1
|
Xue X, Qi Z, Wang Z, Tao R, Zhou H, Chen H, Lei J, Wang C. Urushiol-dextran SPIONs magnetic recyclable nanoparticles immobilizing vancomycin (V@DU@Fe) for antibacterial application. Int J Biol Macromol 2025; 304:140847. [PMID: 39954904 DOI: 10.1016/j.ijbiomac.2025.140847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
In this study, magnetic nanocarriers (DU@Fe, Davg = 281.6 nm, zeta potential -28.0 mV) were fabricated using dextran, urushiol as the shell and superparamagnetic iron oxide nanoparticles (SPIONs) as the core. Subsequently, the specific ligand Lys-D-Ala-D-Ala of vancomycin (Van) was grafted onto the surface of DU@Fe, which generated nanoparticles (Lys-D-Ala-D-Ala@DU@Fe) with an average particle size of 385.5 nm and a zeta potential of -16.8 mV via specific and robust interaction. Ultimately, the immobilization capacity of Van reached up to 294.1 mg·g-1 for efficient antibacterial properties. Moreover, the assembly process adhered to the pseudo-second-order kinetics model (R2 = 0.998-0.999) and the Langmuir adsorption isotherm model (R2 = 0.999, 30 °C). Notably, V@DU@Fe effectively adhered to the cell envelopes of both Gram-negative and Gram-positive bacteria, achieving rapid bactericidal effects within 1 h. Furthermore, it maintained over 85.0 % of its initial antibacterial efficiency against S. aureus and S. epidermidis even after six recycles. Therefore, this study provides strategies and methods for the development of urushiol-dextran intelligent SPIONs nanomedicines.
Collapse
Affiliation(s)
- Xingying Xue
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China; Key Lab. of Biomass Energy and Material, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Zhiwen Qi
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Key Lab. of Biomass Energy and Material, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu, People's Republic of China.
| | - Zhihong Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, People's Republic of China
| | - Ran Tao
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Key Lab. of Biomass Energy and Material, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Hao Zhou
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Key Lab. of Biomass Energy and Material, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Hongxia Chen
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Key Lab. of Biomass Energy and Material, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Jiandu Lei
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Chengzhang Wang
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Key Lab. of Biomass Energy and Material, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Nazir M, Jhan F, Gani A, Gani A. Fabrication of millet starch nanocapsules loaded with beta carotene using acid hydrolysis and ultrasonication: Characterisation, release behaviour and bioactivity retention. ULTRASONICS SONOCHEMISTRY 2024; 111:107112. [PMID: 39447532 PMCID: PMC11539498 DOI: 10.1016/j.ultsonch.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The acid hydrolysis process was used to create novel millet starch-based nanoparticles from three different sources: sorghum, foxtail millet and pearl millet. An environment-friendly, risk-free ultrasonication technique was used for encapsulating beta carotene in starch nanoparticles to create nanocapsules that will shield the bioactivity of beta carotene in gastrointestinal conditions and increase its accessibility after consumption. Formulated nanocapsules were examined for zeta potential, particle size and encapsulation efficiency. The particle dimensions of beta carotene-loaded sorghum (SSB), foxtail millet (FSB), and pearl millet (PSB) starch nanoparticles were 416, 399 and 587 nm with zeta potential of -17.98, -19.03 and -22.31 mV respectively. Encapsulation efficiencies of nanocapsules were found to be 85.83, 89.65 and 78.32 % for SSB, FSB and PSB respectively. Scanning electron microscopy (SEM) was also harnessed as a confirmatory tests towards the presence of beta carotene in nanocapsules. Beta carotene encapsulation in starch nanoparticles was also demonstrated using ATR-FTIR which revealed broad characteristic peaks at 3000, 1086 and 885 cm-1 that occur without any discernible interaction. Intestinal juice with higher beta carotene content ensured controlled release in the intestine. Encapsulated beta carotene showed more bioactive properties in terms of antioxidant activity as compared to free beta carotene form.
Collapse
Affiliation(s)
- Mehak Nazir
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Faiza Jhan
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Asir Gani
- School of Bioengineering and Food Technology, Shoolni University, Solan, Himachal Pradesh 173229, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
3
|
Zhao K, Zhang S, Piao C, Xu F, Zhang Y, Wang X, Zhang J, Zhao C, You SG, Zhang Y. Investigation of the formation mechanism of the pepper starch-piperine complex. Int J Biol Macromol 2024; 268:131777. [PMID: 38663710 DOI: 10.1016/j.ijbiomac.2024.131777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
In this study, a new carrier for loading piperine was prepared using pepper starch, and its interaction mechanism was investigated. The porous pepper starch-piperine complex (PPS-PIP) showed higher loading efficiency (76.15 %) compared to the porous corn starch-piperine complex (PCS-PIP (52.34 %)). This may be ascribed to the hemispherical shell structure of porous pepper starch (PPS) compared to the porous structure of porous corn starch (PCS) based on the SEM result. PPS-PIP had smaller particle size (10.53 μm), higher relative crystallinity (38.95 %), and better thermal stability (87.45 °C) than PCS-PIP (17.37 μm, 32.17 %, 74.35 °C). Fourier transform infrared spectroscopy (FTIR) results implied that piperine not only forms a complex with amylose but may also be physically present in porous starch. This was demonstrated by the short-range order and X-ray type. Molecular dynamics simulations confirmed that hydrogen bonding is the primary interaction between amylose and piperine. Besides the formation of the amylose-piperine complex, some of the piperine is also present in physical form.
Collapse
Affiliation(s)
- Kangyun Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Siwei Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Chunhong Piao
- School of Food and Pharmaceutical Engineering (Guangxi Liubao Tea Modern Industry College), Wuzhou University, Wuzhou 543002, China
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Yutong Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Xu Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Jiyue Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China
| | - Chunxia Zhao
- The second middle school of bachu county, Kashgar 843899, China
| | - Sang Guan You
- Department of Marine Food Science and Technology, East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Hainan 571533, China; National Tropical Plant Germplasm Resource Bank Sub-bank of Woody Grain Germplasm Resources, Hainan 571533, China.
| |
Collapse
|
4
|
Lin Q, Si Y, Zhou F, Hao W, Zhang P, Jiang P, Cha R. Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydr Polym 2024; 323:121414. [PMID: 37940247 DOI: 10.1016/j.carbpol.2023.121414] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Collapse
Affiliation(s)
- Qianqian Lin
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China; Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| | - Yanxue Si
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Pai Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Peng Jiang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China; College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
5
|
Zhao D, Li Z, Xia J, Kang Y, Sun P, Xiao Z, Niu Y. Research progress of starch as microencapsulated wall material. Carbohydr Polym 2023; 318:121118. [PMID: 37479436 DOI: 10.1016/j.carbpol.2023.121118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Starch is non-toxic, low cost, and possesses good biocompatibility and biodegradability. As a natural polymer material, starch is an ideal choice for microcapsule wall materials. Starch-based microcapsules have a wide range of applications and application prospects in fields such as food, pharmaceuticals, cosmetics, and others. This paper firstly reviews the commonly used wall materials and preparation methods of starch-based microcapsules. Then the effect of starch wall materials on microcapsule properties is introduced in detail. It is expected to provide researchers with design inspiration and ideas for the development of starch-based microcapsules. Next the applications of starch-based microcapsules in various fields are presented. Finally, the future trends of starch-based microcapsules are discussed. Molecular simulation, green chemistry, and solutions to the main problems faced by resistant starch microcapsules may be the future research trends of starch-based microcapsules.
Collapse
Affiliation(s)
- Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Zhibin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Jiayi Xia
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
6
|
Jiali L, Wu Z, Liu L, Yang J, Wang L, Li Z, Liu L. The research advance of resistant starch: structural characteristics, modification method, immunomodulatory function, and its delivery systems application. Crit Rev Food Sci Nutr 2023; 64:10885-10902. [PMID: 37409451 DOI: 10.1080/10408398.2023.2230287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Resistant starch, also known as anti-digestion enzymatic starch, which cannot be digested or absorbed in the human small intestine. It can be fermented in the large intestine into short-chain fatty acids (SCFAs) and metabolites, which are advantageous to the human body. Starches can classify as rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS), which possess high thermal stability, low water holding capacity, and emulsification characteristics. Resistant starch has excellent physiological functions such as stabilizing postprandial blood glucose levels, preventing type II diabetes, preventing intestinal inflammation, and regulating gut microbiota phenotype. It is extensively utilized in food processing, delivery system construction, and Pickering emulsion due to its processing properties. The resistant starches, with their higher resistance to enzymatic hydrolysis, support their suitability as a potential drug carrier. Therefore, this review focuses on resistant starch with structural features, modification characteristics, immunomodulatory functions, and delivery system applications. The objective was to provide theoretical guidance for applying of resistant starch to food health related industries.
Collapse
Affiliation(s)
- Li Jiali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Lingyi Liu
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Junsi Yang
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Siddiqui SA, Ullah Farooqi MQ, Bhowmik S, Zahra Z, Mahmud MC, Assadpour E, Gan RY, Kharazmi MS, Jafari SM. Application of micro/nano-fluidics for encapsulation of food bioactive compounds - principles, applications, and challenges. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Frachini ECG, Selva JSG, Falcoswki PC, Silva JB, Cornejo DR, Bertotti M, Ulrich H, Petri DFS. Caffeine Release from Magneto-Responsive Hydrogels Controlled by External Magnetic Field and Calcium Ions and Its Effect on the Viability of Neuronal Cells. Polymers (Basel) 2023; 15:polym15071757. [PMID: 37050372 PMCID: PMC10097041 DOI: 10.3390/polym15071757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Caffeine (CAF) is a psychostimulant present in many beverages and with rapid bioabsorption. For this reason, matrices that effectuate the sustained release of a low amount of CAF would help reduce the intake frequency and side effects caused by high doses of this stimulant. Thus, in this study, CAF was loaded into magnetic gelatin/alginate (Gel/Alg/MNP) hydrogels at 18.5 mg/ghydrogel. The in vitro release of CAF was evaluated in the absence and presence of an external magnetic field (EMF) and Ca2+. In all cases, the presence of Ca2+ (0.002 M) retarded the release of CAF due to favorable interactions between them. Remarkably, the release of CAF from Gel/Alg/MNP in PBS/CaCl2 (0.002 M) at 37 °C under an EMF was more sustained due to synergic effects. In PBS/CaCl2 (0.002 M) and at 37 °C, the amounts of CAF released after 45 min from Gel/Alg and Gel/Alg/MNP/EMF were 8.3 ± 0.2 mg/ghydrogel and 6.1 ± 0.8 mg/ghydrogel, respectively. The concentration of CAF released from Gel/Alg and Gel/Alg/MNP hydrogels amounted to ~0.35 mM, thereby promoting an increase in cell viability for 48 h. Gel/Alg and Gel/Alg/MNP hydrogels can be applied as reservoirs to release CAF at suitable concentrations, thus forestalling possible side effects and improving the viability of SH-SY5Y cells.
Collapse
Affiliation(s)
- Emilli C. G. Frachini
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jéssica S. G. Selva
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Paula C. Falcoswki
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jean B. Silva
- Departament of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Daniel R. Cornejo
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Mauro Bertotti
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Henning Ulrich
- Departament of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Denise F. S. Petri
- Departament of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
9
|
Kazemianrad F, Koocheki A, Ghorani B. Encapsulation of caffeine in sandwich structured Alyssum homolocarpum seed gum/PVA/gelatin nanofibers using electrospinning technique. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
10
|
Noor N, Jhan F, Gani A, Raina IA, Shah MA. Nutraceutical and toxicological evaluation of hydrogels architected using resistant starch nanoparticles and gum acacia for controlled release of kaempferol. FOOD STRUCTURE 2022. [DOI: 10.1016/j.foostr.2022.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Ruggiero M, Calvello R, Porro C, Messina G, Cianciulli A, Panaro MA. Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? Int J Mol Sci 2022; 23:ijms232112958. [PMID: 36361750 PMCID: PMC9658704 DOI: 10.3390/ijms232112958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been considerable research showing that coffee consumption seems to be beneficial to human health, as it contains a mixture of different bioactive compounds such as chlorogenic acids, caffeic acid, alkaloids, diterpenes and polyphenols. Neurodegenerative diseases (NDs) are debilitating, and non-curable diseases associated with impaired central, peripheral and muscle nervous systems. Several studies demonstrate that neuroinflammation mediated by glial cells—such as microglia and astrocytes—is a critical factor contributing to neurodegeneration that causes the dysfunction of brain homeostasis, resulting in a progressive loss of structure, function, and number of neuronal cells. This happens over time and leads to brain damage and physical impairment. The most known chronic NDs are represented by Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD). According to epidemiological studies, regular coffee consumption is associated with a lower risk of neurodegenerative diseases. In this review, we summarize the latest research about the potential effects of caffeine in neurodegenerative disorders prevention and discuss the role of controlled caffeine delivery systems in maintaining high plasma caffeine concentrations for an extended time.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
12
|
Noor N, Gani A, Jhan F, Ashraf Shah M, Ul Ashraf Z. Ferulic acid loaded pickering emulsions stabilized by resistant starch nanoparticles using ultrasonication: Characterization, in vitro release and nutraceutical potential. ULTRASONICS SONOCHEMISTRY 2022; 84:105967. [PMID: 35279632 PMCID: PMC8915016 DOI: 10.1016/j.ultsonch.2022.105967] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 05/17/2023]
Abstract
The use of starch based nanoparticles have gained momentum in stabilizing pickering emulsions for it's numerous advantages. In present study resistant starch (RS) was isolated from lotus stem using enzymatic digestion and subjected to nanoprecipitation and ultrasonication to yield resistant starch nanoparticles (RSN). RSN of varying concentrations (2%, 10% and 20%) were used to stabilize the flax seed-oil water mixture to form pickering emulsions. The emulsions were used to nanoencapsulate ferulic acid (FA) - a well known bioactive via ultrasonication. The emulsions were lyophilized to form FA loaded lyophilized pickering emulsion (FA-LPE). The FA-LPE (2%, 10 % and 20%) were characterized using dynamic light scattering (DLS), light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and attenuated total reflectance fourier transform infra-spectroscopy (ATR-FTIR). AFM showed FA-LPE as spherical droplets embedded in the matrix with maximum peak height of 8.47 nm and maximum pit height of 1.69 nm. SEM presented FA-LPE as an irregular and continuous surface having multiple folds and holes. The ATR-FTIR spectra of all the samples displayed peaks of C = C aromatic rings of FA at 1600 cm-1 and 1439 cm-1, signifying successful encapsulation. In vitro release assay displayed more controlled release of FA from FA-LPE (20%). Bioactivity of FA-LPE was evaluated in terms of anti-cancer, anti-diabetic, angiotensin converting enzyme (ACE) inhibition and prevention against oxidative damage under simulated gastro-intestinal conditions (SGID). The bioactivity of FA-LPE (20%) was significantly higher than FA-LPE (2%) and FA-LPE (10%). Key findings reveal that pickering emulsions can prevent FA under harsh SGID conditions and provide an approach to facilitate the design of pickering emulsions with high stability for nutraceutical delivery in food and supplement products.
Collapse
Affiliation(s)
- Nairah Noor
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Faiza Jhan
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Mohammad Ashraf Shah
- Special Centre for Nano-sciences, National Institute of Technology, Srinagar 190006, India
| | - Zanoor Ul Ashraf
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
13
|
Araújo D, Rodrigues T, Alves VD, Freitas F. Chitin-Glucan Complex Hydrogels: Optimization of Gel Formation and Demonstration of Drug Loading and Release Ability. Polymers (Basel) 2022; 14:785. [PMID: 35215701 PMCID: PMC8877193 DOI: 10.3390/polym14040785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Chitin-glucan complex (CGC) hydrogels were fabricated through a freeze-thaw procedure for biopolymer dissolution in NaOH 5 mol/L, followed by a dialysis step to promote gelation. Compared to a previously reported methodology that included four freeze-thaw cycles, reducing the number of cycles to one had no significant impact on the hydrogels' formation, as well as reducing the total freezing time from 48 to 18 h. The optimized CGC hydrogels exhibited a high and nearly spontaneous swelling ratio (2528 ± 68%) and a water retention capacity of 55 ± 3%, after 2 h incubation in water, at 37 °C. Upon loading with caffeine as a model drug, an enhancement of the mechanical and rheological properties of the hydrogels was achieved. In particular, the compressive modulus was improved from 23.0 ± 0.89 to 120.0 ± 61.64 kPa and the storage modulus increased from 149.9 ± 9.8 to 315.0 ± 76.7 kPa. Although the release profile of caffeine was similar in PBS and NaCl 0.9% solutions, the release rate was influenced by the solutions' pH and ionic strength, being faster in the NaCl solution. These results highlight the potential of CGC based hydrogels as promising structures to be used as drug delivery devices in biomedical applications.
Collapse
Affiliation(s)
- Diana Araújo
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Thomas Rodrigues
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food Research Center, Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Filomena Freitas
- Associate Laboratory i4HB, School of Science and Technology, Institute for Health and Bioeconomy, NOVA University Lisbon, 2819-516 Caparica, Portugal; (D.A.); (T.R.)
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
14
|
Gani A, Noor N, Gani A, J.L.H J, Shah A, Ashraf ZU. Extraction of protein from churpi of yak milk origin: Size reduction, nutraceutical potential and as a wall material for resveratrol. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Joseph-Leenose-Helen J, Noor N, Mushtaq M, Gani A. Ultrasonics as a tool for development of pine-needle extract loaded bee wax edible packaging for value addition of Himalayan cheese. ULTRASONICS SONOCHEMISTRY 2022; 82:105914. [PMID: 35063728 PMCID: PMC8784324 DOI: 10.1016/j.ultsonch.2022.105914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 05/28/2023]
Abstract
In the present study, Himalayan cheese, kradi was coated with beeswax loaded with pine needle extract (PNE) to increase its shelf life and nutraceutical potential. PNE was extracted via ultrasonication and incorporated into beeswax at concentrations, 2:1, 1:1, and 2:3 (grams of beeswax to mL of PNE). The dispersion of PNE in the coatings was carried out using an ultrasonic probe at a frequency of 20 kHz for 15 min and at power rating of 500 W. The coatings were characterised using scanning electron microscopy, light microscopy, dynamic light scattering (DLS), fourier transmission infrared spectroscopy. DLS revealed a hydrodynamic diameter and zeta potential of 12.11 ± 0.41 µm and -19.32 ± 0.61 mV for coating loaded with highest concentration of PNE. The bioactivities of the coating including antioxidant, antidiabetic and antibacterial assays revealed significantly higher values with the increase in PNE concentration. Shelf life and sensory evaluation study including microbiological and sensory analysis revealed inhibition of mould growth and good score of texture and appearance with the increase in concentration of PNE. The study provides a future perspective for application of beeswax loaded PNE coatings in cheese industry.
Collapse
Affiliation(s)
| | - Nairah Noor
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Mehvesh Mushtaq
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
16
|
Fonseca LR, Santos TP, Czaikoski A, Cunha RL. Microfluidics-based production of chitosan-gellan nanocomplexes encapsulating caffeine. Food Res Int 2022; 151:110885. [PMID: 34980412 DOI: 10.1016/j.foodres.2021.110885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022]
Abstract
Electrostatic complexes produced by interactions between polysaccharides have promising applications in the medical, pharmaceutical and food fields. In this light, for the development of such particles, microfluidics emerges as a promising technique in which processes occur at a strict laminar flow regime, allowing diffusion-dominated transport and particle formation in highly-controlled conditions. As a proof of concept, we compared bulk versus microfluidic (different devices simulating a range of residence times) processes for the production of electrostatic complexes of gellan with either chitosan (molecular weight ∼ 28 kDa) or hydrolyzed chitosan (molecular weight ∼ 3 kDa). Regardless of the process, polysaccharide solutions (pH 4.5) were mixed in pre-defined concentrations (polysaccharide ratios) to form electrostatic complexes that were used to encapsulate caffeine. These complexes were characterized by zeta potential measurements and particle size distribution. Overall, microfluidics produced complexes with improved characteristics such as lower polydispersity index (PDI ∼ 0.1) and mean size (∼200 nm) when compared to the conventional bulk process (PDI ∼ 0.3 and mean size ∼ 400 nm). Moreover, hydrolyzed chitosan (HC) contributed to an even smaller size and PDI value of the complexes. Such outcome is associated with the lower molecular weight and higher solubility of HC when comparing to conventional chitosan, which in turn improves electrostatic complexation. Caffeine could also be encapsulated in all complexes, but the highest encapsulation efficiency was achieved using microfluidics (70%) and with the geometry that provided a longer residence time. Therefore, we were able to demonstrate that microfluidics is clearly an effective strategy for generating electrostatic complexes with improved properties. Ultimately, this technique demonstrated a high potential for the production of vehicles of bioactive compounds.
Collapse
Affiliation(s)
- Larissa Ribas Fonseca
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Tatiana Porto Santos
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Aline Czaikoski
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
17
|
Starch-based materials encapsulating food ingredients: Recent advances in fabrication methods and applications. Carbohydr Polym 2021; 270:118358. [PMID: 34364603 DOI: 10.1016/j.carbpol.2021.118358] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Encapsulation systems have gained significant interest in designing innovative foods, as they allow for the protection and delivery of food ingredients that have health benefits but are unstable during processing, storage and in the upper gastrointestinal tract. Starch is widely available, cheap, biodegradable, edible, and easy to be modified, thus highly suitable for the development of encapsulants. Much efforts have been made to fabricate various types of porous starch and starch particles using different techniques (e.g. enzymatic hydrolysis, aggregation, emulsification, electrohydrodynamic process, supercritical fluid process, and post-processing drying). Such starch-based systems can load, protect, and deliver various food ingredients (e.g. fatty acids, phenolic compounds, carotenoids, flavors, essential oils, irons, vitamins, probiotics, bacteriocins, co-enzymes, and caffeine), exhibiting great potentials in developing foods with tailored flavor, nutrition, sensory properties, and shelf-life. This review surveys recent advances in different aspects of starch-based encapsulation systems including their forms, manufacturing techniques, and applications in foods.
Collapse
|
18
|
Seyedabadi MM, Rostami H, Jafari SM, Fathi M. Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100857] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Noor N, Gani A, Gani A, Shah A, Ashraf ZU. Exploitation of polyphenols and proteins using nanoencapsulation for anti-viral and brain boosting properties - Evoking a synergistic strategy to combat COVID-19 pandemic. Int J Biol Macromol 2021; 180:375-384. [PMID: 33716131 PMCID: PMC7946821 DOI: 10.1016/j.ijbiomac.2021.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
The world is currently under the threat of COVID pandemic and has focused every dimension of research in finding a cure to this novel disease. In this current situation, people are facing mental stress, agony, fear, depression and other associated symptoms which are taking a toll on their overall mental health. Nanoencapsulation of certain brain boosting polyphenols including quercetin, caffeine, cocoa flavanols and proteins like lectins can become new area of interest in the present scenario. Besides the brain boosting benefits, we have also highlighted the anti- viral activities of these compounds which we assume can play a possible role in combating COVID-19 given to their previous history of action against certain viruses. This review outlines the nanoencapsulation approaches of such synergistic compounds as a novel strategy to take the ongoing research a step ahead and also provides a new insight in bringing the role of nanotechnology in addressing the issues related to COVID pandemic.
Collapse
Affiliation(s)
- Nairah Noor
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Adil Gani
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India; Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| | - Asir Gani
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Asima Shah
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Zanoor Ul Ashraf
- Laboratory of Functional Food and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
20
|
Jhan F, Gani A, Noor N, Ashraf ZU, Gani A, Shah A. Characterisation and utilisation of nano-reduced starch from underutilised cereals for delivery of folic acid through human GI tract. Sci Rep 2021; 11:4873. [PMID: 33649366 PMCID: PMC7921593 DOI: 10.1038/s41598-021-81623-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 12/02/2022] Open
Abstract
Ball milling offers green approach for size reduction of starch granules to nano scale size. In this research work, the starch from two underutilised cereal varieties viz. foxtail starch (FS) and sorghum starch (SS) were milled to achieve the desired nanometric range with mean particle diameter of 467.98 and 271.12 nm for nano foxtail (FSN) and nano sorghum starch (SSN), which were highly stable as revealed by zeta potential analysis. Functional attributes like solubility, swelling index, apparent amylose content, emulsifying and pasting properties were evaluated. Scanning electron microscopy (SEM) clearly revealed damaged starch granules produed by the process of milling. X-ray diffraction (XRD) displayed decrease in crystallinity upon milling to 16.08% (SSN) and 18.56% (FSN) and disappearance of some peaks. Attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) also revealed reduced crystallinity as confirmed by the decreased absorbance ratio of 1047/1022 cm-1 in nano starch particles. Rheological analysis displayed shear thinning behaviour of nano starch samples as evaluated using Herschel-bulkely model and Power law. The nano starch samples exhibited comparatively low thermal gelatinisation temperatures as compared to native counter particles. Moreover, the nano-encapsulated starch samples offered more resistance to in-vitro digestion and showed control release of folic acid at target sites.
Collapse
Affiliation(s)
- Faiza Jhan
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190006, India
| | - Asir Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190006, India
| | - Nairah Noor
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190006, India
| | - Zanoor Ul Ashraf
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190006, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190006, India.
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, USA.
| | - Asima Shah
- Department of Food Science and Technology, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
21
|
Shao M, Li S, Tan CP, Kraithong S, Gao Q, Fu X, Zhang B, Huang Q. Encapsulation of caffeine into starch matrices: Bitterness evaluation and suppression mechanism. Int J Biol Macromol 2021; 173:118-127. [PMID: 33444656 DOI: 10.1016/j.ijbiomac.2021.01.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/13/2020] [Accepted: 01/07/2021] [Indexed: 01/13/2023]
Abstract
In this study, caffeine (CA) was encapsulated into food-grade starch matrices, including swelled starch (SS), porous starch (PS), and V-type starch (VS). The bitterness of the microcapsules and suppression mechanisms were investigated using an electronic tongue, molecular dynamics (MD) simulation and the in vitro release kinetics of CA. All the CA-loaded microcapsules showed a lower bitterness intensity than the control. The MD results proved that the weak interactions between starch and CA resulted in a moderate CA release rate for SS-CA microcapsules. The PS-CA microcapsule presented the longest CA release, up to 40 min, whereas the VS-CA microcapsule completely released CA in 9 min. The CA release rate was found to be related to the microcapsule structure and rehydration properties. A low CA bitterness intensity could be attributed to a delay in the CA release rate and resistance to erosion of the microcapsules. The results of this work are valuable for improving starch-based microcapsules (oral-targeted drug-delivery systems) by suppressing the bitterness of alkaloid compounds.
Collapse
Affiliation(s)
- Miao Shao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Songnan Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Supaluck Kraithong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Gao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Sino-Singapore International Joint Research Institute, Guangzhou 511363, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
22
|
Novel strategy for encapsulation and targeted delivery of poorly water‐soluble active substances. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Furtado LM, Hilamatu KC, Balaji K, Ando RA, Petri DF. Miscibility and sustained release of drug from cellulose acetate butyrate/caffeine films. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Artusio F, Ferri A, Gigante V, Massella D, Mazzarino I, Sangermano M, Barresi A, Pisano R. Synthesis of high payload nanohydrogels for the ecapsulation of hydrophilic molecules via inverse miniemulsion polymerization: caffeine as a case study. Drug Dev Ind Pharm 2019; 45:1862-1870. [PMID: 31549528 DOI: 10.1080/03639045.2019.1672714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The association of an active principle with a nanocarrier is known to improve its stability and protect it from external factors. Nevertheless, loading of nanoparticles with highly hydrophilic substances like caffeine remains a tricky issue. In the present study, inverse miniemulsion systems were successfully coupled to UV radiation to synthesize polymeric nanohydrogels for drug delivery. The proper choice of the continuous and dispersed phase chemical composition led to the entrapment of active principle into the miniemulsion droplets. Our confinement-based strategy enabled unprecedented caffeine encapsulation efficiency inside 100-nm particles. Dimensional, thermal, and spectroscopic characterizations were carried out to investigate both unloaded and loaded nanohydrogels. Furthermore, in vitro release studies evaluated caffeine release kinetics from nanohydrogels by means of dialysis tests. It was demonstrated that controlled and sustained release occurred within the first 50 hours. Experimental data were found to fit the Higuchi model suggesting that the active principle release is diffusion controlled.
Collapse
Affiliation(s)
- Fiora Artusio
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Valeria Gigante
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Daniele Massella
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Italo Mazzarino
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Antonello Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| |
Collapse
|
25
|
Fabrication of antimicrobial composite films based on xylan from pulping process for food packaging. Int J Biol Macromol 2019; 134:122-130. [DOI: 10.1016/j.ijbiomac.2019.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 11/23/2022]
|
26
|
Barroso AG, del Mastro NL. Physicochemical characterization of irradiated arrowroot starch. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Cereal biopolymers for nano- and microtechnology: A myriad of opportunities for novel (functional) food applications. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|