficiency (44.69-57.63 %) whereas the hygroscopicity values of the microcapsule ranged from (0.21-12.10 %). Thermogravimetric analysis (TGA) of the samples depicted the temperature of maximum degradation rate up to 550 °C whereas XRD spectra depicted amorphous nature of oil microcapsules. FTIR spectra revealed a close association between the SPI-MD-Pectin matrix. SEM analysis revealed stable oil globules entrapped in protein-polysaccharide matrix with no visible cracks and fissures.
Collapse
Affiliation(s)
- Gazalla Akhtar
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - F A Masoodi
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Sabeera Muzaffar
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
4
|
Al-Wraikat M, Zhang L, Li L, Abubaker MA, Liu Y. Recent advances in wolfberry polysaccharides and whey protein-based biopolymers for regulating the diversity of gut microbiota and its mechanism: A review. Int J Biol Macromol 2024; 281:136401. [PMID: 39383924 DOI: 10.1016/j.ijbiomac.2024.136401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/11/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Imbalances in gut microbiota diversity are associated with various health issues, including obesity and related disorders. There is a growing interest in developing synergistic biopolymers based on wolfberry polysaccharides and whey protein to address these problems due to their potential health benefits. This review explores recent advances in understanding how functional foods based on Lycium barbarum polysaccharides (LBP) and whey protein (WP) influence gut microbiota diversity and their underlying mechanisms. We examine the impact of these biopolymers on microbial composition and functionality, focusing on their roles in improving health by regulating gut microbiota. The combined effects of WP and LBP significantly enhance gut microbiome metabolic activities and taxonomic diversity, offering promising avenues for treating obesity and related disorders.
Collapse
Affiliation(s)
- Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Lan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
5
|
Di X, Li Y, Qin X, Wang Q, Liu G. Investigating the effect of whey protein isolate:proanthocyanidin complex ratio on the stability and antioxidant capacity of Pickering emulsions. Int J Biol Macromol 2024; 279:135342. [PMID: 39242011 DOI: 10.1016/j.ijbiomac.2024.135342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Whey protein isolate (WPI) has the potential to be a Pickering stabilizer, but its applications in emulsions are restricted due to its structural susceptibility to external environments. Proanthocyanidin (PAC) is a natural antioxidant polyphenol that can improve protein properties and enhance the stability and longevity of emulsions. In the current work, PACs were employed to bind WPIs, forming a complex to stabilize Pickering emulsion. Fluorescence spectroscopy, infrared spectroscopy, confocal microscopy, quartz crystal microbalance with dissipation monitoring (QCM-D), and antioxidant stability of the emulsion were performed to characterize the structural changes of the protein/polyphenol complexes and their effects on the interfacial properties and stability of the emulsion. Results indicated that PACs and WPIs might bind through hydrogen bonding and hydrophobic interactions, effectively increasing the hydrophilicity of the complexes. QCM-D and emulsion stability showed that adsorption at the oil-water interface of the complexes was the largest, and the stability of the Pickering emulsion was optimal when the concentration ratio of PAC to WPI exceeded 1:1. The antioxidant properties of Pickering emulsions were positively correlated with the addition of PACs. These findings demonstrated that PACs could improve the properties of WPIs and enhance the stability and antioxidant properties of WPI Pickering emulsions.
Collapse
Affiliation(s)
- Xiaohui Di
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China; Laboratoire de Catalyse Organométallique, Synthèse organique et Santé - Institut de Chimie, Université de Strasbourg, Strasbourg, France
| | - Yaochang Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qi Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China; Group of Physical and Sensory Properties of Food, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain.
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.
| |
Collapse
|
6
|
Li Z, Jiang H, Guo M, Zhang Z, You X, Wang X, Ma M, Zhang X, Wang C. Modification of casein with oligosaccharides via the Maillard reaction: As natural emulsifiers. Food Res Int 2024; 191:114648. [PMID: 39059902 DOI: 10.1016/j.foodres.2024.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
In the present study, different oligosaccharides (fructooligosaccharide (FOS), galactooligosaccharide (GOS), isomaltooligosaccharide (IMO), and xylooligosaccharide (XOS)) were modified on casein (CN) via Maillard reaction. The CN-oligosaccharide conjugates were evaluated for modifications to functional groups, fluorescence intensity, water- and oil-holding properties, emulsion foaming properties, as well as general emulsion properties and stability. The results demonstrated that the covalent combination of CN and oligosaccharides augmented the spatial repulsion and altered the hydrophobic milieu of proteins, which resulted in a diminution in water-holding capacity, an augmentation in oil-holding capacity, and an enhancement in the emulsification properties of proteins. Among them, CN-XOS exhibited the most pronounced changes, with the emulsification activity index and emulsion stability index increasing by approximately 72% and 84.3%, respectively. Furthermore, CN-XOS emulsions have smaller droplet sizes and higher absolute potential values than CN emulsions. Additionally, CN-XOS emulsions demonstrate remarkable stability when ion concentration and pH are varied. These findings indicate that oligosaccharides modified via Maillard reaction can be used as good natural emulsifiers. This provides a theoretical basis for using oligosaccharides to modify proteins and act as natural emulsifiers.
Collapse
Affiliation(s)
- Zhenghao Li
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hua Jiang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Min Guo
- Network Information Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xinyu You
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xipeng Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mengjia Ma
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaoning Zhang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Cunfang Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
7
|
Yu J, Yun M, Li J, Gao Y, Mao L. Development of Oleogel-in-Water High Internal Phase Emulsions with Improved Physicochemical Stability and Their Application in Mayonnaise. Foods 2024; 13:2738. [PMID: 39272503 PMCID: PMC11395701 DOI: 10.3390/foods13172738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Egg-free mayonnaise is receiving greater attention due to its potential health benefits. This study used whey protein isolate (WPI) as an emulsifier to develop high internal phase emulsions (HIPEs) based on beeswax (BW) oleogels through a simple one-step method. The effects of WPI, NaCl and sucrose on the physicochemical properties of HIPEs were investigated. A novel simulated mayonnaise was then prepared and characterized. Microstructural observation revealed that WPI enveloped oil droplets at the interface, forming a typical O/W emulsion. Increase in WPI content led to significantly enhanced stability of HIPEs, and HIPEs with 5% WPI had the smallest particle size (11.9 ± 0.18 μm). With the increase in NaCl concentration, particle size was increased and ζ-potential was decreased. Higher sucrose content led to reduced particle size and ζ-potential, and slightly improved stability. Rheological tests indicated solid-like properties and shear-thinning behaviors in all HIPEs. The addition of WPI and sucrose improved the structures and viscosity of HIPEs. Simulated mayonnaises (WE-0.3%, WE-1% and YE) were then prepared based on the above HIPEs. Compared to commercial mayonnaises, the mayonnaises based on HIPEs exhibited higher viscoelastic modulus and similar tribological characteristics, indicating the potential application feasibility of oleogel-based HIPEs in mayonnaise. These findings provided insights into the development of novel and healthier mayonnaise alternatives.
Collapse
Affiliation(s)
- Jingjing Yu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mingyue Yun
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jia Li
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu 611430, China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu 611430, China
| |
Collapse
|
8
|
Lee MH, Kim HD, Jang YJ. Delivery systems designed to enhance stability and suitability of lipophilic bioactive compounds in food processing: A review. Food Chem 2024; 437:137910. [PMID: 37931451 DOI: 10.1016/j.foodchem.2023.137910] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Lipophilic compounds, such as flavors, fat-soluble vitamins, and hydrophobic nutrients possess vital properties including antioxidant effects, functional attributes, and nutritional value that can improve human health. However, their susceptibility to environmental factors including heat, pH changes, and ionic strength encountered during food processing poses significant challenges. To address these issues, diverse bioactive delivery systems have been developed. This review explores delivery systems designed to optimize the stability and suitability of lipophilic bioactive compounds in food processing. Extensive literature analysis reveals that tailoring delivery systems with various biopolymers can protect bioactives through steric hindrance and formation of thick interfacial layers on the emulsion surfaces. Thus, the access of oxygen, prooxidants, and free radicals at the emulsion interface could be inhibited, resulting in enhanced processing suitability of bioactives as well as chemical stability under diverse environmental conditions. The insights presented in this review hold immense value for the food and beverage industries.
Collapse
Affiliation(s)
- Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
| | - Hyeong Do Kim
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| | - Yun Jae Jang
- Department of Food Science and Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea
| |
Collapse
|
9
|
Jiang Z, Luo H, Huangfu Y, Gao Y, Zhang M, Bao Y, Ma W. High internal phase emulsions stabilized by whey protein covalently modified with carboxymethyl cellulose: Enhanced environmental stability, storage stability and bioaccessibility. Food Chem 2024; 436:137634. [PMID: 37847963 DOI: 10.1016/j.foodchem.2023.137634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
In this work, the effects of whey protein-carboxymethyl cellulose (WP-CMC) conjugates on the environmental stability, in vitro digestion stability, storage stability and bioaccessibility of high internal phase emulsions (HIPEs) were investigated. Compared to the HIPEs stabilized by the mixture of WP and CMC, the HIPEs stabilized by WP-CMC were less sensitive to environmental changes by particle size and zeta-potential, and showed better stability and bioavailability of pine nut oil as well as β-carotene during simulated gastrointestinal digestion. In addition, the inclusion function and pine nut oil oxidative stability of the HIPEs stabilized by WP-CMC were better during 16 days of storage than those of the pine nut oil and HIPEs stabilized by the mixture of WP and CMC, and also expressed higher storage stability of β-carotene. These results suggested that the conjugate-stabilized emulsions developed in this study have potential applications as protectors and carriers of liposoluble active ingredients.
Collapse
Affiliation(s)
- Zhehui Jiang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hao Luo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yunpeng Huangfu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yuan Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Meiqi Zhang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China.
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
10
|
Chen J, He J, Zhao Z, Li X, Tang J, Liu Q, Wang H. Effect of heat treatment on the physical stability, interfacial composition and protein-lipid co-oxidation of whey protein isolate-stabilised O/W emulsions. Food Res Int 2023; 172:113126. [PMID: 37689891 DOI: 10.1016/j.foodres.2023.113126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
This work aimed to investigate the effects of heat treatments at different temperatures (60, 70 and 90 °C, expressed as HT-60, HT-70 and HT-90) on interfacial composition and protein-lipid co-oxidation in whey protein isolate (WPI)-stabilised O/W emulsions during storage. Compared with control group, all heated emulsions exhibited weaker physical stability over 10 days of storage, which verified by the increased droplet size, as well as decreased adsorbed protein levels and absolute ζ-potential values. Moreover, proteins recovered from the HT-90 emulsion showed the highest fluorescence intensity and red-shift of the maximum emission wavelength, indicating partial unfolding of the protein structure. Meanwhile, severe changes in protein structure were also observed in the HT-70 and HT-90 emulsions, which clearly verified by the degradation of bovine serum albumin, α-lactalbumin and β-lactoglobulin. Furthermore, HT-70 and HT-90 emulsions showed lower levels of lipid hydroperoxides and thiobarbituric acid reactive substances. In contrast, the recovered proteins were subject to severe oxidative stress as indicated by carbonyl and N'-formyl-L-kynurenine. Hierarchical cluster and correlation analysis implied that the process of protein-lipid co-oxidation is inevitable, but it can be retarded by heat treatment. Our results clearly revealed the relevance among heat treatment, interfacial adsorption property, and the protein-lipid co-oxidation of O/W emulsions.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Junjie He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
11
|
Kolotova DS, Borovinskaya EV, Bordiyan VV, Zuev YF, Salnikov VV, Zueva OS, Derkach SR. Phase Behavior of Aqueous Mixtures of Sodium Alginate with Fish Gelatin: Effects of pH and Ionic Strength. Polymers (Basel) 2023; 15:polym15102253. [PMID: 37242828 DOI: 10.3390/polym15102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The phase behavior of aqueous mixtures of fish gelatin (FG) and sodium alginate (SA) and complex coacervation phenomena depending on pH, ionic strength, and cation type (Na+, Ca2+) were studied by turbidimetric acid titration, UV spectrophotometry, dynamic light scattering, transmission electron microscopy and scanning electron microscopy for different mass ratios of sodium alginate and gelatin (Z = 0.01-1.00). The boundary pH values determining the formation and dissociation of SA-FG complexes were measured, and we found that the formation of soluble SA-FG complexes occurs in the transition from neutral (pHc) to acidic (pHφ1) conditions. Insoluble complexes formed below pHφ1 separate into distinct phases, and the phenomenon of complex coacervation is thus observed. Formation of the highest number of insoluble SA-FG complexes, based on the value of the absorption maximum, is observed at рHopt and results from strong electrostatic interactions. Then, visible aggregation occurs, and dissociation of the complexes is observed when the next boundary, pHφ2, is reached. As Z increases in the range of SA-FG mass ratios from 0.01 to 1.00, the boundary values of рНc, рHφ1, рHopt, and рHφ2 become more acidic, shifting from 7.0 to 4.6, from 6.8 to 4.3, from 6.6 to 2.8, and from 6.0 to 2.7, respectively. An increase in ionic strength leads to suppression of the electrostatic interaction between the FG and SA molecules, and no complex coacervation is observed at NaCl and CaCl2 concentrations of 50 to 200 mM.
Collapse
Affiliation(s)
- Daria S Kolotova
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| | - Ekaterina V Borovinskaya
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| | - Vlada V Bordiyan
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia
- A. Butlerov Chemical Institute, Kazan Federal University, Kazan 420008, Russia
| | - Vadim V Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan 420111, Russia
| | - Olga S Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, Kazan 420066, Russia
| | - Svetlana R Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, Murmansk 183010, Russia
| |
Collapse
|
12
|
Li H, Van der Meeren P. Designing Gastric-Stable Adsorption Layers by Whey Protein-Pectin Complexation at the Oil-Water Interface. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7109-7118. [PMID: 37126566 DOI: 10.1021/acs.jafc.3c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This work aims to design gastric-stable emulsions with food-grade biopolymers using a novel multiscale approach. The adsorption layer formation at the oil-water interface was based on opposite charge interactions between whey proteins and pectin (with different esterification levels) at pH 3.0 by a sequential adsorption method. The interfacial assembly and disassembly (interfacial complexation, proteolysis, lipolysis) during in vitro gastric digestion were evaluated using a quartz crystal microbalance with dissipation monitoring, ζ-potential, dynamic interfacial tension, and interfacial dilatational rheology. Besides, the evolution of the particle size and microstructure of bulk emulsions during the digestion was investigated by static light scattering and light microscopy. Compared with whey protein isolate (WPI)-stabilized emulsions, the presence of an additional pectin layer can prevent or at least largely delay gastric destabilization (giving rise to coalescence or/and oiling off). Especially, the esterification degree of the pectin used was found to largely affect the emulsion stability upon gastric digestion.
Collapse
Affiliation(s)
- Hao Li
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
13
|
Kirtil E, Oztop MH. Mechanism of adsorption for design of role-specific polymeric surfactants. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Myofibrillar protein microgels stabilized high internal phase Pickering emulsions with heat-promoted stability. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Structure and functional properties of whey protein conjugated with carboxymethyl cellulose through maillard reaction. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Zhang M, Li Z, Dai M, He H, Liang B, Sun C, Li X, Ji C. Fabrication and Characterization of Chitosan-Pea Protein Isolate Nanoparticles. Molecules 2022; 27:6913. [PMID: 36296504 PMCID: PMC9611140 DOI: 10.3390/molecules27206913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Chitosan (CS) and pea protein isolate (PPI) were used as raw materials to prepare nanoparticles. The structures and functional properties of the nanoparticles with three ratios (1:1, 1:2 1:3, CS:PPI) were evaluated. The particle sizes of chitosan-pea protein isolate (CS-PPI) nanoparticles with the ratios of 1:1, 1:2, and 1:3 were 802.95 ± 71.94, 807.10 ± 86.22, and 767.75 ± 110.10 nm, respectively, and there were no significant differences. Through the analysis of turbidity, endogenous fluorescence spectroscopy and Fourier transform infrared spectroscopy, the interaction between CS and PPI was mainly caused by electrostatic mutual attraction and hydrogen bonding. In terms of interface properties, the contact angles of nanoparticles with the ratio of 1:1, 1:2, and 1:3 were 119.2°, 112.3°, and 107.0°, respectively. The emulsifying activity (EAI) of the nanoparticles was related to the proportion of protein. The nanoparticle with the ratio of 1:1 had the highest potential and the best thermal stability. From the observation of their morphology by transmission electron microscopy, it could be seen that the nanoparticles with a ratio of 1:3 were the closest to spherical. This study provides a theoretical basis for the design of CS-PPI nanoparticles and their applications in promoting emulsion stabilization and the delivery of active substances using emulsions.
Collapse
Affiliation(s)
- Man Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Zikun Li
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Mengqi Dai
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Bin Liang
- College of Food Engineering, Ludong University, Yantai 264025, China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjian Ji
- Department of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
| |
Collapse
|
17
|
Zhao XL, Bao YH, Guo Y, Luo JY, Jiang SL, Yang X. Effect of phenolic compounds and hydroxyl content on the physicochemical properties of pine nut oil Pickering emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5814-5825. [PMID: 35426140 DOI: 10.1002/jsfa.11931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND For decades, pine nut oil Pickering emulsions have been stabilized using a covalent composite of two phenolic chemicals (tannic acid, TA; and gallic acid, GA) and whey protein isolate (WPI) following alkali treatment. Based on covalent composite particles being excellent sources of high-quality stabilizers, this research explored the influence of phenolic addition and hydroxyl content on stability, rheological parameters and characterization of Pickering emulsions. RESULTS Tannic acid was more effective in reducing the average particle size of the emulsion, which decreased from 479.4 ± 2.1 nm without addition to between 187.6 ± 5.9 and 368.2 ± 16.8 nm (P < 0.05). The potential values of all the emulsions were between -30 and -50 mV (except for the gallic acid addition of 2.5 g kg-1 ). When the phenolic addition was 7.5 g kg-1 , emulsions demonstrated the best emulsification ability. Pickering emulsion stabilized by WPI-TA and WPI-GA particles were successfully generated, according to confocal laser scanning microscopy. Rheological results showed that the increase of phenolic addition contributed to larger elastic modulus (G'), viscosity modulus (G″) and viscosity of emulsions, which was beneficial to the stability of emulsions. CONCLUSION Both phenolic compounds significantly improved the physicochemical stability of the emulsions (P < 0.05) and their oxidative stability. Covalently crosslinking phenolic compounds to proteins is a better method to prepare stable emulsions. It is more prominent that TA shows a more significant improvement in emulsion stability due to the number of hydroxyl groups it can provide. This research might serve as a theoretical foundation for enhancing the quality of pine nut oil-related products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Lei Zhao
- College of Forestry, Northeast Forestry University, Harbin, PR China
| | - Yi-Hong Bao
- College of Forestry, Northeast Forestry University, Harbin, PR China
- College of Forestry, Heilongjiang Key Laboratory of Forest Food Resources Utilization, Harbin, PR China
| | - Yang Guo
- College of Forestry, Northeast Forestry University, Harbin, PR China
| | - Jia-Yuan Luo
- College of Forestry, Northeast Forestry University, Harbin, PR China
| | - Shi-Long Jiang
- Heilongjiang Feihe Dairy Company Limited, Beijing, PR China
| | - Xue Yang
- College of Forestry, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
18
|
Wu L, Yue Q, Kang M, Zhong M, Qi B, Li Y. Stabilization of Soybean and Peanut Oil Bodies using Apple Pectin under Acidic Conditions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Seo CW, Yoo B. Effect of Milk Protein Isolate/κ-Carrageenan Conjugates on Rheological and Physical Properties of Whipping Cream: A Comparative Study of Maillard Conjugates and Electrostatic Complexes. Food Sci Anim Resour 2022; 42:889-902. [PMID: 36133636 PMCID: PMC9478977 DOI: 10.5851/kosfa.2022.e42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
With increasing consumer demand for “clean label” products, the use of natural ingredients is required in the food industry. Protein/polysaccharide complexes are considered good alternatives to synthetic emulsifiers and stabilizers for formulating stable emulsion-based foods. Milk protein and carrageenan are widely used to improve the physical properties and stability of dairy food products. In a previous study, milk protein isolate (MPI) was conjugated with κ-carrageenan (κ-Car) in a wet-heating system through the Maillard reaction, and the Maillard conjugates (MC) derived from MPI and κ-Car effectively improved the stability of oil-in-water emulsions. Therefore, MPI/κ-Car conjugates were used in whipping cream as natural emulsifiers in this study, and the physical and rheological properties of whipping creams stabilized using MPI/κ-Car MC and MPI/κ-Car electrostatic complexes (EC) were investigated. The whipping creams stabilized with MPI/κ-Car MC have lower rheological parameters (ηa,50, K, G′, and G″) than those of whipping creams stabilized with MPI/κ-Car EC. Although the overrun value was slightly reduced owing to the addition of MPI/κ-Car MC, the stability of the whipped creams with MC was effectively improved due to enhanced water-holding ability by conjugation.
Collapse
Affiliation(s)
- Chan Won Seo
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Korea
- R&D Center, Seoul Dairy Cooperative, Ansan 15407, Korea
- Corresponding author: Chan Won Seo, R&D Center, Seoul Dairy Cooperative, Ansan 15407, Korea, Tel: +82-31-481-0146, Fax: +82-31-491-9179, E-mail:
| | - Byoungseung Yoo
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Korea
| |
Collapse
|
20
|
Conjugation Induced by Wet-Heating of Gelatin and Low Methoxyl Pectin Improves the Properties and Stability of Microcapsules Prepared by Complex Coacervation. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Sequential adsorption of whey proteins and low methoxy pectin at the oil-water interface: An interfacial rheology study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Tavasoli S, Maghsoudlou Y, Jafari SM, Tabarestani HS. Improving the emulsifying properties of sodium caseinate through conjugation with soybean soluble polysaccharides. Food Chem 2022; 377:131987. [PMID: 34998153 DOI: 10.1016/j.foodchem.2021.131987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
This study was conducted to investigate the impact on the techno-functionality over sodium caseinate (NaCS) when are conjugated with soluble soybean polysaccharides (SSPS). NaCS/SSPS conjugates were prepared through the Maillard reaction using dry heating. The formation of covalent binding between NaCS and SSPS and structural changes of NaCS during glycation were confirmed via SDS-PAGE and ATR-FTIR. A positive correlation was observed between the increase in the browning index of samples and Amadori compounds formation over time, based on the colorimetric results. Emulsions stabilization using conjugates with a higher NaCS/SSPS ratio led to a decreasing trend in the droplets' size and creaming index. Meanwhile, higher viscosity and shear-thinning behavior were observed in conjugate-based emulsions. Finally, conjugates prepared with the NaCS/SSPS ratio of 9/1 at an incubation time of 24 h presented a higher pH and thermal stability and better performance in emulsion stabilization in comparison with each of the biopolymers alone.
Collapse
Affiliation(s)
- Sedighe Tavasoli
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Yahya Maghsoudlou
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Hoda Shahiri Tabarestani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
23
|
|
24
|
Zhao M, He H, Ma A, Hou T. Sources, chemical synthesis, functional improvement and applications of food-derived protein/peptide-saccharide covalent conjugates: a review. Crit Rev Food Sci Nutr 2022; 63:5985-6004. [PMID: 35089848 DOI: 10.1080/10408398.2022.2026872] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proteins/peptides and saccharides are two kinds of bioactive substances in nature. Recently, increasing attention has been paid in understanding and utilizing covalent interactions between proteins/peptides and saccharides. The products obtained through covalent conjugation of proteins/peptides to saccharides are shown to have enhanced functional attributes, such as better gelling property, thermostability, and water-holding capacity. Additionally, food-derived protein/peptide-saccharide covalent conjugates (PSCCs) also have biological activities, such as antibacterial, antidiabetic, anti-osteoporosis, anti-inflammatory, anti-cancer, immune regulatory, and other activities that are widely used in the functional food industry. Moreover, PSCCs can be used as packaging or delivery materials to improve the bioavailability of bioactive substances, which expands the development of food-derived protein and saccharide resources. Thus, this review was aimed to first summarize the current status of sources, classification structures of natural PSCCs. Second, the methods of chemical synthesis, reaction conditions, characterization and reagent formulations that improve the desired functional characteristics of food-derived PSCCs were introduced. Third, functional properties such as emulsion, edible films/coatings, and delivery of active substance, bio-activities such as antioxidant, anti-osteoporosis, antidiabetic, antimicrobial of food-derived PSCCs were extensively discussed.
Collapse
Affiliation(s)
- Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
25
|
Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Effect of ionic strength on the sequential adsorption of whey proteins and low methoxy pectin on a hydrophobic surface: A QCM-D study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Liang WL, Liao JS, Qi JR, Jiang WX, Yang XQ. Physicochemical characteristics and functional properties of high methoxyl pectin with different degree of esterification. Food Chem 2021; 375:131806. [PMID: 34933235 DOI: 10.1016/j.foodchem.2021.131806] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022]
Abstract
Moderate alkali de-esterification can change the physicochemical characteristics and thus the functional properties of high methoxyl pectin (HMP). The results revealed that de-esterification could increase negative charges (Zeta potential from -21 to -31 mV), decrease molecular weight (from 448 to 136 kDa) and apparent viscosity of HMP. Homogalacturonan (HG) content decreased (from 62% to 49%) while rhamnogalacturonan Ⅰ (RG-Ⅰ) content increased (from 32% to 46%) after de-esterification. The group characteristics of HMP with different degree of esterification (DE) were similar and no obvious impact was made on degree of crystallinity by alkali de-esterification. A conformation transition of HMP molecule implied by Congo red test were occurred as the DE decreased. With the decrease of DE, the molecular structure of HMP became shorter and smaller, and the entanglement was weaker. The de-esterification caused slight decrease of thermal stability. Alkali de-esterification would weaken the gel property and the emulsifying ability of HMP.
Collapse
Affiliation(s)
- Wan-Ling Liang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jin-Song Liao
- Guangzhou Laimeng Biotechnology Co. Ltd., Guangzhou 510640, PR China; School of Life Sciences, South China Normal University, Guangzhou 510640, PR China
| | - Jun-Ru Qi
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China.
| | - Wen-Xin Jiang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
28
|
Du Q, Zhou L, Lyu F, Liu J, Ding Y. The complex of whey protein and pectin: Interactions, functional properties and applications in food colloidal systems - A review. Colloids Surf B Biointerfaces 2021; 210:112253. [PMID: 34883341 DOI: 10.1016/j.colsurfb.2021.112253] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
This review describes the mechanism of non-covalent/covalent interaction of whey protein-pectin (WPP) complexes, including electrostatic interaction, steric hindrance, cross-linking and Maillard reaction. The interaction between whey protein and pectin determines the form of the complex in the system, i.e. co-dissolution, precipitation, separation, complex coacervation and compounding. The interaction of WPP is affected by environmental conditions and its own properties, including several factors such as pH, polymer concentration and ratio, temperature, and ionic strength. In addition, the functional properties of WPP complexes are discussed through illustrative examples. The complexes with good emulsification, heat stability, gelling properties and biological activity have promising application prospects. WPP complexes have been widely studied for application in food colloidal systems, including protein beverages, delivery systems for bioactive substances, fat substitutes and food preservation films/coatings. The understanding of the interaction and functional properties of WPP complexes provides theoretical support for the improvement and design of new food colloidal systems.
Collapse
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province, Hangzhou 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, PR China
| | - Linhui Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province, Hangzhou 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, PR China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province, Hangzhou 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province, Hangzhou 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, PR China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitation & Utilization of Zhejiang Province, Hangzhou 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, PR China.
| |
Collapse
|
29
|
Natural Gums as Oleogelators. Int J Mol Sci 2021; 22:ijms222312977. [PMID: 34884775 PMCID: PMC8657646 DOI: 10.3390/ijms222312977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
The natural gums used as high molecular weight oleogelators are mainly polysaccharides that deliver a broad spectrum of possible utilization methods when structuring liquid fats to solid forms. The review discusses a natural gums’ structuring and gelling behavior to capture the oil droplets and form the water/oil gelling emulsions basing on their structural conformation, internal charge, and polymeric characteristics. The specific parameters and characteristics of natural gums based oleogels are also discussed. In the future, oleogels may eliminate saturated and trans fats from food products and allow the production of low-fat products, thus reducing the environmental damage caused by the excessive use of palm oil. The increasing knowledge of molecular interaction in polysaccharide chains of natural gums allows to apply more sustainable and wiser strategies towards product formulation. Innovative solutions for using oleogels based on natural polysaccharide biopolymers let incorporate them into the food matrix and replace fats completely or create blends containing the source of fats and the addition of the oleogel. The profound insight into molecular characteristics of natural gums in the function of being oleogelators is presented.
Collapse
|
30
|
Chen W, Wang W, Guo M, Li Y, Meng F, Liu D. Whey protein isolate-gum Acacia Maillard conjugates as emulsifiers for nutraceutical emulsions: Impact of glycation methods on physicochemical stability and in vitro bioaccessibility of β-carotene emulsions. Food Chem 2021; 375:131706. [PMID: 34952387 DOI: 10.1016/j.foodchem.2021.131706] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023]
Abstract
The physicochemical stability and in vitro bioaccessibility of β-carotene emulsions stabilized by the whey protein isolate (WPI)-gum Acacia (GA) conjugates prepared by dry-heating (Con WPI (D)) and ultrasound (Con WPI (U)) Maillard reaction were investigated in this study. The conjugate-stabilized emulsions have a larger mean size than the WPI-stabilized emulsion. The stability of emulsions under freeze-thaw treatment, high ionic strength conditions, thermal treatment and pH conditions near the isoelectric point of WPI were improved by glycation. The chemical stability of β-carotene in emulsions was also enhanced by WPI-GA conjugates. The WPI-GA conjugate-stabilized emulsions have better stability for droplet aggregation during in vitro simulated gastrointestinal digestion, which increased β-carotene bioaccessibility. However, the Con WPI (U)-stabilized emulsion shows poor thermal stability and lower β-carotene bioaccessibility than the Con WPI (D)-stabilized emulsion, which may be attributed to ultrasound-induced structural changes during the process of glycation.
Collapse
Affiliation(s)
- Weijun Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuncheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Fanbing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
31
|
|
32
|
Reichembach LH, Lúcia de Oliveira Petkowicz C. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Du Q, Wang S, Lyu F, Liu J, Ding Y. The interfacial covalent bonding of whey protein hydrolysate and pectin under high temperature sterilization: Effect on emulsion stability. Colloids Surf B Biointerfaces 2021; 206:111936. [PMID: 34214839 DOI: 10.1016/j.colsurfb.2021.111936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
In this study, the effect of high-pressure steam sterilization (121 °C for 15 min) on whey protein hydrolysate-pectin solutions and emulsions was studied. The interaction and emulsification characteristics of pectin and whey protein concentrate (WPC) were evaluated from the solution system to the emulsion system. Enzymatic hydrolysis of WPC (WPH, 2 % and 8 % degree of hydrolysis) increased the covalent binding with pectin, which reduced the heat-induced aggregation of protein and improved emulsification. The thermodynamic incompatibility between WPC and pectin was not conducive to the covalent bonding under high temperature sterilization and produced serious aggregates, which also made a rapid increase in particle size (up to ∼3 μm), compared to WPH-pectin emulsion (∼ 400 nm). In addition, if emulsion was stirred during the sterilization, the creaming and protein aggregation could be avoided. By comparing low methoxy pectin (LMP) and high methoxy pectin (HMP), it was found that the whey protein-HMP complex had better emulsification stability, and the steric stabilization played a more important role in emulsion stability than the electrostatic repulsion. The changes of whey protein and pectin at the oil-water interface of the emulsion during the sterilization process may provide a reference for the sterilized bioactive ingredient delivery system.
Collapse
Affiliation(s)
- Qiwei Du
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China
| | - Shunyu Wang
- Liziyuan Food Limited Liability Company, Zhejiang, 321031, PR China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, PR China; National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, PR China.
| |
Collapse
|
34
|
Cortes Morales EA, Sedaghat Doost A, Velazquez G, Van der Meeren P. Comparison of low- and high-methoxyl pectin for the stabilization of whey protein isolate as carrier for lutein. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Li H, Wu J, Doost AS, Su J, Van der Meeren P. Electrostatic interaction between whey proteins and low methoxy pectin studied by quartz crystal microbalance with dissipation monitoring. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Seo CW, Yoo B. Preparation of milk protein isolate/κ-carrageenan conjugates by maillard reaction in wet-heating system and their application to stabilization of oil-in-water emulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Li F, Li X, Huang K, Luo Y, Mei X. Preparation and characterization of pickering emulsion stabilized by hordein-chitosan complex particles. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Stabilization of whey protein isolate-based emulsions via complexation with xanthan gum under acidic conditions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106365] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
40
|
Nooshkam M, Varidi M. Physicochemical stability and gastrointestinal fate of β-carotene-loaded oil-in-water emulsions stabilized by whey protein isolate-low acyl gellan gum conjugates. Food Chem 2021; 347:129079. [PMID: 33493834 DOI: 10.1016/j.foodchem.2021.129079] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to examine the effect of whey protein isolate-low acyl gellan gum (WPI-GG) conjugate on the physicochemical properties and digestibility of β-carotene-loaded oil-in-water emulsions. The WPI-GG conjugate-stabilized emulsions had lower droplet sizes with more homogenous distribution, more negative surface charge, and higher interfacial protein concentration and viscosity, compared to those stabilized by WPI-GG mixture and WPI. The emulsion droplets coated by the conjugate were also generally more stable to environmental stresses (i.e., storage, pH changes, ionic strength, freeze-thaw cycles, and thermal treatment) along with higher β-carotene retention than other systems. The stability to droplet aggregation during in vitro digestion was remarkably increased for the conjugate-stabilized emulsion. However, the β-carotene bioaccessibility was significantly affected when the conjugate was used to stabilize the emulsions, likely due to the thick interfacial layer, high viscosity, and negative charge of the corresponding emulsions that could inhibit droplet digestion and mixed micelle formation.
Collapse
Affiliation(s)
- Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran.
| |
Collapse
|
41
|
Setiowati AD, De Neve L, A'yun Q, Van der Meeren P. Quartz Crystal Microbalance with Dissipation (QCM-D) as a tool to study the interaction between whey protein isolate and low methoxyl pectin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Shang J, Zhong F, Zhu S, Wang J, Huang D, Li Y. Structure and physiochemical characteristics of whey protein isolate conjugated with xylose through Maillard reaction at different degrees. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
43
|
A’yun Q, Azzahrani IN, Huyst A, de Neve L, Martins JC, van Troys M, Hidayat C, Van der Meeren P. Heat stable whey protein stabilised O/W emulsions: Optimisation of the whey protein concentrate dry heat incubation conditions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Impact of flocculant addition in oil recovery from multiphasic fermentations. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
A'yun Q, Demicheli P, de Neve L, Wu J, Balcaen M, Setiowati AD, Martins JC, van Troys M, Van der Meeren P. Dry heat induced whey protein–lactose conjugates largely improve the heat stability of O/W emulsions. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Kotchabhakdi A, Vardhanabhuti B. Formation of heated whey protein isolate-pectin complexes at pH greater than the isoelectric point with improved emulsification properties. J Dairy Sci 2020; 103:6820-6829. [PMID: 32475673 DOI: 10.3168/jds.2019-17745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/22/2020] [Indexed: 11/19/2022]
Abstract
In this study, heated whey protein isolate and pectin complexes (HCPX) formed at pH > isoelectric point (pI) were used to stabilize oil-in-water emulsions containing 5% oil and 1.5% (wt%) protein at pH 5.5. The effects of pectin concentration and heating temperature on emulsification and emulsion stabilization properties were determined. The HCPX were produced by heating mixed 3% (wt) whey protein isolate and pectin (0.1 or 0.3 wt%) at pH 6.2 and 75 or 85°C for 15 min. Aggregate sizes significantly increased with increasing heating temperature but decreased with the addition of pectin. The HCPX became more negatively charged with increasing pectin concentration; however, the effect of heating temperature was significant only at 0.1% pectin. Unheated complexes and HCPX successfully adsorbed at the oil-in-water interface and improved the emulsification properties as shown by higher negative charge and smaller droplet sizes. Despite the presence of pectin, rheological properties of the emulsions were not significantly different. All complexes showed increased emulsion stability; however, HCPX made at 85°C formed emulsions that were the most stable against creaming and heating.
Collapse
Affiliation(s)
- Akkasubha Kotchabhakdi
- Department of Food Science, Division of Food Systems and Bioengineering, University of Missouri, Columbia 65211
| | - Bongkosh Vardhanabhuti
- Department of Food Science, Division of Food Systems and Bioengineering, University of Missouri, Columbia 65211.
| |
Collapse
|
47
|
Whey protein-polysaccharide conjugates obtained via dry heat treatment to improve the heat stability of whey protein stabilized emulsions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Sedaghat Doost A, Nikbakht Nasrabadi M, Goli SAH, van Troys M, Dubruel P, De Neve N, Van der Meeren P. Maillard conjugation of whey protein isolate with water-soluble fraction of almond gum or flaxseed mucilage by dry heat treatment. Food Res Int 2020; 128:108779. [DOI: 10.1016/j.foodres.2019.108779] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 11/15/2022]
|
49
|
Setiowati AD, Rwigamba A, Van der Meeren P. The influence of degree of methoxylation on the emulsifying and heat stabilizing activity of whey protein-pectin conjugates. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Comparison of dry- and wet-heat induced changes in physicochemical properties of whey protein in absence or presence of inulin. Food Sci Biotechnol 2019; 28:1367-1374. [PMID: 31695935 DOI: 10.1007/s10068-019-00577-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022] Open
Abstract
Changes in whey protein (10%, w/v) induced by dry-heating (60 °C for 5 days at a relative humidity of 63%), wet-heating (85 °C for 30 min) or the two-combined heating in absence or presence of inulin (8%, w/v) were studied. Mixture of whey protein and inulin showed significantly higher absorbance at 290 nm than whey protein alone in all heating conditions while only dry-heated samples showed significantly increased absorbance value at 420 nm (p < 0.05). Whey protein after heating showed significantly lower zeta potential and inulin decreased the value of all heated samples further (p < 0.05) except for samples after dry-heating. Heating decreased the free sulfhydryl group content of whey protein samples while presence of inulin decreased further (p < 0.05). Dry-heating decreased while wet-heating increased the surface hydrophobicity of whey protein. Inulin had no effect on the surface hydrophobicity of heated whey protein under dry-heating but decreased under wet-heating.
Collapse
|