1
|
Lu Y, Zhou L, Zhang CY, Qi Y, Zhang XM, Pan Z, Zhang HJ, Ling YP, Liu Q, Zhang CQ, Wang L. Investigating the fine structures of ginkgo starch during kernel development and their correlations with thermal properties. Food Chem 2025; 479:143730. [PMID: 40088656 DOI: 10.1016/j.foodchem.2025.143730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Ginkgo seeds are abundant in starch, known for their significant edible and medicinal values. This study explores the structural and thermal properties of ginkgo starch during kernel development. Starch granules evolved from irregular to regular shapes with increasing size ranging from 2 to 24 μm, exhibiting a Maltese cross pattern and A-type crystal structure. The amylopectin intermediate chains (DP 13-24 and DP 25-36), and amylose increased, while the amylopectin long chains (AP2, and DP ≥37 chains), and gelatinization temperatures decreased during the kernel development. Pearson correlation analysis revealed that AM, AP2, DP 6-12, and DP ≥37 positively correlated with Amo, SH, D, and thermal properties. Conversely, AP1, DP 13-24 and DP 25-36 positively correlated with DH, RCNMR, RCXRD, IR, and Imax. This study provides novel insights into the structural changes of starch during ginkgo kernel development, offering a theoretical foundation for the industrial applications of starch.
Collapse
Affiliation(s)
- Yan Lu
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Lian Zhou
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Cai-Yun Zhang
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Yan Qi
- Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Min Zhang
- Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China; Center of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China
| | - Zhang Pan
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, China
| | - Hong-Jia Zhang
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yu-Ping Ling
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qing Liu
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory for Crop Genetics and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Duan S, Zhang X, Li C. Importance of starch chain-length distribution in determining starch digestibility through affecting short- and long-range intermolecular interactions during retrogradation. Int J Biol Macromol 2025; 306:141728. [PMID: 40044013 DOI: 10.1016/j.ijbiomac.2025.141728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 05/03/2025]
Abstract
Starch retrogradation involves both short- and long-range intermolecular interactions, while their relations with starch chain-length distribution (CLD) and digestibility are less clear. To address this, 9 types of starches with distinct CLDs were analyzed for intermolecular interactions and digestibility over 7 days of retrogradation. Wheat starch exhibited a higher ratio of long-range intermolecular interactions, while pea, mung bean, potato, sweet potato, lentil, and corn starch formed more short-range intermolecular interactions. All retrograded starches displayed B + V crystallinity with characteristic peaks at 17°, 20°, and 22°. The pores of some starch hydrogels shrank after retrogradation. Most importantly, positive correlations were for the first time observed between amylose chains of 100 < DP ≤ 5000 and intermolecular interactions. Whereas a higher level of the intermolecular interactions was negatively correlated with enzymatic binding rate constants (the rate-limiting step of digestion) and maximum digested percentages. In conclusion, these results suggest that starches with more amylose chains with 100 < DP ≤ 5000 are preferable in terms of promoting a slow starch digestibility.
Collapse
Affiliation(s)
- Shuting Duan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
3
|
Zheng X, Zeng F. Inhibition of starch retrogradation: Advances in physical, chemical, and biological methods. Int J Biol Macromol 2025; 306:141390. [PMID: 39988149 DOI: 10.1016/j.ijbiomac.2025.141390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Starch retrogradation, especially post-gelatinization, is a prevalent storage-induced process wherein starch recrystallization causes starch-based products to harden and develop an inferior texture, thereby impacting digestibility. Consequently, inhibiting this retrogradation is imperative for sustaining product quality. This review presents a comprehensive overview of the key factors influencing starch retrogradation and an in-depth discussion of the physical, chemical, and biological methods used to mitigate this process. Additionally, the characteristics and efficacy of these approaches are explored, and potential future developments in starch retrogradation control are discussed. Overall, this review serves as a valuable reference for advancing research in the inhibition of starch retrogradation.
Collapse
Affiliation(s)
- Xiaoyuan Zheng
- Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China.
| |
Collapse
|
4
|
Lian X, Shen Y, Li H, Zhu W. Chemical characterization of single helical mung bean amylopectin. Food Chem 2025; 484:144378. [PMID: 40267685 DOI: 10.1016/j.foodchem.2025.144378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/04/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
The distinctive chemical properties of amylopectin are attributable to the single and double helical structures that are characteristic of the polysaccharide. In the extant literature, amylopectin is generally described as a combination of these two structural forms, with limited studies focusing exclusively on the chemical properties of the single helical ones. In this paper, the single/double helical mung bean amylopectin (SMBA/DMBA) was prepared by the innovative methodology developed in-house and its chemical properties were characterized by molecular weight, chain length distribution, light micrographs, FT-IR、13C Solid-state NMR, XRD, and DSC. The results indicated that the primary branch diameter of SMBA aggregates was approximately half that observed in the double helical structure. Furthermore, the number-average molecular weight (Mn) of SMBA was found to be 123,538 g/mol, with a higher proportion of chains with 1, 10-13 glucose residues. The wavenumbers of 1022.6 and 1020.6 cm-1 represented the amorphous structure composed of SMBA and DMBA, respectively. In comparison with DMBA, the resonances of carbon atoms, excluding C4, in SMBA exhibited a lower field shift. The diffraction angles of single-helix mung bean amylopectin were found to be 2θ at 17.54 o and 22.28 o. The findings of this study provide a reliable marker for the identification of single helix in starch and its influence on the properties of starch.
Collapse
Affiliation(s)
- Xijun Lian
- Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yujia Shen
- Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Haoyue Li
- Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wei Zhu
- School of Science, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
5
|
Farrokhi M, Ramos IN, Silva CLM. Impact of Ultrasound on a Gluten-Free Composite Flour Based on Rice Flour and Corn Starch for Breadmaking Applications. Foods 2025; 14:1094. [PMID: 40238232 PMCID: PMC11988527 DOI: 10.3390/foods14071094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Ultrasound (US) treatment is an eco-friendly physical modification technique increasingly used to enhance the functionality of gluten-free flours. In this study, the impact of sonication on the techno-functional, thermal, structural, and rheological properties of a composite gluten-free flour was investigated. The flour, comprising corn starch, rice flour, and other ingredients, was treated at hydration levels of 15% and 25% (w/w) under controlled conditions (10 min of sonication at 20 °C) and compared to a non-sonicated control. Sonication reduced the water absorption capacity (WAC) and swelling power (SP) while increasing the oil absorption capacity (OAC) and water solubility (WSI). Thermal analysis revealed lower gelatinization enthalpy, indicating structural modifications induced by cavitation. Structural assessments (XRD and FTIR) confirmed minimal alterations in crystallinity and short-range order. Rheological studies demonstrated an enhanced elasticity in the gel structure, especially at 15% hydration, while a morphological analysis via SEM highlighted particle fragmentation and surface roughening. These findings demonstrate the potential of ultrasound to modify gluten-free flours for improved functionality and diverse applications in gluten-free product development.
Collapse
Affiliation(s)
| | | | - Cristina L. M. Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.F.); (I.N.R.)
| |
Collapse
|
6
|
Zuo Z, Zhang M, Li T, Zhang X, Wang L. Quality control of cooked rice: Exploring physicochemical changes of the intrinsic component in production. Food Chem 2025; 463:141295. [PMID: 39340909 DOI: 10.1016/j.foodchem.2024.141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Sensory deterioration exists in marketed cooked rice. The migration and interaction of intrinsic components occur under multiple conditions in each industrial production process and cause relevant physicochemical changes in cooked rice. This review aims to establish a scientific knowledge system of intrinsic component transition and migration in cooked rice kernel during processing to solve qualitative deficiencies in cooked rice products. The main influencing factors of intrinsic component structural change in cooked rice and the quality control points that should be considered are summarized. Further studies are needed to establish proper evaluation standards for cooked rice products to meet the growing consumer demands.
Collapse
Affiliation(s)
- Zhongyu Zuo
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ming Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ting Li
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Xinxia Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| |
Collapse
|
7
|
Harris HC, Warren FJ. The impact of Cas9-mediated mutagenesis of genes encoding potato starch-branching enzymes on starch structural properties and in vitro digestibility. Carbohydr Polym 2024; 345:122561. [PMID: 39227100 DOI: 10.1016/j.carbpol.2024.122561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
The digestibility of starch is affected by amylose content, and increasing amylopectin chain length which can be manipulated by alterations to genes encoding starch-branching enzymes (SBEs). We investigated the impact of Cas9-mediated mutagenesis of SBEs in potato on starch structural properties and digestibility. Four potato starches with edited SBE genes were tested. One lacked SBE1 and SBE2, two lacked SBE2 and had reduced SBE1, and one had reduced SBE2 only. Starch structure and thermal properties were characterised by DSC and XRD. The impact of different thermal treatments on digestibility was studied using an in vitro digestion protocol. All native potato starches were resistant to digestion, and all gelatinised starches were highly digestible. SBE modified starches had higher gelatinisation temperatures than wild type potatoes and retrograded more rapidly. Gelatinisation and 18 h of retrogradation, increased gelatinisation enthalpy, but this did not translate to differences in digestion. Following 7 days of retrogradation, starch from three modified SBE starch lines was less digestible than starch from wild-type potatoes, likely due to the recrystallisation of the long amylopectin chains. Our results indicate that reductions in SBE in potato may be beneficial to health by increasing the amount of fibre reaching the colon after retrogradation.
Collapse
Affiliation(s)
- Hannah C Harris
- Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK.
| | - Frederick J Warren
- Quadram Institute Biosciences, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
8
|
Xu W, Yan S, Xu X, Wang B, Abd El-Aty AM. Investigation of film Physical properties under various starch thermal treatments with emphasis on Retrogradation effects. Food Chem 2024; 458:140269. [PMID: 38964101 DOI: 10.1016/j.foodchem.2024.140269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
This study investigated the changes in the physical properties of cornstarch-based films as they were retrogradely aged at different temperatures. Using a casting method, the films were fabricated, and their effects on the mechanical properties, thermal stability, barrier properties, and essential properties were analyzed. With prolonged aging and retrogradation periods, reductions in film thickness, solubility, water content, and water vapor permeability of 5.35%, 9.92%, 29.61%, and 20.94%, respectively, were observed. In addition, the surface roughness decreased by 44.46% for Rq (root-mean-square roughness) and 45.61% for Ra (arithmetic average roughness), while the elongation at break decreased by 72.64%. Conversely, the tensile strength, maximum degradation rate, and maximum degradation temperature increased by 116.98%, 99.5%, and 3.21%, respectively. These results provide a fundamental understanding of the changes that occur in the properties of cornstarch-based films during aging and retrogradation.
Collapse
Affiliation(s)
- Wei Xu
- Shandong Agricultural University, Taian, 271018, China
| | - Shouxin Yan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xin Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Bin Wang
- Shandong Agricultural University, Taian, 271018, China; Weihai Baihe Biology Technological Co., Ltd. Weihai, 264200, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| |
Collapse
|
9
|
Lin J, Li E, Li C. Multi-scale structural insights on starch digestibility of instant rice. Food Chem 2024; 456:140074. [PMID: 38876074 DOI: 10.1016/j.foodchem.2024.140074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Multi-scale structures were investigated to understand starch digestibility of instant rice. A wide range of maximum starch digested ratio, up to about 20%, was observed among instant rice prepared from different rice varieties. Instant rice with a smooth and densely packed cross-section showed slower starch digestibility than those with a porous and loosely packed structure. All samples displayed B + V type crystallinity, with V-type crystallinity negatively correlating with maximum starch digested percentage. After digestion, starch chain-length distributions were significantly altered: rapidly digested starch comprised long amylose and short amylopectin chains, while slowly digested starch comprised chains with a peak degree of polymerization (DP) around 130. These results indicate that instant rice with a compact microstructure, high V-type crystallinity, and DP 130 fractions during digestion can reduce starch digestibility. This study provides insights for food industry to develop instant rice products with slow starch digestibility, potentially improving human health.
Collapse
Affiliation(s)
- Jiakang Lin
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
10
|
Liu X, Xu Z, Zhang C, Xu Y, Ma M, Sui Z, Corke H. Dynamic development of changes in multi-scale structure during grain filling affect gelatinization properties of rice starch. Carbohydr Polym 2024; 342:122318. [PMID: 39048212 DOI: 10.1016/j.carbpol.2024.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Rice was collected over the entire grain filling period (about 40 days) to explore the multi-structure evolution and gelatinization behavior changes of starch. During the early stage (DAA 6-14), the significant reduction in lamellar repeat distance (10.04 to 9.68 nm) and relative crystallinity (26.6 % to 22.7 %) was due to initial rapid accumulation of amylose (from 9.38 % to 14.05 %) and short amylopectin chains. Meanwhile, the decreased proportion of aggregation structure resulted in a decrease in the gelatinization temperature and a narrowed range of gelatinization temperature also indicated an increase in homogeneity as starch matured. Gelatinization enthalpy was mainly controlled by aggregation structure, which was negatively and positively related to the amylose content and the degree of order respectively. Peak viscosity of starch pasting increased and reached a maximum (924 cP) at DAA-21 due to larger granule size. Amylose and short amylopectin chains with degree of polymerization 6-12 showed positive and negative correlation with short-term retrogradation ability (setback value) respectively. The dynamics of different scale structure during grain filling had varying degrees of impact on gelatinization properties.
Collapse
Affiliation(s)
- Xiaoning Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuting Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
11
|
Jayarathna S, Péter-Szabó Z, Nestor G, Andersson M, Vilaplana F, Andersson R. Impact of mutations in starch synthesis genes on morphological, compositional, molecular structure, and functional properties of potato starch. PLoS One 2024; 19:e0310990. [PMID: 39325801 PMCID: PMC11426511 DOI: 10.1371/journal.pone.0310990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Morphology, composition and molecular structure of starch directly affect the functional properties. This study investigated the morphological, compositional, and molecular structure properties of starch from starch branching enzyme gene (SBE) and granule-bound starch synthase gene (GBSS) mutated potato, and their associations with thermal, pasting, and film-making properties. SBE mutations were induced in native variety Desiree while GBSS mutations were herestacked to a selected SBE mutated parental line. Mutations in SBE resulted in smaller starch granules and higher amylose content, while GBSS mutations in the SBE background reduced amylose content. Mutations in SBE, particularly with GBSS mutations, significantly increased total phosphorus content. 31P NMR spectroscopy revealed higher proportions of C6-bound phosphate than of C3-bound phosphate in all studied lines. Amylopectin unit chain and internal chain distributions showed higher proportions of long chains in mutated lines compared with Desiree. These amylopectin long-chains were positively correlated with gelatinizationand, pasting temperatures, and temperature at peak viscosity. Short amylopectin chains showed positive correlations with breakdown viscosity, but negative correlations with the crystal melting temperature of retrograded starch. Total phosphorus content was positively correlated with the crystal melting temperature of retrograded starch. Starch from different lines was used to produce a series of potato starch films that differed in morphology and functional properties. A negative correlation was observed between Young's modulus of films and the long amylopectin-chain fraction. Thermal gravimetric analysis revealed highest thermal stability of Desiree starch films, followed by films from SBE-mutated high-amylose lines. Oxygen transmission rate and oxygen permeability analyses showed that films made with starch from selected GBSS and SBEs mutated line maintained comparable oxygen barrier properties to Desiree film. These insights on the impact of genetic mutations on starch properties indicate potential applications of in-planta starch modification for specific end-uses including packaging.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Zsuzsanna Péter-Szabó
- Division of Glycoscience, Department of Chemistry, KTH-Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Gustav Nestor
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH-Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Roger Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
12
|
Bertoft E, Blennow A, Hamaker BR. Perspectives on Starch Structure, Function, and Synthesis in Relation to the Backbone Model of Amylopectin. Biomacromolecules 2024; 25:5389-5401. [PMID: 39149775 DOI: 10.1021/acs.biomac.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Understanding functionality of polysaccharides such as starch requires molecular representations that account for their functional characteristics, such as those related to gelatinization, gelation, and crystallization. Starch macromolecules are inherently very complex, and precise structures can only be deduced from large data sets to generate relational models. For amylopectin, the major, well-organized, branched part of starch, two main molecular representations describe its structure: the classical cluster model and the more recent backbone model. Continuously emerging data call for inspection of these models, necessary revisions, and adoption of the preferred representation. The accumulated molecular and functional data support the backbone model and it well accommodates our present knowledge related to the biosynthesis of starch. This Perspective focuses on our current knowledge of starch structure and functionality directly in relation to the backbone model of amylopectin.
Collapse
Affiliation(s)
- Eric Bertoft
- Bertoft Solutions, Gamla Sampasvägen 18, 20960 Turku, Finland
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana 47907-2009, United States
| |
Collapse
|
13
|
Cui Y, Li X, Sun D, Guo L, Cui B, Zou F, Wang J, Sun C. Retrogradation inhibition of starches in staple foods with maltotetraose-forming amylase. Food Chem 2024; 449:139232. [PMID: 38581794 DOI: 10.1016/j.foodchem.2024.139232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
To effectively inhibit the retrogradation of staple foods, the effects of maltotetraose-forming amylase(G4-amylase) on the short and long-term retrogradation of different staple starches such as rice starch (RS), wheat starch (WS), potato starch (PS) were studied. The results indicated that G4-amylase decreased the content of amylose. Amylose contents (21.09%) of WSG4 were higher than that (14.82%) of RSG4 and (13.13%) of PSG4. WS had the most obvious change in the chain length distribution of amylopectin. A chains decreased by 18.99% and the B1 chains decreased by 12.08% after G4-amylase treatment. Compared to RS (662 cP) and WS (693 cP), the setback viscosity of RSG4 (338 cP) and WSG4 (385 cP) decreased. Compared to RS (0.41), WS (0.45), and PS (0.51), the long-term retrogradation rate of RSG4 (0.33), WSG4 (0.31), and PSG4 (0.38) significantly reduced. It indicated that G4-amylase significantly inhibited the long-term retrogradation of WS, followed by RS and PS.
Collapse
Affiliation(s)
- Yunlong Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xueting Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Jinpeng Wang
- Shandong Key Laboratory of Starch Bio-based Materials and Green Manufacturing, Shandong Zhucheng Xingmao corn developing Co. Ltd, Zhucheng, China.
| | - Chunrui Sun
- Shandong Key Laboratory of Starch Bio-based Materials and Green Manufacturing, Shandong Zhucheng Xingmao corn developing Co. Ltd, Zhucheng, China
| |
Collapse
|
14
|
Zhang L, Zhao J, Li F, Jiao X, Zhang Y, Yang B, Li Q. Insight to starch retrogradation through fine structure models: A review. Int J Biol Macromol 2024; 273:132765. [PMID: 38823738 DOI: 10.1016/j.ijbiomac.2024.132765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The retrogradation of starch is crucial for the texture and nutritional value of starchy foods products. There is mounting evidence highlighting the significant impact of starch's fine structures on starch retrogradation. Because of the complexity of starch fine structure, it is a formidable challenge to study the structure-property relationship of starch retrogradation. Several models have been proposed over the years to facilitate understanding of starch structure. In this review, from the perspective of starch models, the intricate structure-property relationship is sorted into the correlation between different types of structural parameters and starch retrogradation performance. Amylopectin B chains with DP 24-36 and DP ≥36 exhibit a higher tendency to form ordered crystalline structures, which promotes starch retrogradation. The chains with DP 6-12 mainly inhibit starch retrogradation. Based on the building block backbone model, a longer inter-block chain length (IB-CL) enhances the realignment and reordering of starch. The mathematical parameterization model reveals a positive correlation between amylopectin medium chains, amylose short chains, and amylose long chains with starch retrogradation. The review is structured according to starch models; this contributes to a clear and comprehensive elucidation of the structure-property relationship, thereby providing valuable references for the selection and utilization of starch.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
15
|
Yan X, Luo S, Ye J, Liu C. Effect of starch degradation induced by extruded pregelatinization treatment on the quality of gluten-free brown rice bread. Int J Biol Macromol 2024; 272:132764. [PMID: 38821309 DOI: 10.1016/j.ijbiomac.2024.132764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
There is considerable interest in preparing high-quality gluten-free bread. The effect of the molecular structure of extruded pregelatinization starch on the dough's rheological properties and the brown rice bread's quality was investigated. Extruded rice starch (ERS) was prepared with various added moisture contents of 20 % (ERS20), 30 % (ERS30), and 40 % (ERS40), respectively. ERS had smaller molecular weight and more short branched chains as the moisture content decreased. The dough elasticity and deformation resistance were improved with the ERS supplementation and in the order of ERS40 > ERS30 > ERS20 at the same level. Fortification with ERS improved the gluten-free brown rice bread quality. Compared to the control group, breadcrumbs supplemented with ERS20 at the 10 % level showed an increase in cell density from 17.87 cm-2 to 28.32 cm-2, a decrease in mean cell size from 1.22 mm2 to 0.81 mm2, and no significant change in cell area fraction. In addition, the specific volume increased from 1.50 cm3/g to 2.04 cm3/g, the hardness decreased from 14.34 N to 6.28 N, and the springiness increased from 0.56 to 0.74. The addition of extruded pregelatinization starches with smaller molecular weights and higher proportions of short chains is promising for preparing high-quality gluten-free bread.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330200, China.
| |
Collapse
|
16
|
Prisby R, Luchini A, Liotta LA, Solazzo C. Wheat-Based Glues in Conservation and Cultural Heritage: (Dis)solving the Proteome of Flour and Starch Pastes and Their Adhering Properties. J Proteome Res 2024; 23:1649-1665. [PMID: 38574199 PMCID: PMC11077587 DOI: 10.1021/acs.jproteome.3c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/24/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Plant-based adhesives, such as those made from wheat, have been prominently used for books and paper-based objects and are also used as conservation adhesives. Starch paste originates from starch granules, whereas flour paste encompasses the entire wheat endosperm proteome, offering strong adhesive properties due to gluten proteins. From a conservation perspective, understanding the precise nature of the adhesive is vital as the longevity, resilience, and reaction to environmental changes can differ substantially between starch- and flour-based pastes. We devised a proteomics method to discern the protein content of these pastes. Protocols involved extracting soluble proteins using 0.5 M NaCl and 30 mM Tris-HCl solutions and then targeting insoluble proteins, such as gliadins and glutenins, with a buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, 40 mM Tris, and 75 mM DTT. Flour paste's proteome is diverse (1942 proteins across 759 groups), contrasting with starch paste's predominant starch-associated protein makeup (218 proteins in 58 groups). Transformation into pastes reduces proteomes' complexity. Testing on historical bookbindings confirmed the use of flour-based glue, which is rich in gluten and serpins. High levels of deamidation were detected, particularly for glutamine residues, which can impact the solubility and stability of the glue over time. The mass spectrometry proteomics data have been deposited to the ProteomeXchange, Consortium (http://proteomecentral.proteomexchange.org) via the MassIVE partner repository with the data set identifier MSV000093372 (ftp://MSV000093372@massive.ucsd.edu).
Collapse
Affiliation(s)
- Rocio Prisby
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, Virginia 20110, United States
| | - Alessandra Luchini
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, Virginia 20110, United States
| | - Lance A. Liotta
- Center
for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, Virginia 20110, United States
| | - Caroline Solazzo
- Independent
Researcher for Museum Conservation Institute, Smithsonian Institution, 4210 Silver Hill Road, Suitland, Maryland 20746, United States
| |
Collapse
|
17
|
Zhang Y, Wang D, Zhang Z, Guan H, Zhang Y, Xu D, Xu X, Li D. Improvement on wheat bread quality by in situ produced dextran-A comprehensive review from the viewpoint of starch and gluten. Compr Rev Food Sci Food Saf 2024; 23:e13353. [PMID: 38660747 DOI: 10.1111/1541-4337.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.
Collapse
Affiliation(s)
- Yao Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Research Program of Materials Science and Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhihong Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yanjie Zhang
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Zhang X, Yi X, Yu W, Chen T, Gao B, Gilbert RG, Li C. Subtle structural variations of resistant starch from whole cooked rice significantly impact metabolic outputs of gut microbiota. Carbohydr Polym 2024; 329:121779. [PMID: 38286529 DOI: 10.1016/j.carbpol.2024.121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024]
Abstract
While cooked rice is widely consumed as a whole food, the specific characteristics and impact of its resistant starch (RS) on gut microbiota are largely unexplored. In this study, three rice varieties with distinct starch molecular structures were used to prepare RS from cooked rice. All three types of RS had a crystalline structure characterized as B + V type, with the V type being the predominant crystalline polymorph. Distinct differences in chain-length distributions were observed among different RSs, with rapidly fermentable starch fractions comprising short amylopectin and long amylose chains, while the degrees of polymerization (DPs) ∼ 10, 37, 65, and 105 fractions comprised the slowly fermentable starch. Jasmine rice RS showed the highest proportion of this slowly fermentable starch fraction, which appeared to be specifically utilized by Megasphaera_elsdenii_DSM_20460 OTU198. The fermentation of Jasmine RS resulted in the highest production of butyrate after 24 h, which was positively correlated with the relative abundance of Megasphaera_elsdenii_DSM_20460 OTU198. These findings collectively indicate that RS in cooked rice with a higher V type crystallinity and DPs ∼ 10, 37, 65, and 105 fractions promote butyrate production and stimulate the growth of butyrate-producing bacteria in the human gut, thereby conferring beneficial effects on gut health.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueer Yi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Boyan Gao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Robert G Gilbert
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Cheng Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
19
|
Cheng Y, Gao W, Kang X, Wang J, Yu B, Guo L, Zhao M, Yuan C, Cui B. Effects of starch-fatty acid complexes with different fatty acid chain lengths and degrees of saturation on the rheological and 3D printing properties of corn starch. Food Chem 2024; 436:137718. [PMID: 37844512 DOI: 10.1016/j.foodchem.2023.137718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/07/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
The effect of corn starch-fatty (CS-FA) complexes from varying carbon chain length and degree of unsaturation on the rheological and 3D printing properties of corn CS-FA complex gels. The CS-FA complexes with longer carbon chain lengths and lower saturation enhanced the ability of gels to bind water, promoting the formation of intermolecular hydrogen bonds. The CS-FA complexes inhibit retrogradation and increase the amount of bound water, thereby reducing the structural integrity and transforming the original skeleton structure into a flake-like structure. These changes in gel structure led to lower flow stress and storage modulus for CS-FA gels containing FAs with shorter carbon chain lengths and lower saturation, resulting in reduced "extrusion swelling" of the material and facilitating its extrusion. The decreased "extrusion swelling" of gel improved print line width and printing performance. The CS-FA complex gel-printed product with a 12-carbon chain FA has the greatest printing accuracy, thanks to its moderate G', flow stress, and viscosity. This study provides important information for the CS-FA complexes for the preparation of starch-based 3D printing materials.
Collapse
Affiliation(s)
- Yue Cheng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xuemin Kang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jianfei Wang
- Agricultural Information and Economy Research Institution, Shandong Academy of Agricultural Sciences, Jinan 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
20
|
Gebre BA, Zhang C, Li Z, Sui Z, Corke H. Impact of starch chain length distributions on physicochemical properties and digestibility of starches. Food Chem 2024; 435:137641. [PMID: 37804724 DOI: 10.1016/j.foodchem.2023.137641] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/02/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Changing starch structure at different levels is a promising approach to promote desirable metabolic responses. Chain length distribution (CLD) is among the starch structural characteristics having a potential to determine properties of starch-based products. Therefore, the objective of the current review is to summarize recent findings on CLD and its impact on physicochemical properties and digestion. Investigations undertaken to enhance understanding of starch structure have shown clearly that CLD is a significant determining factor in modulating starch digestibility. Enzymatic modifications and processing treatments alter the CLD of starch, which in turn affects the rate of digestion, but the underlying molecular mechanisms have yet to be fully elucidated. Even though advances have been made in manipulating CLD using different methods and to correlate the changes with various functional properties, in general the area needs further investigations to open new awareness for enhancing healthiness of starchy foods.
Collapse
Affiliation(s)
- Bilatu Agza Gebre
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Food Science & Nutrition, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zijun Li
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 320000, Israel.
| |
Collapse
|
21
|
Liu X, Zhao X, Ma C, Wu M, Fan Q, Fu Y, Zhang G, Bian X, Zhang N. Effects of Extrusion Technology on Physicochemical Properties and Microstructure of Rice Starch Added with Soy Protein Isolate and Whey Protein Isolate. Foods 2024; 13:764. [PMID: 38472878 DOI: 10.3390/foods13050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
In order to improve the retrogradation of rice starch (RS) and the quality of rice products, soy protein isolate (SPI), whey protein isolate (WPI), and rice flour were mixed and further extruded into mixed flour. The physicochemical properties and morphology of starch of extruded rice flour (ERS) and starch of extruded mixtures of SPI, WPI, and rice flour (SPI-WPI-ERS) were analyzed. The distribution of amylopectin chain length, molecular weight, microstructure, crystallinity, short-range ordered structure, pasting properties, and thermodynamic properties of RS, ERS, and SPI-WPI-ERS were measured. The results showed that, compared with rice starch, the proportion of long-chain starch, total starch content, and molecular weight were decreased in ERS and SPI-WPI-ERS, but the proportion of short-chain and amylose content was increased. The short-range order structure was destroyed. The water absorption of ERS and SPI-WPI-ERS was much higher than rice starch at 55 °C, 65 °C, and 75 °C, but lower than that of rice starch at 95 °C. Therefore, the retrogradation characteristics of SPI-WPI-ERS were improved. The setback of rice starch products was reduced and the setback of SPI-WPI-ERS was lower than that of ERS. Overall, the retrogradation of rice starch was delayed by adding exogenous protein and extrusion technology, and the application range of rice flour in staple food products was broadened.
Collapse
Affiliation(s)
- Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiangxiang Zhao
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ming Wu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Qiqi Fan
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
22
|
Yi X, Yu W, Liu H, Li C. Importance of both leached and residual starch molecular structures in determining cooked rice texture at different rice-to-water cooking ratios. Int J Biol Macromol 2024; 258:129040. [PMID: 38154711 DOI: 10.1016/j.ijbiomac.2023.129040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Although texture of cooked rice has been investigated with regard to its relation to starch structure, it remains unclear how starch molecular structure and water content together affect its texture. Thus, the texture, and starch molecular structure of 10 rice varieties and their leachates during cooking were studied with a range of rice-to-water ratios. Although hardness of cooked rice decreased, no trend for the alteration of stickiness observed over the increase of water content. Generally, more amylopectin with DP 12-36 and amylose with DP 5000-20,000 in leachate, less starch molecules with DP > 36 in residual materials resulted in a higher stickiness of cooked rice, which is rationalized by their slower retrogradation tendency and higher amount of non-reducing ends available for binding to textural probe. Rice-to-water ratio was another crucial factor in determining relations between starch structures and cooked rice texture. For example, more leached amylopectin with DP 12-100 resulted in a higher stickiness of cooked rice, while this was not the case for rice cooked at rice-to-water ratios of 1: 1.2 and 1: 1.4. These results give new insights on the effects of starch molecular structure and water content on the cooked rice texture.
Collapse
Affiliation(s)
- Xueer Yi
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Cheng Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
23
|
He Z, Wang D, Zhu W, Lian X. Study on the anti-retrogradation of wheat amylopectin by addition of alkali-soluble glutenin. Int J Biol Macromol 2024; 259:129280. [PMID: 38211911 DOI: 10.1016/j.ijbiomac.2024.129280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The retrogradation of wheat amylopectin during cold storage is the main reason for the increasing hardness of flour products such as steamed bread, bread and pastries, etc. Addition of gluten protein components is a green, safe, cheap and efficient method to inhibit the retrogradation of wheat amylopectin. In this paper, as being stored at 4 °C for 7 d, retrogradation rate of wheat amylopectin decreased from 55.02 % to 14.37 % after it was mixed with 20 % alkali-soluble glutenin (ASG) at 30 °C for 90 min, a 73.8 % reduction. The infrared results showed that the intensity of bending vibration of water molecules and intra-molecular β-sheet content of ASG decreased during the interaction between amylopectin and ASG. Meanwhile, intermolecular β-sheet and random coil contents of ASG increased. The results of 13C Solid-state NMR indicated that Qβ, Pγ and Lγ of ASG involved in interaction of wheat amylopectin, ASG and molecule of water. Under the optimal conditions, the interaction of wheat amylopectin and ASG began to form spheres containing disulfide bonds, resulting in the attenuation or disappearance of the diffraction peak at 2θ 19.7°, which may be marked as the criterion for the best mixing time of wheat amylopectin and ASG. The retrogradation kinetic index (n) of wheat amylopectin decreased significantly with the addition of ASG and formation of disulfide bond was the key factor. ASG could be potentially used as an anti-retrogradation agent for amylopectin.
Collapse
Affiliation(s)
- Zhixiang He
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR, China
| | - Danli Wang
- School of Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wei Zhu
- School of Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xijun Lian
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, PR, China.
| |
Collapse
|
24
|
Zhao H, Xu Q, Yan T, Zhang H, Yang Y. Effect of Bletilla Striata Polysaccharide on the Pasting, Rheological and Adhesive Properties of Wheat Starch. Polymers (Basel) 2023; 15:4721. [PMID: 38139972 PMCID: PMC10747244 DOI: 10.3390/polym15244721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
A combination of starch and hydrocolloids is a facile method for physically modifying native starch. Bletilla striata polysaccharide (BSP) is a glucomannan with various applications in the food and cosmetic industries as a thickening agent. This study focused on investigating the impact of BSP on the pasting, rheological and adhesive properties of wheat starch (WS). Results from a Rapid Visco-Analyzer (RVA) revealed that the addition of BSP (below 0.2%) resulted in increases in peak viscosity, breakdown and setback values. However, for the addition of BSP at a higher concentration (0.3%), the opposite trend was observed. Rheological measurements indicated that the presence of BSP increased the viscoelastic properties of WS-BSP gels. TGA results demonstrated that the presence of BSP promoted the thermal stability of starch. FTIR results indicated the short-range order structure decreased at low addition concentrations of BSP (0.05% and 0.1%) and increased with higher BSP addition concentrations (0.2% and 0.3%). SEM observation showed that the BSP improved the hydrophilic property of starch gels and decreased the size of pores in the starch gels. Further, the mechanical properties of paper samples unveiled that the present of BSP in starch gels obviously increased its bonding strength as an adhesive.
Collapse
Affiliation(s)
- Haibo Zhao
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China; (H.Z.); (Q.X.)
| | - Qiang Xu
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China; (H.Z.); (Q.X.)
| | - Tianlan Yan
- Department of Chemistry, Fudan University, Shanghai 200433, China;
| | - Hongdong Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuliang Yang
- Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China; (H.Z.); (Q.X.)
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Jiang X, Gu Y, Zhang L, Sun J, Yan J, Wang C, Lai B, Wu H. Physicochemical Properties of Granular and Gelatinized Lotus Rhizome Starch with Varied Proximate Compositions and Structural Characteristics. Foods 2023; 12:4330. [PMID: 38231847 DOI: 10.3390/foods12234330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
As a traditional and popular dietary supplement, lotus rhizome starch (LRS) has health benefits for its many nutritional components and is especially suitable for teenagers and seniors. In this paper, the approximate composition, apparent amylose content (AAC), and structural characteristics of five LRS samples from different regions were investigated, and their correlations with the physicochemical properties of granular and gelatinized LRS were revealed. LRS exhibited rod-shaped and ellipsoidal starch granules, with AAC ranging from 26.6% to 31.7%. LRS-3, from Fuzhou, Jiangxi Province, exhibited a deeper hydrogel color and contained more ash, with 302.6 mg/kg iron, and it could reach the pasting temperature of 62.6 °C. In comparison, LRS-5, from Baoshan, Yunnan Province, exhibited smoother granule surface, less fragmentation, and higher AAC, resulting in better swelling power and freeze-thaw stability. The resistant starch contents of LRS-3 and LRS-5 were the lowest (15.3%) and highest (69.7%), respectively. The enzymatic digestion performance of LRS was positively correlated with ash content and short- and long-term ordered structures but negatively correlated with AAC. Furthermore, the color and network firmness of gelatinized LRS was negatively correlated with its ash content, and the retrograde trend and freeze-thaw stability were more closely correlated with AAC and structural characteristics. These results revealed the physicochemical properties of LRS from different regions and suggested their advantages in appropriate applications as a hydrogel matrix.
Collapse
Affiliation(s)
- Xinyu Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiting Gu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lichao Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Jinjian Sun
- Dalian Center for Food and Drug Control and Certification, Dalian 116037, China
| | - Jianan Yan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ce Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Haitao Wu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
26
|
Jayarathna S, Jin Y, Dotsenko G, Fei M, Andersson M, Andersson AAM, Sun C, Andersson R. High fructan barley lines produced by selective breeding may alter β-glucan and amylopectin molecular structure. Carbohydr Polym 2023; 316:121030. [PMID: 37321727 DOI: 10.1016/j.carbpol.2023.121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular structure of amylopectin and β-glucan. The highest fructan and β-glucan content achieved in the novel barley lines was 8.6 % and 12 %, respectively (12.3-fold and 3.2-fold higher than in Gustav). The lines with low fructan synthesis activity had higher starch content, smaller building blocks in amylopectin, and smaller structural units of β-glucans than the lines with high-fructan synthesis activity. Correlation analysis confirmed that low starch content was associated with high amylose, fructan, and β-glucan content, and larger building blocks in amylopectin.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Yunkai Jin
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Gleb Dotsenko
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Mingliang Fei
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden; Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden.
| | - Annica A M Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| | - Chuanxin Sun
- Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-750 07 Uppsala, Sweden.
| | - Roger Andersson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
27
|
Li C. Structural basis for rice starch multi-digestible fractions revealed by consecutive reaction kinetics model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4203-4210. [PMID: 36641546 DOI: 10.1002/jsfa.12451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 01/15/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Starch-based foods (e.g. rice) usually contain multiple starch fractions with distinct digestion rate constants, although their nature is currently unknown. The present study applied the recently developed consecutive reaction kinetics model to fit the in vitro digestion curves for starch fractions deconvoluted from the overall digestograms to differentiate their binding and catalysis rates to starch digestive enzymes. The fitting parameters were then correlated with starch molecular structures obtained from published data to understand starch structural features determining the binding and catalytic rate constants. RESULTS Binding and catalysis rates for the rapidly (RDF) and slowly digestible starch fraction (SDF) were controlled by distinct starch structural features. Typically, (i) the binding rate constant for RDF was negatively correlated with the amount of amylose short to intermediate chains, whereas it was positively correlated with the relative length of amylopectin intermediate chains; (ii) the catalysis rate constant for RDF was negatively correlated with the amount of amylose short to intermediate chains, relative length of amylose intermediate chains and amount of amylopectin long chains, whereas it was positively correlated with starch molecular size as well as relative length of amylopectin intermediate chains; (iii) and the catalysis rate constant for SDF was negatively correlated with the amount of amylopectin long chains, whereas it was positively correlated with starch molecular size. CONCLUSION These results provide a better understanding of the nature of different starch digestible fractions and the development of foods such as rice with slow starch digestibility. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
28
|
Zhang C, Wang M, Tan Z, Ma M, Sui Z, Corke H. Differential distribution of surface proteins/lipids between wheat A- and B-starch granule contributes to their difference in pasting and rheological properties. Int J Biol Macromol 2023; 240:124430. [PMID: 37062381 DOI: 10.1016/j.ijbiomac.2023.124430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
The distribution of surface proteins/lipids and their effect on physicochemical properties of wheat A- and B-starch were investigated. Small B-starch with higher surface protein (~1.8 %) and lipid (~0.4 %) contents did not differ significantly from specific surface area of large A-starch (~0.2 % protein and ~ 0.1 % lipid), indicating surface lipids/proteins for starch are characteristic of their biological origin, not directly related to granule size. The surface of A-starch granule was an integrated membrane structure (lipids covered by proteins). B-starch showed a greater decrease in peak and trough viscosity (130 and 82 cP) than A-starch (99 and 52 cP) after removing surface proteins, perhaps because the presence of residual surface lipid as a membrane protected the rigidity of A-starch granule. B-starch showed a greater increase in consistency coefficient (K) (47.01 Pa·sn) than A-starch (20.33 Pa·sn) after removing surface lipids, possibly due to the greater loss of surface lipid as complex with amylose in B-starch which retard retrogradation and reduce K. These results show that different distributions and contents of surface proteins/lipids between wheat A- and B-starch granule contribute to the pasting and rheological properties.
Collapse
Affiliation(s)
- Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingming Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhifeng Tan
- Food Inspection & Testing Technology, School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
29
|
Li C, Li S. A procedure for determining the number and pattern of digestible starch fractions in multiphasic food digestograms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1651-1659. [PMID: 36326592 DOI: 10.1002/jsfa.12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Plant-based foods are frequently heterogenous systems, containing multiple starch fractions with distinct digestion rate constants. An unbiased determination of the number and digestion pattern of these fractions is a prerequisite for understanding the digestive characteristics of food. RESULTS A non-linear least-squares procedure based on a conditional selection of simple first-order kinetics or a combination of parallel and sequential kinetics models was developed. The procedure gave robust results fitting manually generated data, and was applied to in vitro experimental digestion data of retrograded rice starches. By correlating fitting parameters with starch structural parameters, it showed that rice starches with a lower amylose content, longer amylose chains, and amylopectin intermediate chains had more digestible starch fractions after long-term retrogradation. CONCLUSION This procedure enables the structural basis of starch digestibility and the development of food products with slow starch digestibility to be better understood. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
30
|
The Role of Amylose in Gel Forming of Rice Flour. Foods 2023; 12:foods12061210. [PMID: 36981139 PMCID: PMC10047920 DOI: 10.3390/foods12061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
In this study, Glutinous rice (GR), Japonica rice (JR), and Indica rice (IR), with amylose contents at 1.57 ± 0.18%, 15.88 ± 1.16%, and 26.14 ± 0.25%, respectively, were selected to reveal the role of amylose in the gel forming of rice flours. The strength and elasticity of the associated gels were found in an ascendant order with the increase in amylose content. For the retrograded gels (at 4 °C for 7 days), the peak temperature (Trp) was positively related to the amylose content. In general, Trp of IR increased to 63.21 ± 0.13 °C, and the relative crystallinities of IR were in the top ranking at 10.67 ± 0.16%, followed by those of JR and GR. The relative amounts of short-range ordered structures to amorphous regions in JR and IR were also higher than that of GR, and the number of compact network structure were positively related to the amylose content. These results indicated that amylose can enhance the strength and elasticity of gels by facilitating the formation of crystalline, short-range ordered, and compact network structures. These results can provide a reference for the development of rice products.
Collapse
|
31
|
Zhao X, Hofvander P, Andersson M, Andersson R. Internal structure and thermal properties of potato starches varying widely in amylose content. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Impact of storage on starch digestibility and texture of a high-amylose wheat bread. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Guo S, Wu H, Liu X, Zhao W, Zheng J, Li W. Structural, Physicochemical and Digestive Property Changes of Potato Starch after Continuous and Repeated Dry Heat Modification and Its Comparative Study. Foods 2023; 12:foods12020335. [PMID: 36673427 PMCID: PMC9858123 DOI: 10.3390/foods12020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
To investigate the effects of repeated dry heat treatment (RDH) and continuous dry heat treatment (CDH) on the structure and physicochemical and digestive properties of potato starch, potato starch was treated continuously and repeatedly at 130 °C for 3-18 h. The results showed that the crystalline form of starch was consistent with the original type B. Still, its physicochemical properties, such as swelling power, transparency, peak viscosity (PV), final viscosity (FV), breakdown (BD) and thermal properties (To, Tp, Tc, ΔT), tended to decrease. At the same time, solubility and RS increased after dry heat treatment. Moreover, RDH-treated starches were higher than CDH-treated ones in terms of molecular weight, crystallinity, swelling power, transparency and final viscosity for the same treatment time. Still, there was no significant difference between the thermal properties of the two. Meanwhile, the resistant starch (RS) content showed a downward trend after the peak value of 9 h of CDH treatment and five cycles of RDH treatment with increasing treatment time and the number of cycles, indicating a decrease in the overall digestibility of the starch. Overall, RDH had a more significant effect on potato starch's structure and physicochemical properties than CDH.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhao Li
- Correspondence: ; Fax: +86-029-8709-2486
| |
Collapse
|
34
|
Molecular weight, chain length distribution and long-term retrogradation of cassava starch modified by amylomaltase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Shao S, Li E, Yu S, Yi X, Zhang X, Yang C, Gilbert RG, Li C. Subtle differences in starch fine molecular structure are associated with large differences in texture and digestibility of Chinese steamed bread. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Insights into high hydrostatic pressure pre-treatment generating a more efficient catalytic mode of maltogenic α-amylase: Effect of multi-level structure on retrogradation properties of maize starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Hu T, Yang H, Zhang K, Hafsa CN, Fang X, Ma H, Liao J, Zheng S. Effects of different altitudes on the structure and properties of potato starch. FRONTIERS IN PLANT SCIENCE 2023; 14:1111843. [PMID: 37123835 PMCID: PMC10130426 DOI: 10.3389/fpls.2023.1111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
The main element influencing the quality of potato starch is the environment. To investigate the effects of different altitude cultivation locations on the molecular structure and physicochemical properties of starch, two potato varieties, Jiusen No.1 B1 and Qingshu No.9 B2, were planted in three different altitude zones: A1 at low altitude (Chongzhou 450 m), A2 at middle altitude (Xichang 2800 m), and A3 at high altitude (Litang 3650 m). The results showed that the average volume, number, surface area diameter, average branched polymerization degree, crystallinity, and gelatinization temperature of two potato granules in high altitude areas were significantly lower than those in middle and low altitude areas were, and the gelatinization performance of potato starch was affected according to the correlation of starch structure characteristics. Potato starch with more short-branched chains and less long branched chains resulted in a lower gelatinization temperature in high altitude areas. The results showed that Jiusen No. 1 and Qingshu No. 9 were mainly affected by accumulated radiation and accumulated rainfall in Litang, a high altitude area, and by effective accumulated temperature in Xichang, a middle altitude area. This study quantified the influence of meteorological factors on the main starch quality of potato tubers. The results can be used as a theoretical basis for the scientific planting of high-quality potatoes.
Collapse
Affiliation(s)
- Tingyuan Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Kaiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
| | - Cheema Nazir Hafsa
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xiaoting Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Haiyan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jiangxiu Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Shunlin Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Tuber Crop Genetics and Breeding, Ministry of Agriculture, Chengdu Joyson Agricultural Technology Co., Ltd, Xingdu, China
- *Correspondence: Shunlin Zheng,
| |
Collapse
|
38
|
Li C. Starch fine molecular structures: The basis for designer rice with slower digestibility and desirable texture properties. Carbohydr Polym 2023; 299:120217. [PMID: 36876819 DOI: 10.1016/j.carbpol.2022.120217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Development of whole rice with low glycaemic index has been achieved, however, these rices are frequently associated with a poor texture property. Recent advances in terms of understanding the importance of starch fine molecular structures on the starch digestibility/texture of cooked whole rice have shed new insights on mechanisms of starch digestibility and texture from molecular levels. With an extensive discussion on the correlative and causal relationships among starch molecular structure, texture and starch digestibility of cooked whole rice, this review identified desirable starch fine molecular structures contributing to both slow starch digestibility and preferable textures. For instance, the selection of rice variety having more amylopectin intermediate chains while less amylopectin long chains might help develop cooked whole rice with both slower starch digestibility and softer texture. The information could help rice industry transform cooked whole rice into a healthier food product with slow starch digestibility and desirable texture.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
39
|
Yang T, Zhong L, Jiang G, Liu L, Wang P, Zhong Y, Yue Q, Ouyang L, Zhang A, Li Z, Cui Z, Jiang D, Zhou Q. Comparative study on bread quality and starch digestibility of normal and waxy wheat (Triticum aestivum L.) modified by maltohexaose producing α-amylases. Food Res Int 2022; 162:112034. [DOI: 10.1016/j.foodres.2022.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022]
|
40
|
Allan MC, Read QD, Johanningsmeier SD. Impact of sweetpotato starch structures, thermal properties, and granules sizes on sweetpotato fry textures. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Zhang S, Wang L, Fu Y, Jiang JC. Bioactive constituents, nutritional benefits and woody food applications of Castanea mollissima: A comprehensive review. Food Chem 2022; 393:133380. [DOI: 10.1016/j.foodchem.2022.133380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/14/2023]
|
42
|
Li C, Li E, Gong B. Main starch molecular structures controlling the textural attributes of cooked instant rice. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Zhang Y, Junejo SA, Zhang B, Fu X, Huang Q. Multi-scale structures and physicochemical properties of waxy starches from different botanical origins. Int J Biol Macromol 2022; 220:692-702. [PMID: 35998850 DOI: 10.1016/j.ijbiomac.2022.08.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
The multi-scale structures and physicochemical relationships of three different types of waxy starches (maize, tapioca, and potato) were investigated. The maize and tapioca starches exhibited A-type crystalline polymorph compared to potato starch (B-type). The WMS showed higher amorphous content (5.56 %) than other waxy starches. The WTS exhibited a low tendency of retrogradation with its high fa (DP 6-12) and low fb3 (DP ≥ 37) proportion of chains. Double helix content of WPS was observed highest with a high pasting viscosity (952.3 BU). Low fa (DP 6-12) and high fb3 (DP ≥ 37) chain proportions of the WPS retrograded easily. The compactness of the semi-crystalline aggregation structure influenced the retrogradation properties of waxy starches with a positive correlation. Furthermore, the peak viscosity of pastes was correlated with the proportion of fb3 (DP ≥ 37) chains, mass fractal dimension, and double helix content. The results provide guidance to design the application of waxy starches in the production of clean-labels.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
44
|
Piyapattanamongkol T, Kongpensook V, Tananuwong K. Physicochemical properties and viscoelastic behavior of rice–mung bean composite flour systems as potential ingredients for plant–based foods. Cereal Chem 2022. [DOI: 10.1002/cche.10588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Varapha Kongpensook
- Department of Food Technology, Faculty of ScienceChulalongkorn UniversityBangkok10330Thailand
| | - Kanitha Tananuwong
- Department of Food Technology, Faculty of ScienceChulalongkorn UniversityBangkok10330Thailand
| |
Collapse
|
45
|
Wang Y, Bai Y, Dong J, Ji H, Liu J, Jin Z. Partial hydrolysis of waxy rice starch by maltogenic α‐amylase to regulate its structures, rheological properties and digestibility. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Jingjing Dong
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Jialin Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- School of Food Science and Technology Jiangnan University Wuxi 214122 Jiangsu Province China
- Synergetic Innovation Center of Food Safety and Nutrition Jiangnan University Wuxi 214122 Jiangsu Province China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi 214122 Jiangsu Province China
| |
Collapse
|
46
|
Combined effects of starch fine molecular structures and water content on starch digestibility of cooked white rice. Int J Biol Macromol 2022; 215:192-202. [PMID: 35728634 DOI: 10.1016/j.ijbiomac.2022.06.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 01/08/2023]
Abstract
Although the starch digestibility of cooked white rice has been investigated with regard to its relation to starch structure, it is not yet clear how starch molecular structure and water content affect its digestion rate. To investigate this, the in vitro starch digestibility and molecular structure of 10 rice varieties with a range of rice-to-water cooking ratios were investigated. As expected, starch digestibility varied with different conditions. Typically, a higher amylose content resulted in a lower maximum digestion extent for a given water content. Having relatively more and longer amylopectin intermediate chains caused a slower starch digestion rate, but only with rice-to-water ratios between 1:1 and 1:1.2. These results could prove useful to find combinations of starch fine molecular structures and water contents to produce cooked rice with low glycemic index.
Collapse
|
47
|
Shen L, Li J, Li Y. Resistant starch formation in rice: Genetic regulation and beyond. PLANT COMMUNICATIONS 2022; 3:100329. [PMID: 35576157 PMCID: PMC9251435 DOI: 10.1016/j.xplc.2022.100329] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 05/07/2023]
Abstract
Resistant starch (RS), a healthy dietary fiber, is a particular type of starch that has attracted much research attention in recent years. RS has important roles in reducing glycemic index, postprandial blood glucose levels, and serum cholesterol levels, thereby improving and preventing many diseases, such as diabetes, obesity, and cardiovascular disease. The formation of RS is influenced by intrinsic properties of starch (e.g., starch granule structure, starch crystal structure, and amylose-to-amylopectin ratio) and non-starch components (e.g., proteins, lipids, and sugars), as well as storage and processing conditions. Recent studies have revealed that several starch-synthesis-related genes (SSRGs) are crucial for the formation of RS during seed development. Several transcription factors and mRNA splicing factors have been shown to affect the expression or splicing of SSRGs that regulate RS content, suggesting their potential roles in RS formation. This review focuses mainly on recent research progress on the genetic regulation of RS content and discusses the emerging genetic and molecular mechanisms of RS formation in rice.
Collapse
Affiliation(s)
- Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| |
Collapse
|
48
|
Zhong Y, Tai L, Blennow A, Ding L, Herburger K, Qu J, Xin A, Guo D, Hebelstrup KH, Liu X. High-amylose starch: Structure, functionality and applications. Crit Rev Food Sci Nutr 2022; 63:8568-8590. [PMID: 35373669 DOI: 10.1080/10408398.2022.2056871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Starch with a high amylose (AM) content (high AM starch, HAS) has attracted increasing research attention due to its industrial application potential, such as functional foods and biodegradable packaging. In the past two decades, HAS structure, functionality, and applications have been the research hotspots. However, a review that comprehensively summarizes these areas is lacking, making it difficult for interested readers to keep track of past and recent advances. In this review, we highlight studies that benefited from rapidly developing techniques, and systematically review the structure, functionality, and applications of HAS. We particularly emphasize the relationships between HAS molecular structure and physicochemical properties.
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingyu Tai
- Department of Chemical, Environmental and Material Engineering, Sapienza University of Rome, Rome, Italy
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Li Ding
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhou Xin
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kim Henrik Hebelstrup
- Department of Agroecology, Aarhus University, Flakkebjerg, Denmark
- Plantcarb Aps, Vedbaek, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
49
|
Liu Z, Fu Y, Zhang F, Zhao Q, Xue Y, Hu J, Shen Q. Comparison of the molecular structure of heat and pressure-treated corn starch based on experimental data and molecular dynamics simulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Li E, Yang X, Li C. Combined effects of starch fine molecular structures and storage temperatures on long-term rice amylopectin retrogradation property. Int J Biol Macromol 2022; 201:458-467. [PMID: 35063484 DOI: 10.1016/j.ijbiomac.2022.01.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 11/05/2022]
Abstract
Though the retrogradation property as affected by starch fine molecular structures has been widely investigated, it remains largely unexplored how concurrent starch structures and storage conditions e.g. temperature tailor the starch retrogradation property. The amylopectin long-term retrogradation for 8 different rice starches with a broad range of amylose content was thus investigated under different storage temperatures. Results showed that gelatinized starch stored at -20 °C generally had a narrower melting temperature range from differential scanning calorimetry, while larger cells and thicker cell walls in the gel matrix than that stored at 4 °C. Different linear correlations were found between starch fine molecular structures and amylopectin retrogradation parameters when starch was stored under different temperatures. For example, the melting enthalpy of retrograded starch double helices was negatively correlated with the amount of amylose intermediate chains at 4 °C, while positively correlated with the relative length of amylopectin short chains at -20 °C. Under both temperatures, rice starch R250 had the highest retrogradation enthalpy. These results could help the rice industry improve both the nutritional and textural attributes of cooked rice by selecting starch with desirable molecular structures and optimizing the storage conditions for rice after cooking.
Collapse
Affiliation(s)
- Enpeng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyan Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, Jiangsu Province, China.
| |
Collapse
|