1
|
Tang L, Zhao D, Wang B, Bai S, Fan B, Zhang L, Wang F. Adsorption and in vitro controlled-release properties of a soybean cellulose nanocrystal/polyacrylamide-based hydrogel as a carrier for different polyphenols. Food Chem 2025; 479:143843. [PMID: 40086390 DOI: 10.1016/j.foodchem.2025.143843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/17/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Polyphenols possessing low bioavailability require material carriers for controlling their release during digestion. This study used a soybean cellulose nanocrystal/polyacrylamide (CP) hydrogel as a carrier to explore the adsorption mechanism and release the properties of different polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) during simulated digestion. Structural characterization revealed that the CP hydrogel interacted with polyphenols via strong non-covalent binding. The adsorption efficiency was considerably affected by the molecular structure and the number of hydroxyl groups of polyphenols (TA > EGCG > GA). The TA-loaded CP hydrogel demonstrated the finest mechanical properties, exhibiting the lowest anti-oxidant activity and anti-bacterial ability. The simulated digestion experiment revealed that the CP hydrogel effectively protected the polyphenols from degradation and controlled their release in the intestine, improving their bioavailability (TA < EGCG < GA). These results provide new insights for enhancing the stability and bioavailability of polyphenols in functional foods.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science Technology Nutrition and Health (Cangzhou), Chinese Academy of Agricultural Sciences, Hebei 061001, China
| | - Shiru Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Baah RO, Duodu KG, Harasym J, Emmambux MN. Nutritional and functional properties of decorticated and microwave heat moisture treated white sorghum meal with added non-tannin and tannin phenolic extract. Food Chem 2025; 475:143261. [PMID: 39938267 DOI: 10.1016/j.foodchem.2025.143261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Emerging technologies, particularly microwave energy, have proven to be more efficient for heat moisture treatment to enhance starch functionality. In a sorghum food system, interactions between starch-phenolics and protein-phenolics significantly influence the nutritional properties of the food. Microwave heat moisture treatment decreased the starch hydrolysis index of sorghum meals from 69.89 % to 54.33 % in samples without phenolic extracts. The hydrolysis index was further reduced from 59.27 to 35.99 % and 54.74 to 36.18 % in samples containing non-tannin and tannin phenolic extracts. The addition of phenolics led to increased resistant starch content, characterized by higher levels of slowly digestible starch and a lower glycaemic index. The interactions between phenolic compounds, protein, starch, and the α-amylase enzyme contribute to the increased resistant starch content. Specifically, phenolics and proteins form barriers around starch granules that hinder digestion. Furthermore, interactions between phenolics and amylose further decrease digestibility while inhibiting α-amylase activity.
Collapse
Affiliation(s)
- Rose Otema Baah
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Kwaku Gyebi Duodu
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| | - Mohammad N Emmambux
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Li Z, Liu S, Hu X, Lang S, Wang C, Wang L, Zuo F. Structure-activity relationships of polyphenol-rice starch complexes: Impact on 3D printing and resistant starch formation. Int J Biol Macromol 2025; 307:141978. [PMID: 40081690 DOI: 10.1016/j.ijbiomac.2025.141978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study aimed to investigate the effects of gallic acid (GA), luteolin (LUT), and quercetin (QUE) on the structure, physicochemical characteristics, and 3D printing behavior of rice starch and to elucidate the underlying mechanisms. The results revealed that incorporating GA significantly decreased the viscoelasticity of rice starch, reducing the printing accuracy from 98.64 % to 72.4 %. However, the polyhydroxy structures of LUT and QUE helped maintain the network strength of the starch gel, exerting a minimal influence on the 3D printing performance. Structural and molecular docking analyses demonstrated that all three polyphenols bind to starch molecules via hydrogen bonding, forming single-helix complexes that disrupt the double-helix gel network, thereby lowering the gel viscoelasticity. Moreover, the addition of polyphenols significantly increased the resistant starch content in the 3D-printed products, from 22.10 % in natural starch to 53.36 % in the starch-GA complex, 47.79 % in the starch-LUT complex, and 48.34 % in the starch-QUE complex. These findings offer valuable insights for advancing the development of functional 3D-printed foods.
Collapse
Affiliation(s)
- Zhenjiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shilin Liu
- School of Life Sciences and Health, Huzhou College, Huzhou 313000, China
| | - Xin Hu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Shuangjing Lang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China; Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province.
| | - Feng Zuo
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Engineering Research Center for Processing and Utilization of Grain By-products, Ministry of Education, Daqing 163000, China.
| |
Collapse
|
4
|
Lang S, Li Z, Chu Y, Hu X, Wang L, Wang C. Effects of phenolic acid incorporation on the structure, physicochemical properties, and 3D printing performance of rice starch gel: Exploring underlying mechanisms. Int J Biol Macromol 2025; 306:141244. [PMID: 40015416 DOI: 10.1016/j.ijbiomac.2025.141244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025]
Abstract
This study aimed to investigate the effects of incorporating ferulic acid (FA) or gallic acid (GA) on structural, physicochemical, and 3D printing properties of rice starch gel, while also exploring underlying mechanisms. These phenolic acids were incorporated into rice starch at varying concentrations. The addition of FA or GA reduced the gel's viscoelasticity, leading to significant decline in 3D printing accuracy. The printing accuracy of the starch decreased from 98.64 % for the native starch to 83.85 % for the FA-starch complex and 72.40 % for the GA-starch complex. Structural analysis revealed that FA and GA formed single-helical complexes with starch, disrupting the formation of a double-helical gel network and consequently reducing the gel's viscoelasticity. Additionally, the incorporation of FA and GA significantly increased the resistant starch content in the 3D-printed products, rising from 22.02 % in the native starch to 46.37 % in the FA-starch complex and 53.42 % in the GA-starch complexes. These single-helix complexes improved both the stability and bioavailability of the polyphenols. Findings of this study provide valuable insights for advancing the development of functional 3D-printed foods.
Collapse
Affiliation(s)
- Shuangjing Lang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Zhenjiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Yangyang Chu
- Department of Ecological Engineering, Heilongjiang Forestry Vocation-Technical College, Mudanjiang 157000, China
| | - Xin Hu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
5
|
Li S, Yu W, Wang Y, Lu X. Effect of wet media milling on starch-quercetin complex: Enhancement of Pickering emulsifying ability and oxidative resistance. Food Chem 2024; 460:140586. [PMID: 39079359 DOI: 10.1016/j.foodchem.2024.140586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
This research explored the effect of media milling on complexation of corn starch (CS) and quercetin (QC), interaction mechanism and Pickering emulsifying ability of corn-quercetin (CS-QC) complex. CS-QC with QC/CS ratio of 1:24 had the highest encapsulation efficiency of 76.00 ± 1.30 %. Average volume-mean diameter, average whole molecular size (Rh) and debranchedamylopectinchain length of CS-QC were significantly decreased after milling. Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) spectra confirmed the complexation between CS and QC. Emulsifying capacity and emulsion stability of Pickering emulsion stabilized by 5 % CS-QC complex particles after 120 min milling reached 100.00 % and 100.00. Pickering emulsions stabilized by these complex particles demonstrated superior oxidative stability. These results demonstrated that media milling could be an efficient physical approach to obtain starch-polyphenol complex by enhancing non-covalent interactions, which could not only be used as food-grade Pickering emulsifiers, but also retard lipid oxidation.
Collapse
Affiliation(s)
- Shufan Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Wenwen Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China.
| |
Collapse
|
6
|
Chen N, Feng ZJ, Gao HX, He Q, Zeng WC. Elucidating the influence and mechanism of different phenols on the properties, food quality and function of maize starch. Food Chem 2024; 449:139191. [PMID: 38583396 DOI: 10.1016/j.foodchem.2024.139191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
This study discusses interaction differences between three phenols (protocatechuic acid, naringin and tannic acid) and starch helix, investigates influences of phenols at different doses on properties of maize starch, and further determines their effects on quality and function of maize-starchy foods. Simulated results indicate variations of phenolic structure (phenolic hydroxyl group amount, glycoside structure and steric hindrance) and dose induce phenols form different complexes with starch helix. Formation of different starch-phenols complexes alters gelatinization (1.65-5.63 J/g), pasting form, water binding capacity (8.83-12.69 g/g) and particle size distribution of starch. Meanwhile, differences in starch-phenols complexes are reflected in fingerprint area (R1045/1022: 0.920 to 1.047), crystallinity (8.3% to 17.0%), rheology and gel structure of starch. Additionally, phenols change texture and color of cold maize cake, giving them different antioxidant capacity and lower digestibility. Findings are beneficial for understanding interaction between starch and different phenols and their potential application.
Collapse
Affiliation(s)
- Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zi-Jian Feng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Hao-Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
7
|
Long M, Ren Y, Li Z, Yin C, Sun J. Effects of different oil fractions and tannic acid concentrations on konjac glucomannan-stabilized emulsions. Int J Biol Macromol 2024; 265:130723. [PMID: 38467227 DOI: 10.1016/j.ijbiomac.2024.130723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Polysaccharide-stabilized emulsions have received extensive attention, but emulsifying activity of polysaccharides is poor. In this study, konjac glucomannan (KGM) and tannic acid (TA) complex (KGM-TA) was prepared via non-covalent binding to increase the polysaccharide interfacial stability. The emulsifying stabilities of KGM-TA complex-stabilized emulsions were analyzed under different TA concentrations and oil fractions. The results indicated that hydrogen bonds and hydrophobic bonds were the main binding forces for KGM-TA complex, which were closely related to TA concentrations. The interfacial tension of KGM-TA complex decreased from 20.0 mN/m to 13.4 mN/m with TA concentration increasing from 0 % to 0.3 %, indicating that TA improved the interfacial activity of KGM. Meanwhile, the contact angle of KGM-TA complex was closer to 90° with the increasing TA concentrations. The emulsifying stability of KGM-TA complex-stabilized emulsions increased in an oil mass fraction-dependent manner, reaching the maximum at 75 % oil mass fraction. Moreover, the droplet sizes of KGM-TA complex-stabilized high-internal-phase emulsions (HIPEs) decreased from 82.7 μm to 44.7 μm with TA concentration increasing from 0 to 0.3 %. Therefore, high TA concentrations were conducive to the improvement of the emulsifying stability of KGM-TA complex-stabilized HIPEs. High oil mass fraction promoted the interfacial contact of adjacent droplets, thus enhancing the non-covalent binding of KGM molecules at the interfaces with TA as bridges. Additionally, the high TA concentrations increased the gel network density in the aqueous phase, thus enhancing the emulsifying stability of emulsions. Our findings reveal the mechanisms by which polysaccharide-polyphenol complex stabilized HIPEs. Therefore, this study provides theoretical basis and references for the developments of polysaccharide emulsifier with high emulsifying capability and high-stability emulsions.
Collapse
Affiliation(s)
- Min Long
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Yuanyuan Ren
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Chaomin Yin
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Jie Sun
- College of Life Science and Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| |
Collapse
|
8
|
Li X, Li C, Feng J, Li T, Zhou D, Wu C, Fan G. Insights into formation and stability mechanism of V 7-type short amylose-resveratrol complex using molecular dynamics simulation and molecular docking. Int J Biol Macromol 2024; 265:130930. [PMID: 38513898 DOI: 10.1016/j.ijbiomac.2024.130930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Pre-formed V-type amylose as a kind of wall material has been reported to carry polyphenols, while the interaction mechanism between V-type amylose and polyphenol is still elusive. In this work, the formation and stability mechanism of a V7-type short amylose-resveratrol complex was investigated via isothermal titration calorimetry, molecular dynamics, and molecular docking. The results presented that two stoichiometric ratios of resveratrol to short amylose were calculated to 0.120 and 0.800, and the corresponding main driving force was hydrogen bonding and hydrophobic interaction, respectively. The folding and unfolding conformation of V7-type short amylose chains appeared alternately during the simulation. Resveratrol tended to be bound in the short amylose helix between 40 ns and 80 ns to form a more stable complex. Hydrogen bonds between resveratrol molecule and O6 at the 22nd glucose molecule/O2 at the 24th glucose molecules and hydrophobic interaction between resveratrol molecule and glucose molecules (19th, 20th, 21st and 23rd) could be found.
Collapse
Affiliation(s)
- Xiaojing Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caihong Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiawen Feng
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tingting Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dandan Zhou
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caie Wu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Gongjian Fan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
9
|
Feng H, Li T, Zhou L, Chen L, Lyu Q, Liu G, Wang X, Chen X. Potato starch/naringenin complexes for high-stability Pickering emulsions: Structure, properties, and emulsion stabilization mechanism. Int J Biol Macromol 2024; 264:130597. [PMID: 38437940 DOI: 10.1016/j.ijbiomac.2024.130597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
In this study, potato starch (PS)/naringenin (NAR) complex was prepared, and its properties and emulsification behavior were evaluated. The experimental results demonstrated that NAR successfully formed a complex with PS molecules through hydrogen bonds and other non-covalent interactions. The emulsifying capacity (ROV) of PS/NAR complex with 16 % composite ratio was 0.9999, which was higher than PS (ROV = 0.3329) (p < 0.05). Based on particle property analysis and molecular dynamics simulation, the mechanism of improving the emulsification performance might be the action of the benzene ring of NAR and intermolecular hydrogen bonding. In addition, the stability of the Pickering emulsions with PS/NAR complexes as emulgators was significantly improved. The emulsifying and rheological behavior of starch-based Pickering emulsions could be adjusted by changing the proportion of the complexes. Results demonstrated that the PS/NAR complexes might be a prospective stabilizer of Pickering emulsions based on starch material and might expand the use of PS in edible products.
Collapse
Affiliation(s)
- Hong Feng
- School of Food Science and Engineering, Wuhan polytechnic University, Wuhan 430023, China
| | - Ting Li
- School of Food Science and Engineering, Wuhan polytechnic University, Wuhan 430023, China
| | - Lian Zhou
- School of Food Science and Engineering, Wuhan polytechnic University, Wuhan 430023, China
| | - Lei Chen
- School of Food Science and Engineering, Wuhan polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Qingyun Lyu
- School of Food Science and Engineering, Wuhan polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China.
| | - Gang Liu
- School of Food Science and Engineering, Wuhan polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China.
| | - Xuedong Wang
- School of Food Science and Engineering, Wuhan polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| | - Xi Chen
- School of Food Science and Engineering, Wuhan polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Wuhan Polytechnic University, Ministry of Education, Wuhan 430023, China
| |
Collapse
|
10
|
Wei X, Xie H, Hu Z, Zeng X, Dong H, Liu X, Bai W. Multiscale structure changes and mechanism of polyphenol-amylose complexes modulated by polyphenolic structures. Int J Biol Macromol 2024; 262:130086. [PMID: 38360224 DOI: 10.1016/j.ijbiomac.2024.130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
This study was designed to investigate the effect of polyphenolic structure on the interaction strength and process between polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) and amylose (AM). The results of Fourier transform infrared spectroscopy, isothermal titration calorimetry, X-ray photoelectron spectroscopy and molecular dynamic simulation (MD) suggested that the interactions between the three polyphenols and AM were noncovalent, spontaneous, low-energy and driven by enthalpy, which would be enhanced with increasing amounts of pyrogallol groups in the polyphenols. The results of turbidity, particle size and appearance of the complex solution showed that the interaction process between polyphenols and AM could be divided into three steps and would be advanced by increasing the number of pyrogallol groups in the polyphenols. At the same time, MD was intuitively employed to exhibit the interaction process between amylose and polyphenols, and it revealed that the interaction induced the aggregation of amylose and that the agglomeration degree of amylose increased with increasing number of pyrogallol groups at polyphenols. Last, the SEM and TGA results showed that TA/AM complexes had the tightest structure and the highest thermal stability (TA/AM˃EGCG/AM˃GA/AM), which could be attributed to TA having five pyrogallol groups.
Collapse
Affiliation(s)
- Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Huan Xie
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; School of Food and Pharmacy, Shanghai Zhongqiao Vocational and Technology University, Shanghai 201514, China
| | - Ziqing Hu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Hao Dong
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
11
|
Wekwejt M, Małek M, Ronowska A, Michno A, Pałubicka A, Zasada L, Klimek A, Kaczmarek-Szczepańska B. Hyaluronic acid/tannic acid films for wound healing application. Int J Biol Macromol 2024; 254:128101. [PMID: 37972843 DOI: 10.1016/j.ijbiomac.2023.128101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In this study, thin films based on hyaluronic acid (HA) with tannic acid (TA) were investigated in three different weight ratios (80HA/20TA, 50HA/50TA, 20HA/80TA) for their application as materials for wound healing. Surface free energy, as well as their roughness, mechanical properties, water vapor permeability rate, and antioxidant activity were determined. Moreover, their compatibility with blood and osteoblast cells was investigated. The irritation effect caused by hyaluronic acid/tannic acid films was also considered with the use of are constructed human epidermis model. The irritation effect for hyaluronic acid/tannic acid films by the in vitro method was also studied. The low surface free energy, surface roughness, and antioxidant activity presented by the obtained films were examined. All the tested compositions of hyaluronic acid/tannic acid films were hemocompatible, but only films based on 50HA/50TA were fully cytocompatible. Regarding the potential implantation, all the films except 80HA/20TA showed appropriate mechanical properties. The specimens did not exert the irritation effect during the studies involving reconstructed human epidermis.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdańsk, Poland
| | - Marcin Małek
- Faculty of Civil Engineering and Geodesy, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400 Kościerzyna, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Agnieszka Klimek
- Faculty of Mechanical Engineering, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
12
|
Liu W, Xu J, Shuai X, Geng Q, Guo X, Chen J, Li T, Liu C, Dai T. The interaction and physicochemical properties of the starch-polyphenol complex: Polymeric proanthocyanidins and maize starch with different amylose/amylopectin ratios. Int J Biol Macromol 2023; 253:126617. [PMID: 37652319 DOI: 10.1016/j.ijbiomac.2023.126617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
This study investigated the impact of polymeric proanthocyanidins (PPC) on the physicochemical characteristics of maize starch with varying amylose content, and their potential interaction mechanism. PPC with a lower content (1 %) reduced the viscoelasticity of the high amylose maize starch (HAM) system, inhibited amylose rearrangement, and enhanced its fluidity. However, excessive PPC restrained the interaction between PPC and amylose. In contrast to HAM, PPC improved the gelation ability of waxy maize starch (WAM) as PPC concentration was raised. PPC suppressed the recrystallization of starch during storage, and PPC had a superior inhibition influence on the retrogradation of WAM in comparison to HAM. This indicated that amylopectin was more likely to interact with PPC than amylose. Hydrogen bonds were the main driving force between PPC and starch chains, which was clarified by Fourier transform-infrared, nuclear magnetic resonance, X-ray diffraction, iodine bonding reaction, and dynamic light scattering data. Additionally, the mechanism of interaction between PPC and the two starch components may be similar, and variance in physicochemical attributes can be primarily credited to the percentage of amylose to amylopectin in starch.
Collapse
Affiliation(s)
- Wuzhen Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiahui Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xixiang Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaojuan Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
13
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
14
|
Xie H, Wei X, Liu X, Bai W, Zeng X. Effect of polyphenolic structure and mass ratio on the emulsifying performance and stability of emulsions stabilized by polyphenol-corn amylose complexes. ULTRASONICS SONOCHEMISTRY 2023; 95:106367. [PMID: 36933501 PMCID: PMC10034494 DOI: 10.1016/j.ultsonch.2023.106367] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/24/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
O/W emulsions stabilized by polyphenol/amylose (AM) complexes with several polyphenol/AM mass ratios and different polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) were prepared by a high-intensity ultrasound emulsification technique. The effect of the pyrogallol group number of polyphenols and the mass ratio of polyphenols/AM on polyphenol/AM complexes and emulsions was studied. The soluble and/or insoluble complexes gradually formed upon adding polyphenols into the AM system. However, insoluble complexes were not formed in the GA/AM systems because GA has only one pyrogallol group. In addition, the hydrophobicity of AM could also be improved by forming polyphenol/AM complexes. The emulsion size decreased with increasing pyrogallol group number on the polyphenol molecules at a fixed ratio, and the size could also be controlled by the polyphenol/AM ratio. Moreover, all emulsions presented various degrees of creaming, which was restrained by decreasing emulsion size or the formation of a thick complex network. The complex network was enhanced by increasing the ratio or pyrogallol group number on the polyphenol molecules, which was because the increasing number of complexes was adsorbed onto the interface. Altogether, compared to GA/AM and EGCG/AM, the TA/AM complex emulsifier had the best hydrophobicity and emulsifying properties, and the TA/AM emulsion had the best emulsion stability.
Collapse
Affiliation(s)
- Huan Xie
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China
| | - Xianling Wei
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China.
| | - Xiaoyan Liu
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, Guangdong 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| |
Collapse
|
15
|
Chen N, Gao HX, He Q, Zeng WC. Potential application of phenolic compounds with different structural complexity in maize starch-based film. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
16
|
Tea polyphenols-OSA starch interaction and its impact on interface properties and oxidative stability of O/W emulsion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Chen N, Gao HX, He Q, Zeng WC. Potato Starch-Based Film Incorporated with Tea Polyphenols and Its Application in Fruit Packaging. Polymers (Basel) 2023; 15:588. [PMID: 36771890 PMCID: PMC9921189 DOI: 10.3390/polym15030588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Effects of tea polyphenols (TP) on the physical properties, barrier properties and functionality of potato starch-based film were determined, while the interaction mechanism between TP and starch in film and the application of this film in fruit packaging were further evaluated. TP exhibited different effects on the physical properties of potato starch-based film, including thickness (0.083 to 0.087 mm), moisture content (9.27% to 9.68%), color (ΔE value: 5.41 to 10.55), light transmittance (51% to 62%), tensile properties and thermal properties, and improved its barrier properties, including water vapor permeability (9.68 to 11.84 × 10-11 g m-1 s-1 Pa-1),oxygen permeability (1.25 to 2.78 × 10-16 g m-1 s-1 Pa-1) and antioxidant activity. According to the determination of wide-angle X-ray diffraction, Fourier transform infrared and scanning electron microscope, TP could interact with starch chains via hydrogen bonds to form non-crystal complexes, thus affecting the cross-linking among starch chains and further changing the microstructure of film. Furthermore, film incorporated with TP could improve the storage quality (including weight and texture) of blueberries, and inhibit the enzymatic browning of fresh-cut bananas during storage. All present results suggested that tea polyphenols had potential to enhance the properties and function of potato starch-based film, and the film exhibited the application prospect in fruit packaging and preservation.
Collapse
Affiliation(s)
- Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, China
| | - Hao-Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, China
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu 610065, China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Wang N, Tian X, Cheng B, Guang S, Xu H. Calcium alginate/silk fibroin peptide/Bletilla striata polysaccharide blended microspheres loaded with tannic acid for rapid wound healing. Int J Biol Macromol 2022; 220:1329-1344. [PMID: 36116592 DOI: 10.1016/j.ijbiomac.2022.09.123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 01/01/2023]
Abstract
Biodegradable natural polymers are receiving increasing attention as potential candidates for wound dressing. In the present study, composite microspheres (mCSB) based on calcium alginate (CA), silk fibroin peptide (SP), and Bletilla striata polysaccharide (BSP) were prepared by the reverse emulsion method. The excellent swelling properties of microspheres enable them to rapidly promote thrombosis. Microspheres can increase the platelet aggregation index to 1.5 and the aggregation rate of red blood cells to as high as 80 %. Furthermore, tannic acid (TA)-loaded microspheres demonstrate a slow-release effect on TA; this allows the microspheres to exhibit good long-lasting antibacterial properties. Due to the synergistic effects of SP and TA, the cell senescence was delayed, with a 126.69 % survival rate of fibroblasts after 3 days of incubation. In addition, TA led to a rapid reduction in inflammation levels, with a wound closure rate of >92.80 % within 7 days. The multifunctional TA-loaded mCSB has great application potential for rapid wound healing and the treatment of wound hemostasis.
Collapse
Affiliation(s)
- Nan Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiaoyong Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Baijie Cheng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Shanyi Guang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
19
|
Effects of tannic acid interfacial absorption on the physicochemical stability of algal oil-loaded emulsions and inhibition of fishy off-flavor. Food Chem 2022; 403:134381. [DOI: 10.1016/j.foodchem.2022.134381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
|
20
|
Kan L, Capuano E, Oliviero T, Renzetti S. Wheat starch-tannic acid complexes modulate physicochemical and rheological properties of wheat starch and its digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
He J, Zeng L, Gong J, He Y, Liu X, Zhang L, Xu N, Wang Q. Effects of two contrasting dietary polysaccharides and tannic acid on the digestive and physicochemical properties of wheat starch. Food Sci Nutr 2021; 9:5800-5808. [PMID: 34646547 PMCID: PMC8498076 DOI: 10.1002/fsn3.2559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, konjac glucomannan, κ-carrageenan, and tannic acid were selected to study the effects of different combinations on the in vitro digestibility and physicochemical properties of wheat starch. Results showed that the addition of konjac glucomannan, κ-carrageenan, and tannic acid could decrease the digestion of starch and increase the content of resistant starch. Besides, the two polysaccharides weakened the extent of tannic acid on starch digestion. Moreover, although the two polysaccharides had different effects on the in vitro digestion of starch, they had no significant increase in the content of resistant starch. DSC and XRD results demonstrated that the polysaccharides and tannic acid showed synergistic effects on the rebuilding of starch microstructure. FTIR results further manifested that κ-carrageenan and konjac glucomannan could significantly increase the strength of hydrogen bonds in starch. At the same time, the addition of tannic acid would weaken the molecular interaction between polysaccharides and starch. SEM and CLSM results showed that tannic acid added to the polysaccharide-starch mixture not only interacted with starch but also influenced the structure of polysaccharide gel.
Collapse
Affiliation(s)
- Juncheng He
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Lirong Zeng
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Junan Gong
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Yalun He
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Xiong Liu
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Ling Zhang
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Na Xu
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| | - Qiong Wang
- College of Life Sciences and HealthWuhan University of Science and TechnologyWuhanChina
| |
Collapse
|
22
|
Guo C, Li J, Chen Y, Geng F, Li B. Complexation of caffeine and theophylline with epigallocatechin gallate in aqueous solution: Nuclear magnetic resonance, molecular docking and thermodynamics studies. Food Res Int 2021; 148:110587. [PMID: 34507732 DOI: 10.1016/j.foodres.2021.110587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022]
Abstract
Epigallocatechin gallate (EGCg) and methylxanthines are representative bioactive compounds in tea leaves, the strong affinity between them will elicit destruction of tea quality. In order to elucidate the mechanism of complexation between EGCg and methylxanthines, we compared the bindings of theophylline and caffeine to EGCg by nuclear magnetic resonance (NMR), molecular docking and isothermal titration calorimetry (ITC). The results revealed that the stoichiometries of caffeine to EGCg and theophylline to EGCg were both 1:1. Caffeine and theophylline were captured in the hydrophobic space formed by aromatic rings of EGCg. The affinity between EGCg and caffeine was stronger than that between EGCg and theophylline, which could be partially attributed to the two extra CH-π interactions between N7-Me of caffeine and aromatic rings of EGCg. Furthermore, the results of ITC were agreed well with NMR and molecular docking, indicating that ITC was possible to accurately evaluate the complexation.
Collapse
Affiliation(s)
- Cheng Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; College of Food and Biology Science and Technology, Wuhan Institute of Design and Sciences, Wuhan 430205, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, No. 2025.Chengluo Avenue, Chengdu 610106, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.
| |
Collapse
|
23
|
The Study of Physicochemical Properties and Blood Compatibility of Sodium Alginate-Based Materials via Tannic Acid Addition. MATERIALS 2021; 14:ma14174905. [PMID: 34500995 PMCID: PMC8432687 DOI: 10.3390/ma14174905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022]
Abstract
In this study, sodium alginate-based thin films were modified by the addition of tannic acid. Materials were obtained by solvent evaporation. They were characterized by the observation of its morphology and its surface by scanning electron microscope and atomic force microscope. The thermal properties were studied by differential scanning calorimetry. The concentration of tannic acid released from the material was determined by the Folin–Ciocalteu method. The material safety for biomedical application was determined by the hemolysis rate study in contact with sheep blood as well as platelet adhesion to the material surface. Based on the obtained results, we assume that proposed films based on sodium alginate/tannic acid are safe and may potentially find application in medicine.
Collapse
|
24
|
Wang Y, Li S, Bai F, Cao J, Sun L. The Physical Adsorption of Gelatinized Starch with Tannic Acid Decreases the Inhibitory Activity of the Polyphenol against α-Amylase. Foods 2021; 10:foods10061233. [PMID: 34071531 PMCID: PMC8226663 DOI: 10.3390/foods10061233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
The effects of mixing orders of tannic acid (TA), starch, and α-amylase on the enzyme inhibition of TA were studied, including mixing TA with α-amylase before starch addition (order 1), mixing TA with pre-gelatinized starch before α-amylase addition (order 2) and co-gelatinizing TA with starch before α-amylase addition (order 3). It was found that the enzyme inhibition was always highest for order 1 because TA could bind with the enzyme active site thoroughly before digestion occurred. Both order 2 and 3 reduced α-amylase inhibition through decreasing binding of TA with the enzyme, which resulted from the non-covalent physical adsorption of TA with gelatinized starch. Interestingly, at low TA concentration, α-amylase inhibition for order 2 was higher than order 3, while at high TA concentration, the inhibition was shown with the opposite trend, which arose from the difference in the adsorption property between the pre-gelatinized and co-gelatinized starch at the corresponding TA concentrations. Moreover, both the crystalline structures and apparent morphology of starch were not significantly altered by TA addition for order 2 and 3. Conclusively, although a polyphenol has an acceptable inhibitory activity in vitro, the actual effect may not reach the expected one when taking processing procedures into account.
Collapse
Affiliation(s)
| | | | | | | | - Lijun Sun
- Correspondence: ; Tel.: +86-136-0929-2796
| |
Collapse
|
25
|
Understanding the effects of carboxymethyl cellulose on the bioactivity of lysozyme at different mass ratios and thermal treatments. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Deng Z, Wang S, Pei Y, Zhou B, Li J, Hou X, Li B, Liang H. Tuning of Molecular Interactions between Zein and Tannic Acid to Modify Sunflower Sporopollenin Exine Capsules: Enhanced Stability and Targeted Delivery of Bioactive Macromolecules. ACS APPLIED BIO MATERIALS 2021; 4:2686-2695. [PMID: 35014307 DOI: 10.1021/acsabm.0c01623] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are multiple obstacles for the storage and digestion of orally administered bioactive macromolecules. This study developed a low-cost and sustained-release delivery system (sporopollenin exine capsules with zein/tannic acid modification) of proteins with excellent storage stability, and at the same time provided insights into the sustained-release mechanism through exploring the interaction between zein and tannic acid (TA). β-Galactosidase (β-Gal) was utilized as a model protein and loaded into sporopollenin exine capsules (SECs), which were then coated with the zein/TA system. Under the optimized zein/TA conditions, the zein/TA system showed better performance than the zein alone system in the sustained release of β-Gal, with the residual activity of about 70.26% after 24 h of simulated digestion. Evaluation of the storage stability demonstrated a β-Gal residual activity of nearly 90% for 28 days at 25 °C. Additionally, FTIR analysis demonstrated that the stability of the zein/TA system depends on both hydrogen bonding and certain covalent bonding through the Schiff-base reaction, and the sustained release is regulated by the bonding strength.
Collapse
Affiliation(s)
- Ziyu Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Shishuai Wang
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan 430056, China
| | - Yaqiong Pei
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan 430056, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education; National "111" Center for Cellular Regulation and Molecular Pharmaceutics; Hubei Key Laboratory of Industrial Microbiology; School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Xinyao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.,Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430068, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
27
|
Yu X, Cai X, Luo L, Wang J, Ma M, Wang M, Zeng L. Influence of tea polyphenol and bovine serum albumin on tea cream formation by multiple spectroscopy methods and molecular docking. Food Chem 2020; 333:127432. [DOI: 10.1016/j.foodchem.2020.127432] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
|
28
|
Fabrication and characterization of emulsions stabilized by tannic acid-wheat starch complexes. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Liu X, Le Bourvellec C, Renard CMGC. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr Rev Food Sci Food Saf 2020; 19:3574-3617. [PMID: 33337054 DOI: 10.1111/1541-4337.12632] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.
Collapse
Affiliation(s)
- Xuwei Liu
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France
| | | | - Catherine M G C Renard
- INRAE, Avignon University, UMR SQPOV, F-84000, Avignon, France.,INRAE, TRANSFORM, F-44000, Nantes, France
| |
Collapse
|
30
|
Effect of Mesona chinensis polysaccharide on the pasting, rheological, and structural properties of tapioca starch varying in gelatinization temperatures. Int J Biol Macromol 2020; 156:137-143. [PMID: 32289408 DOI: 10.1016/j.ijbiomac.2020.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/07/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Abstract
The effects of Mesona chinensis polysaccharide (MCP) on the pasting, rheological properties, granule size, and water mobility of tapioca starch (TS) were investigated at different gelatinization temperatures (75 °C and 95 °C). The structures of tapioca starch-Mesona chinensis polysaccharide (TM) gels formed at different gelatinization temperatures were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that the peak, trough, and final viscosities of TM-95 mixtures were lower than that of TM-75 mixtures. Addition of MCP had a significant reduce (p < 0.05) on the granule size and transversal relaxation time of TM mixtures at the two gelatinization temperatures. Rheological analysis also showed that the addition of MCP increased the consistency indexes (K) and decreased the flow behavior indexes (n) of TM-95 and TM-75 gels. XRD results confirmed the diffraction peak of TM-95 gels became blunt and wider, and the diffraction peak at 17° and 23° of TM-75 gels could be observed after MCP added. In addition, the microstructures of TM-75 gels were more compact than that of TM-95 gels. These results can promote the development of TS-based products and application of MCP at different gelatinization temperatures.
Collapse
|
31
|
Kaczmarek B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials-A Minireview. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3224. [PMID: 32698426 PMCID: PMC7412100 DOI: 10.3390/ma13143224] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
Abstract
As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called "from nature to nature". Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| |
Collapse
|
32
|
Chen N, Gao HX, He Q, Yu ZL, Zeng WC. Interaction and action mechanism of starch with different phenolic compounds. Int J Food Sci Nutr 2020; 71:726-737. [DOI: 10.1080/09637486.2020.1722074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nan Chen
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
| | - Hao-Xiang Gao
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| | - Zhi-Long Yu
- Food Science Program, University of Missouri, Columbia, MO, USA
| | - Wei-Cai Zeng
- Antioxidant Polyphenols Team, Department of Food Engineering, Sichuan University, Chengdu, PR China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu, PR China
| |
Collapse
|