1
|
Xiao Z, Zhou L, Sun P, Li Z, Kang Y, Guo M, Niu Y, Zhao D. Regulation of mechanical properties of microcapsules and their applications. J Control Release 2024; 375:90-104. [PMID: 39233280 DOI: 10.1016/j.jconrel.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Microcapsules encapsulating payloads are one of the most promising delivery methods. The mechanical properties of microcapsules often determine their application scenarios. For example, microcapsules with low mechanical strength are more widely used in biomedical applications due to their superior biocompatibility, softness, and deformability. In contrast, microcapsules with high mechanical strength are often mixed into the matrix to enhance the material. Therefore, characterizing and regulating the mechanical properties of microcapsules is essential for their design optimization. This paper first outlines four methods for the mechanical characterization of microcapsules: nanoindentation technology, parallel plate compression technology, microcapillary technology, and deformation in flow. Subsequently, the mechanisms of regulating the mechanical properties of microcapsules and the progress of applying microcapsules with different degrees of softness and hardness in food, textile, and pharmaceutical formulations are discussed. These regulation mechanisms primarily include altering size and morphology, introducing sacrificial bonds, and construction of hybrid shells. Finally, we envision the future applications and research directions for microcapsules with tunable mechanical properties.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Liyuan Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zhibin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Mengxue Guo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
2
|
Tian J, Chen J, Wang P, Kang S, Guo J, Zhu W, Jin Y, Song J, Rojas OJ. Pickering emulsion stabilization with colloidal lignin is enhanced by salt-induced networking in the aqueous phase. Int J Biol Macromol 2024; 274:133504. [PMID: 38944069 DOI: 10.1016/j.ijbiomac.2024.133504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
We study the effect of electrolytes on the stability in aqueous media of spherical lignin particles (LP) and its relevance to Pickering emulsion stabilization. Factors considered included the role of ionic strength on morphology development, LP size distribution, surface charge, interfacial adsorption, colloidal and wetting behaviors. Stable emulsions are formed at salt concentrations as low as 50 mM, with the highest stability observed at a critical concentration (400 mM). We show salt-induced destabilization of LP aqueous dispersions at an ionic strength >400 mM. At this critical concentration LP flocculation takes place and particulate networks are formed. This has a profound consequence on the stability of LP-stabilized Pickering emulsions, affecting rheology and long-term stability. The results along with quartz microgravimetry and confocal microscopy observations suggest a possible mechanism for stabilization that considers the interfacial adsorption of LP at oil/water interfaces. The often-unwanted colloidal LP destabilization in water ensues remarkably stable Pickering emulsions by the effect of network formation.
Collapse
Affiliation(s)
- Jing Tian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Shandong laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 26400, China
| | - Jingqian Chen
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Peipei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shaomin Kang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; Department of Chemistry, 2036 Main Mall. Vancouver, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
3
|
Nuamah F, Tulashie SK, Debrah JS. Assessing contamination of microplastics in the Ghanaian coastal sea using a self-constructed LADI trawl. MARINE POLLUTION BULLETIN 2022; 182:114006. [PMID: 35939935 DOI: 10.1016/j.marpolbul.2022.114006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Almost everywhere in the marine ecosystem contains microplastics. Although their environmental contamination is a global problem, relatively little is known about their distribution and abundance in the Gulf of Guinea. This study looked at the spatial dynamics of microplastics in the sea surface water off the coast of Ghana. Four chosen areas were found to have non-variable concentrations ranging from 1.14 to 2.79 particles m-3 using a self-constructed Low-Tech Aquatic Debris Instrument (LADI) trawl (333 μm mesh). The most abundant shapes were fragments and pellets, while the most common colors were colored and transparent particles. The polymer types found in the microplastics selected for investigation using Fourier Transform Infrared spectroscopy in Attenuated Total Reflectance mode (ATR-FT-IR) were Polypropylene, Polyethylene, and Polystyrene. These results provide an important baseline on microplastic pollution along the Ghanaian coast suggesting the LADI trawl as an accurate quantitative sampling tool for microplastics from sea surface water.
Collapse
Affiliation(s)
- Francis Nuamah
- Centre for Coastal Management-Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Kofi Tulashie
- Centre for Coastal Management-Africa Centre of Excellence in Coastal Resilience, University of Cape Coast, Cape Coast, Ghana; University of Cape Coast, College of Agriculture and Natural Sciences, School of Physical Sciences, Chemistry Department, Industrial Chemistry Unit, Cape Coast, Ghana.
| | - Joseph Sefah Debrah
- University of Cape Coast, College of Agriculture and Natural Sciences, School of Biological Sciences, Department of Fisheries and Aquatic Sciences, Cape Coast, Ghana
| |
Collapse
|
4
|
Gorroñogoitia I, Urtaza U, Zubiarrain-Laserna A, Alonso-Varona A, Zaldua AM. A Study of the Printability of Alginate-Based Bioinks by 3D Bioprinting for Articular Cartilage Tissue Engineering. Polymers (Basel) 2022; 14:354. [PMID: 35054760 PMCID: PMC8778016 DOI: 10.3390/polym14020354] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional bioprinting combined with natural hydrogels is a promising technology for the treatment of several pathologies and different tissue regeneration. One of the most studied tissues is cartilage, a complex and avascular tissue that displays a limited self-repair capacity after injuries. Herein, the development of alginate-based hydrogels and scaffolds containing different microstructure is presented and the printability of alginate by 3D bioprinting is studied. Rheological characterization was performed for the determination of viscosity and viscoelastic properties of hydrogels and mechanical characterization was carried out for the determination of compressive modulus of alginate hydrogels. All these characteristics were correlated with alginate behaviour during 3D bioprinting process. For the printability evaluation filament diameter, perimeter of the pores, area of the pores and shrinkage of alginate scaffolds were measured. The results demonstrate that alginate microstructure has a great influence on its printability and on hydrogels' physicochemical properties. Molecular weight of alginate determines its viscosity while M/G ratio determines cross-linking conditions and mechanical properties that vary with cross-linking density. These results suggest the importance of an exhaustive control of the viscoelastic and mechanical properties of alginate hydrogels to obtain structures with high resolution and precision.
Collapse
Affiliation(s)
- Izar Gorroñogoitia
- Leartiker S. Coop., 48270 Makina-Xemein, Spain; (I.G.); (U.U.); (A.Z.-L.)
- Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Uzuri Urtaza
- Leartiker S. Coop., 48270 Makina-Xemein, Spain; (I.G.); (U.U.); (A.Z.-L.)
| | | | - Ana Alonso-Varona
- Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Ane Miren Zaldua
- Leartiker S. Coop., 48270 Makina-Xemein, Spain; (I.G.); (U.U.); (A.Z.-L.)
| |
Collapse
|
5
|
Liu Y, Qiao L, Wang A, Li Y, Zhao L, Du K. Tentacle-type poly(hydroxamic acid)-modified macroporous cellulose beads: Synthesis, characterization, and application for heavy metal ions adsorption. J Chromatogr A 2021; 1645:462098. [PMID: 33848662 DOI: 10.1016/j.chroma.2021.462098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
Herein, a facile yet efficient template method to fabricate macroporous cellulose beads (MCBs) is reported. In this method, micro-size CaCO3 is utilized to create macroporous structure for fast mass transfer, and tentacle-type poly(hydroxamic acid) as adsorption ligand is immobilized on the MCBs to improve adsorption capacity. The obtained tentacle-type poly(hydroxamic acid)-modified MCMs (TP-CMCBs) show uniform spherical shape (about 80 μm), bimodal pore system (macropores≈3.0 μm; diffusional pores≈14.5 nm), and high specific surface area (52.7 m2/g). The adsorption performance of TP-CMCBs is evaluated by heavy metal ions adsorption. TP-CMCBs exhibit not only high adsorption capacities (342.5, 261.5 and 243.2 mg/g for Cu2+, Mn2+ and Ni2+, respectively.), but also fast adsorption rate (>70% of its equilibrium uptake within 30 min). Additionally, TP-CMCBs have excellent reusability, as evidenced by that the adsorption capacities have no obvious change even after five-time consecutive adsorption-desorption cycles. All results demonstrate that the proposed TP-CMCBs have great potential in removal of heavy metal ions.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liangzhi Qiao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Anjing Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yaling Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liangshen Zhao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
6
|
Li C, Wang X, Liu K, Zhu L, Wei N, Zong C, Li D. Pelagic microplastics in surface water of the Eastern Indian Ocean during monsoon transition period: Abundance, distribution, and characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142629. [PMID: 33049524 DOI: 10.1016/j.scitotenv.2020.142629] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) have been documented in almost all marine environments, including coastal regions, the open ocean, and the deep sea. However, relatively little knowledge was available about MP pollution in the open ocean, especially the Indian Ocean. We conducted field observations at 36 stations in the Eastern Indian Ocean (EIO), using a typical manta trawl with a mesh size of 330 μm for surface water sampling. Ours is the first study to obtained comprehensive and comparable baseline data about MPs in the EIO, including abundance, spatial distribution and characteristics. Abundance of MPs in the EIO varied from 0.01 items m-2 to 4.53 items m-2, with an average concentration of 0.34 ± 0.80 item m-2. The mean concentration of MPs in the Bay of Bengal (BoB) was 2.04 ± 2.26 items m-2 and 0.16 ± 0.17 items m-2 in the open ocean of the EIO. These results illustrate the high spatial heterogeneity of MPs distribution. Micro-FTIR analysis of polymer composition showed that the vast majority of MPs consisted of polypropylene (PP, 51.11%) and polyethylene (PE, 20.07%). Our data show that MP pollution in the EIO, whether in the epeiric sea or the open ocean, is among the highest of the world's oceans. The BoB is likely to become a MP hotspot due to the vast input of land-based plastics and the presence of multiscale recirculation gyres. These results are absolutely thought provoking: The EIO needs more attention on MPs.
Collapse
Affiliation(s)
- Changjun Li
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Kai Liu
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China
| | - Nian Wei
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China
| | - Changxing Zong
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China.
| |
Collapse
|
7
|
High-strength and low-crystallinity cellulose/agarose composite microspheres: Fabrication, characterization and protein adsorption. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Zhao L, Li S, Wang W, Wang Y, Du K. Preparation and characterization of highly porous cellulose-agarose composite chromatographic microspheres for enhanced selective separation of histidine-rich proteins. J Chromatogr A 2020; 1637:461831. [PMID: 33373794 DOI: 10.1016/j.chroma.2020.461831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
In this work, the porous cellulose-agarose microspheres with high specific surface area and enhanced mechanical strength are prepared by a novel chemical crosslinking method. The crosslinking reaction homogeneously proceeds between polysaccharides, and the covalent bonding network is generated to replace the inherent hydrogen bonding network of cellulose. The prepared microspheres exhibit low crystallinity of 12.45%, which means high content of amorphous regions. The micro-meso-macroporous structure of microspheres in morphology is conducive to high permeability and adsorption capacity, and the microspheres possess high specific surface area of 183.81 m2/g. The affinity chromatographic microspheres are prepared by immobilizing Cu2+, which exhibits high adsorption capacity of 197.65 mg/g for bovine hemoglobin (BHb), fast adsorption rate wihin 40 minutes, well-selectivity, and excellent recyclability in ten cycles. We expect that this work to provide an outstanding candidate for the high performance of biomacromolecular purification.
Collapse
Affiliation(s)
- Liangshen Zhao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shasha Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wenhui Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yinghong Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
9
|
Rentería-Ortega M, Salgado-Cruz MDLP, Morales-Sánchez E, Alamilla-Beltrán L, Farrera-Rebollo RR, Valdespino León M, Calderón-Domínguez G. Effect of electrohydrodynamic atomization conditions on morphometric characteristics and mechanical resistance of chia mucilage-alginate particles. CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1775706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Minerva Rentería-Ortega
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
| | - Ma De La Paz Salgado-Cruz
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
- Consejo Nacional De Ciencia Y Tecnología (CONACYT), Ciudad De México, México
| | | | - Liliana Alamilla-Beltrán
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
| | - Reynold Ramón Farrera-Rebollo
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
| | - Mariana Valdespino León
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
| | - Georgina Calderón-Domínguez
- Departamento De Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional De Ciencias Biológicas, Ciudad De México, México
| |
Collapse
|
10
|
Qiao L, Li S, Du K. Fabrication and characterization of porous cellulose beads with high strength and specific surface area via preliminary chemical cross-linking reaction for protein separation. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107412] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|