1
|
Shen Z, Dai J, Yang X, Liu Y, Liu L, Huang Y, Wang L, Chen P, Chen X, Zhang C, Zhao J, Yang X, Wang Q. Comparison of sea buckthorn fruit oil nanoemulsions stabilized by protein-polysaccharide conjugates prepared using β-glucan from various sources. Food Chem 2024; 457:140098. [PMID: 38901345 DOI: 10.1016/j.foodchem.2024.140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
To understand the influence of β-glucans structure on the emulsifying properties of protein-polysaccharide conjugates, sodium caseinate (NaCas) was utilized to form glycosylation conjugates with varying degrees of glycosylation (10.68-17.50%) using three β-glucans from bacteria, yeast, and oats. This process induced alterations in the secondary structure of protein. The nanoemulsions prepared with the glycosylated conjugates exhibited superior stability compared to those formulated solely with NaCas, particularly under conditions of drastic pH fluctuations and extended storage periods. The nanoemulsion prepared with the NaCas-Salecan conjugate demonstrated exceptional stability at pH 4 and 6, or storage for 20 days. Additionally, it significantly attenuated the oxidation of unsaturated fatty acids and exhibited the lowest levels of aggregation, flocculation, and free fatty acid release rate during in vitro digestion. This study suggested the potential of the NaCas-Salecan conjugates in enhancing the stability of nanoemulsions and facilitating the colorectal-targeted delivery of sea buckthorn fruit oil.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Juan Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xinyue Yang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Yao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Lei Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - YuKun Huang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Lijun Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Pengfei Chen
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China
| | - Chisong Zhang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 610500, PR China
| | - Juan Zhao
- Sichuan Synlight Biotech Ltd., Chengdu, 610000, PR China
| | - Xiao Yang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, PR China.
| | - Qin Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
2
|
Kamandloo F, Salami M, Ghamari F, Ghaffari SB, EmamDjomeh Z, Ghasemi A, Kennedy JF. Development and evaluation of anti-reflux functional-oral suspension raft composed of sodium alginate-mung bean protein complex. Int J Biol Macromol 2024; 256:128490. [PMID: 38035967 DOI: 10.1016/j.ijbiomac.2023.128490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
This study aimed to develop a sodium alginate (Na alginate) and mung bean protein (MBP) raft complex to improve gastric reflux symptoms. Na alginate and MBP complexes with different ratios (1:1, 2:1, and 3:1, respectively) were used for raft formulations through a wet Maillard reaction. Structural properties of raft strength, reflux resistance, intrinsic fluorescence emission spectroscopy, and Fourier transform infrared spectroscopy (FTIR) were investigated for rafts. The suspension 1:1 Na alginate/MBP with 0 h Maillard reaction time exhibited the lowest sedimentation volume among the suspensions. In contrast, 3:1 Na alginate/MBP with 6 h Maillard reaction time showed the highest sedimentation volume. Based on the results, the 3:1 Na alginate/MBP rafts had the best results, and the results were within acceptable limits. Functional properties, including antioxidant properties, the Helicobacter pylori inhibition assay, the pancreatic lipase inhibition assay, and angiotensin-converting enzyme (ACE) inhibition, were investigated for rafts. The Na alginate/MBP raft has similar characteristics to Gaviscon syrup and can be used for obesity, Helicobacter pylori infection, high blood pressure, and gastric reflux.
Collapse
Affiliation(s)
- Farzaneh Kamandloo
- Transfer Phenomena Laboratory (TPL), Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Maryam Salami
- Transfer Phenomena Laboratory (TPL), Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Functional Food Research Core (FRC), University of Tehran, Iran.
| | - Fatemeh Ghamari
- Department of Science Payame Noor University, P.O. box 19395-4697, Tehran, Iran
| | - Seyed-Behnam Ghaffari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zahra EmamDjomeh
- Transfer Phenomena Laboratory (TPL), Department of Food Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Functional Food Research Core (FRC), University of Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, Tenbury Wells, United Kingdom
| |
Collapse
|
3
|
Korčok M, Calle J, Veverka M, Vietoris V. Understanding the health benefits and technological properties of β-glucan for the development of easy-to-swallow gels to guarantee food security among seniors. Crit Rev Food Sci Nutr 2023; 63:11504-11521. [PMID: 35766942 DOI: 10.1080/10408398.2022.2093325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The world's population is growing rapidly and the number of elderly people with undernutrition and malnutrition is increasing. Common health problems among seniors are cardiovascular, inflammatory, gastrointestinal, and cognitive disorders, cancer, diabetes, psychological and dental problems. The food industry is trying to meet the demands of an aging society, but these efforts are not sufficient. New strategies are needed, and they demand foods development with modified textures that are easy to swallow, such as gels suitable for seniors. Depending on the specific needs of the elderly, bioactive compounds with health benefits should be included in food systems. Novel foods may play an important role in the prevention, maintenance, and treatment of age-related diseases. One of the most studied bioactive compound is β-glucan, a polysaccharide with approved health claims confirmed by clinical trials, such as "β-glucan contributes to the maintenance of normal blood cholesterol levels" and "the consumption of β-glucan from oats or barley contributes to the reduction of postprandial glucose spikes." In this review, the health benefits, and technological properties of β-glucan for the development of senior-friendly ready-to-swallow gels were described. In addition, some patents and studies conducted in connection with the development of the gel systems were collected.
Collapse
Affiliation(s)
- Melina Korčok
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Jehannara Calle
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
- Food Research Institute for the Food Industry (IIIA), Havana, Cuba
| | | | - Vladimir Vietoris
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
4
|
Zhang Y, Li J, Xie J, Xue B, Li X, Gan J, Sun T. The Impact of Food Processing on the Structure and Hypoglycemic Effect of Oat β-glucan. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:506-511. [PMID: 37624567 DOI: 10.1007/s11130-023-01095-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
The impact of food processing including baking, steaming and bread making, on the structure and hypoglycemic effect of oat β-glucan was studied. The structural analysis revealed the β-D-glucopyranosyl units of β-glucan was unchanged in aforementioned processing. The baking processing endowed β-glucan with increased molecular weight (Mw) and viscosity, which enhanced the capacity of β-glucan to delay starch digestion in vitro, such as the rapidly-digestible starch content decreased, the slowly-digestible and resistant starch content increased, and the glycemic index (GI) value decreased. Meanwhile, the inhibitory activity of β-glucan against α-glucosidase and α-amylase was enhanced by baking processing. By contrast, during steaming and bread making processing, β-glucan showed decreased Mw and viscosity, which accelerated starch digestion in vitro and reduced the inhibitory activity of β-glucan against α-glucosidase and α-amylase. Apart from that, baking processing promoted the physiological and antioxidant properties of β-glucan, but the properties decreased during steaming and bread making processing. The results suggest that oat raw materials can be treated with dry heat and high temperature, avoiding moist heat and fermentation treatments to maximize the hypoglycemic effect of β-glucan.
Collapse
Affiliation(s)
- Yi Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinran Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Bin Xue
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohui Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianhong Gan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Tao Sun
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
Zheng Z, Zhang L, Zhang M, Mujumdar AS, Liu Y. Maillard reaction products of pea protein hydrolysate as a flavour enhancer for beef flavors: Effects on flavor and physicochemical properties. Food Chem 2023; 417:135769. [PMID: 36917902 DOI: 10.1016/j.foodchem.2023.135769] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
This study evaluated the effects of Maillard reaction products of pea protein hydrolyzates (MRPs-PPH) as salt-reducing and umami-enhancing components on the flavor and physicochemical properties of beef flavors. The addition of MRPs-PPH reduced the brightness of beef flavors, increased the redness and yellowness, as well as changed the texture characteristics of beef flavors. With the addition of MRPs-PPH, the apparent viscosity, storage modulus and loss modulus of beef flavors decreased. Finally, the relationship between taste attributes and flavor compounds of the samples was analyzed by Partial Least Squares Regression (PLSR), and flavor compounds with significant positive contributions to different taste attributes were found. This study showed that MRPs-PPH could be used as a flavor enhancer derived from biomacromolecules with salt reduction and freshness enhancement.
Collapse
Affiliation(s)
- Zhiliang Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Lihui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Yaping Liu
- Guangdong Galore Food Co., Ltd, 528447 Zhongshan, Guangdong, China
| |
Collapse
|
6
|
Cui L, Jia Q, Zhao J, Hou D, Zhou S. A comprehensive review on oat milk: from oat nutrients and phytochemicals to its processing technologies, product features, and potential applications. Food Funct 2023. [PMID: 37317702 DOI: 10.1039/d3fo00893b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant-based milk alternatives have become increasingly desirable due to their sustainability and the increased consumer awareness of health. Among many varieties of emerging plant-based milk, the smooth texture and flavor of oat milk make it spread rapidly around the world. Furthermore, as a sustainable source of diet, oats can provide rich nutrients and phytochemicals. Issues on the stability, sensory properties, shelf life, and nutritional quality of oat milk have been highlighted in published studies. In this review, the processing techniques, quality improvement, and product features of oat milk are elaborated, and the potential applications of oat milk are summarized. Besides, the challenges and future perspectives of oat milk production in the future are discussed.
Collapse
Affiliation(s)
- Lulu Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Qiuju Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Jiani Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| |
Collapse
|
7
|
Wu Q, Tan J, Qin J, Chen Z, Li B, Xu J, Jiao W, Feng N. Inhibitory effect of LSOPC on AGEs formation and sensory quality in cookies. Front Nutr 2022; 9:1064188. [PMID: 36590228 PMCID: PMC9798327 DOI: 10.3389/fnut.2022.1064188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
At the conclusion of the Maillard reaction (MR), free amino groups of proteins, amino acids, or lipids with the carboxyl groups of reducing sugars to form stable molecules known as advanced glycation end products (AGEs), which hasten aging and may potentially be the root cause of a number of chronic degenerative diseases. According to researches, lotus seedpod oligomeric procyanidins (LSOPC), a premium natural antioxidant produced from lotus waste, can be included in cookies to improve flavor and lower the risk of illnesses linked to AGEs. In this work, we used cookies without LSOPC as a control to examine the effects of adding various concentrations of LSOPC (0, 0.05, 0.1, 0.2, and 0.4%) on the AGEs formation and the sensory quality in cookies. The amounts of AGEs and N-ε-carboxymethyl lysine (CML) decreased with the increase of LSOPC concentration, indicating that the concentration of LSOPC was positively correlated with the ability to inhibit AGEs formation. It was also demonstrated that the amount of antioxidant capacity of the cookies increased significantly with the increase of LSOPC concentration. On the other hand, the chromaticity, texture, electronic nose, and other aspects of the cookies' sensory attributes were also evaluated. The color of the cookies deepened and the flavor varied as LSOPC added content increased. The sensory quality of the cookies was examined, and the findings indicated that LSOPC would somewhat improve that quality. These findings implied that AGEs formation could be decreased in cookies while also enhancing their sensory quality by adding LSOPC.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Jiangying Tan
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Jiabin Qin
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Ziting Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Bing Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., Ltd., Suizhou, Hubei, China
| | - Weiting Jiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China,Weiting Jiao,
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China,*Correspondence: Nianjie Feng,
| |
Collapse
|
8
|
Effects of β-glucan extracted from Saccharomyces cerevisiae on the quality of bio-yoghurts: in vitro and in vivo evaluation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zhang M, Liu H, Wang Q. Characterization of β-Glucan-Peanut Protein Isolate/Soy Protein Isolate Conjugates and Their Application on Low-Fat Sausage. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093037. [PMID: 35566387 PMCID: PMC9099641 DOI: 10.3390/molecules27093037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Polysaccharide-protein conjugates can improve the functional properties and expand the application field. The emulsifying, thermal properties of WSG-PPI conjugates and WSG-SPI conjugates were improved, compared to WSG, PPI and SPI. The Maillard reaction was confirmed by Fourier transform infrared spectroscopy (FT-IR). Circular dichroism (CD) exhibited that the structure of the conjugates was more expanded. Cryo-SEM and AFM demonstrated that the WSG, WSG-PPI and WSG-SPI conjugates had a morphology of a chain. When the conjugates were added as fat substitutes to low-fat sausage, the cooking yield, hardness and chewiness increased. The objective of this research was to study the emulsifying property, thermal property and structural changes of β-glucan-peanut protein isolate (WSG-PPI) conjugates and β-glucan-soy protein isolate (WSG-SPI) conjugates prepared through wet-heated Maillard reaction, and their effect on the texture of low-fat sausage.
Collapse
|
10
|
Ramos-Diaz J, Kantanen K, Edelmann J, Jouppila K, Sontag-Strohm T, Piironen V. Functionality of oat fiber concentrate and faba bean protein concentrate in plant-based substitutes for minced meat. Curr Res Food Sci 2022; 5:858-867. [PMID: 35647559 PMCID: PMC9133577 DOI: 10.1016/j.crfs.2022.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/08/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Oat has been recognized for its health-promoting fiber, β-glucan, while protein-rich faba bean has remained underutilized in Nordic countries despite its good nutritional quality. This research investigated the functionality of oat fiber concentrate and faba bean protein concentrate in plant-based substitutes for minced meat (SMs). The resulting product aimed at mimicking the mechanical and physicochemical characteristics of beef minced meat (BM) and its applications (i.e., fried and burger patty). In this regard, the mechanical properties (e.g., chewiness, Young's modulus) of original/fried SMs were comparable to or higher than those of original/fried BM. SM patties (45% SMs) were structurally weaker than beef burger patties (100% BM). The rheological analysis showed that the presence of oat fiber concentrate increased the gel-like properties of the blend, which correlated with the overall strength of original SMs (e.g., Young's modulus). The results suggested that SMs could be used as BM for the preparation of vegetarian meat-like products. SMs containing up to 36% dietary fiber—the half being β-glucan—were obtained. Oat-fiber- and faba-bean-protein-concentrate were successfully combined into SMs. SMs were mechanically comparable to beef minced meat. Patties containing SMs were softer than beef patties. Oat fiber concentrate increased the gel-like properties of the blend.
Collapse
Affiliation(s)
- J.M. Ramos-Diaz
- Corresponding author. P.O. Box 66 (Agnes Sjöbergin katu 2), FI-00014, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
11
|
Tang Q, Huang G. Improving method, properties and application of polysaccharide as emulsifier. Food Chem 2021; 376:131937. [PMID: 34968911 DOI: 10.1016/j.foodchem.2021.131937] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
At present, there are still some problems for the emulsification of polysaccharides such as lack of green, efficient and industrialized methods, lack of systematic and in-depth structure-activity relationship, and need of expanding its application scope. The physical, chemical and biological methods for improving the emulsifying of polysaccharides, the emulsifying properties and influencing factors of polysaccharides and application in food were reviewed herein. It was pointed out that the future research should focus on the effect of physical-biological synergistic function on the emulsification of polysaccharides, the effect of processing process on the structure and emulsification mechanism of polysaccharides, and further expanding the application field of polysaccharides with emulsification activity to improve the quality of products.
Collapse
Affiliation(s)
- Qilin Tang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
12
|
Chemache L, Kehal F, Namoune H. Wet agglomeration of barley flour-wheat semolina blends into couscous: Effects on rheological, culinary and sensory properties. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Yu S, Wang J, Li Y, Wang X, Ren F, Wang X. Structural Studies of Water-Insoluble β-Glucan from Oat Bran and Its Effect on Improving Lipid Metabolism in Mice Fed High-Fat Diet. Nutrients 2021; 13:nu13093254. [PMID: 34579130 PMCID: PMC8467107 DOI: 10.3390/nu13093254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
Water-insoluble β-glucan has been reported to have beneficial effects on human health. However, no studies have thoroughly characterized the structure and function of water-insoluble β-glucan in oat bran. Thus, the structure and effect of water-insoluble β-glucan on weight gain and lipid metabolism in high-fat diet (HFD)-fed mice were analyzed. First, water-insoluble β-glucan was isolated and purified from oat bran. Compared with water-soluble β-glucan, water-insoluble β-glucan had higher DP3:DP4 molar ratio (2.12 and 1.67, respectively) and molecular weight (123,800 and 119,200 g/mol, respectively). Notably, water-insoluble β-glucan exhibited more fibrous sheet-like structure and greater swelling power than water-soluble β-glucan. Animal experiments have shown that oral administration of water-insoluble β-glucan tended to lower the final body weight of obese mice after 10 weeks treatment. In addition, water-insoluble β-glucan administration significantly improved the serum lipid profile (triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels) and epididymal adipocytes size. What is more, water-insoluble β-glucan reduced the accumulation and accelerated the decomposition of lipid in liver. In conclusion, water-insoluble β-glucan (oat bran) could alleviate obesity in HFD-fed mice by improving blood lipid level and accelerating the decomposition of lipid.
Collapse
Affiliation(s)
- Shoujuan Yu
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
| | - Jun Wang
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (Y.L.); (F.R.)
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA;
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (Y.L.); (F.R.)
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
- Correspondence: ; Tel.: +86-010-62738589
| |
Collapse
|
14
|
Naik RR, Wang Y, Selomulya C. Improvements of plant protein functionalities by Maillard conjugation and Maillard reaction products. Crit Rev Food Sci Nutr 2021; 62:7036-7061. [PMID: 33849344 DOI: 10.1080/10408398.2021.1910139] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plant-derived protein research has gained attention in recent years due to the rise of health concerns, allergenicity, trends toward vegan diet, food safety, and sustainability; but the lower techno-functional attributes of plant proteins compared to those of animals still remain a challenge for their utilization. Maillard conjugation is a protein side-chain modification reaction which is spontaneous, and do not require additional chemical additive to initiate the reaction. The glycoconjugates formed during the reaction significantly improves the thermal stability and pH sensitivity of proteins. The modification of plant-derived protein using Maillard conjugation requires a comprehensive understanding of the influence of process conditions on the conjugation process. These factors can be used to establish a correlation with different functional and bioactive characteristics, to potentially adapt this approach for selective functionality enhancement and nutraceutical development. This review covers recent advances in plant-derived protein modification using Maillard conjugation, including different pretreatments to modify the functionality and bioactivity of plant proteins and their potential uses in practice. An overview of different properties of conjugates and MRPs, including food safety aspects, is given.
Collapse
Affiliation(s)
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW, Australia
| | | |
Collapse
|
15
|
Structural characteristics and functional properties of sesame protein concentrate–maltodextrin conjugates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00655-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Effect of high hydrostatic pressure conditions on the composition, morphology, rheology, thermal behavior, color, and stability of black garlic melanoidins. Food Chem 2020; 337:127790. [PMID: 32799165 DOI: 10.1016/j.foodchem.2020.127790] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
The effects of different high hydrostatic pressure (HHP) conditions on the composition, morphology, rheology, thermal behavior, color, and stability of high molecular weigh melanoidins from black garlic were investigated. Because HHP promoted Maillard reaction, HHP treatments decreased the aldehyde content from 46.76% to 11.92% but increased ketones and heterocyclic contents 4.46% to 6.66% and 9.32% to 11.55%, respectively. HHP treatments induced production of five compounds that were not present in the control sample, including 5-methyl-2(3H)-furanone, 3-methyl-2-cyclopentenone, 2,3-dihydrofuran, 2-ethylfuran, and 2-vinylfuran. The surface of HHP-treated melanoidins was rough and wrinkled, and composed of large particles compared with the control. In addition, HHP reduced viscosity of melanoidins solution at a shear rate of 1-10 s-1. Moreover, HHP improved the thermal stability and the stability under UV light of black garlic melanoidins. In general, HHP treatment enhanced the composition and structure of black garlic melanoidins and improved stability.
Collapse
|
17
|
Zhong L, Ma N, Wu Y, Zhao L, Ma G, Pei F, Hu Q. Gastrointestinal fate and antioxidation of β-carotene emulsion prepared by oat protein isolate-Pleurotus ostreatus β-glucan conjugate. Carbohydr Polym 2019; 221:10-20. [DOI: 10.1016/j.carbpol.2019.05.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022]
|
18
|
Andrzej KM, Małgorzata M, Sabina K, Horbańczuk OK, Rodak E. Application of rich in β-glucan flours and preparations in bread baked from frozen dough. FOOD SCI TECHNOL INT 2019; 26:53-64. [PMID: 31403832 DOI: 10.1177/1082013219865379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aims to define the changes in the quality of bakery products depending on the β-glucan source and its contribution using bake-off technology. The examined bread was enriched with a 10% addition of oat flour, barley flour, oat fibre preparation, and barley fibre preparation. Bread was tested for rheological parameters, baking performance, hardness and springiness, water content, specific volume, porosity, crust and crumb colour, and β-glucan content. In the executed research, the adverse effect of this component on the formation of gluten network and hardness of the crumb was observed. In the double compression test, it was shown that the highest hardness on the day of baking was characterized by the bread with the addition of barley preparation. The fastest rate of staling was observed in the bread with additional barley flour that was affected by the highest amount of β-glucan. A significant decrease of the β-glucan level was also found during the technological bake-off process, which can be explained by the activity of enzymes.
Collapse
Affiliation(s)
- Kurek Marcin Andrzej
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Moczkowska Małgorzata
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karp Sabina
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Olaf K Horbańczuk
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewelina Rodak
- Department of Technique and Food Development, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|