1
|
Bist Y, Sharanagat VS, Saxena DC. Synthesis, optimization, and characterization of precipitation derived starch nanoparticles from guinea seeds. Int J Biol Macromol 2024; 265:131010. [PMID: 38513900 DOI: 10.1016/j.ijbiomac.2024.131010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Guinea starch nanoparticles (GS-SNP) were developed using ultrasound and nanoprecipitation techniques. The physicochemical, thermal, structural, morphological, pasting, and rheological properties of GS-SNP were examined and compared with native starch. The particle size of GS-SNP was 391.50-206.00 nm, with a PDI of 0.35-0.23 and a zeta potential of -37.5 to -13 mV. The amylose content of GS-SNP increased with a decrease in relative crystallinity, and a VH-type crystalline structure was observed. The GS-SNP were in round shape with some self-aggregated granules. The water and oil absorption capacity, solubility, and gelatinization temperature of GS-SNP increased, but the swelling power was restricted. The viscosity of the GS-SNP dispersion remained almost constant throughout the heating but slightly increased after cooling. A higher degree of shear thinning was observed due to a fluid-like gel network and weak gel structure. The optimum conditions were: 50 % amplitude, 30 min time, and a starch to ethanol ratio (1:4) with 85 % maximum desirability. Overall, the findings suggest that GS-SNP have promising potential for application in a liquid system where viscosity of the system cannot be significantly influenced by temperature.
Collapse
Affiliation(s)
- Yograj Bist
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India
| | - Vijay Singh Sharanagat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - D C Saxena
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India.
| |
Collapse
|
2
|
Construction of functional soybean peptide–cyclodextrin carboxylate nanoparticles and their interaction with porcine pancreatic α-amylase. Food Res Int 2022; 162:112054. [DOI: 10.1016/j.foodres.2022.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
|
3
|
Karam M, Fahs D, Maatouk B, Safi B, Jaffa AA, Mhanna R. Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Mater Today Bio 2022; 14:100249. [PMID: 35434594 PMCID: PMC9006854 DOI: 10.1016/j.mtbio.2022.100249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Despite extensive efforts to provide early diagnosis and adequate treatment regimens, detection of MI still faces major limitations and pathological MI complications continue to threaten the recovery of survivors. Polymeric nanoparticles (NPs) represent novel noninvasive drug delivery systems for the diagnosis and treatment of MI and subsequent prevention of fatal heart failure. In this review, we cover the recent advances in polymeric NP-based diagnostic and therapeutic approaches for MI and their application as multifunctional theranostic tools. We also discuss the in vivo behavior and toxicity profile of polymeric NPs, their application in noninvasive imaging, passive, and active drug delivery, and use in cardiac regenerative therapy. We conclude with the challenges faced with polymeric nanosystems and suggest future efforts needed for clinical translation.
Collapse
Affiliation(s)
- Mia Karam
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Duaa Fahs
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Batoul Maatouk
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Brouna Safi
- Department of Chemical Engineering, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, Lebanon
| |
Collapse
|
4
|
Insights into the Relations between Particle Size and Physicochemical Properties of Starch Nanoparticles Prepared by Combining High‐Speed Shearing with Precipitation. STARCH-STARKE 2022. [DOI: 10.1002/star.202100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
An S, Wang L, Zhou P, Luo Z, Feng R, Li X. Construction of Hohenbuehelia serotina polysaccharides-mucin nanoparticles and their sustain-release characteristics under simulated gastrointestinal digestion in vitro. Int J Biol Macromol 2021; 191:1-8. [PMID: 34537291 DOI: 10.1016/j.ijbiomac.2021.09.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
In this study, Hohenbuehelia serotina polysaccharides-mucin nanoparticles (HSP-MC NPs) were fabricated based on hydrogen bonding and hydrophobicity effects for improving the bioavailability of HSP. The structural characteristics and morphology of HSP-MC NPs prepared by different conditions were respectively identified and observed. The results showed that HSP-MC NPs (HSP/MC, 1/1, w/w) presented the optimal physicochemical characteristics, with the encapsulation efficiency of 88.09 ± 0.01%, average particle size of 509.4 ± 9.76 nm and zeta potential of -20.6 ± 0.7 mV. Furthermore, HSP-MC NPs (HSP/MC, 1/1, w/w), belonged to non-crystalline substances, exhibited the excellent physicochemical stabilities against temperature, pH and ionic strength, and had the uniform spherical morphological characteristics. In addition, under simulated gastrointestinal digestion in vitro, HSP-MC NPs (HSP/MC, 1/1, w/w) showed the good sustained release performances, that might effectively improve the absorption rate of HSP. The present research is meaningful for designing the polysaccharides-loaded nano-delivery system based on natural non-toxic carrier that can be used in function food field.
Collapse
Affiliation(s)
- Siying An
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Peng Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhen Luo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Ru Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Xiaoyu Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China; Hebei Key Laboratory of Nanobiotechnology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
6
|
Gardouh AR, Srag El-Din ASG, Salem MSH, Moustafa Y, Gad S. Starch Nanoparticles for Enhancement of Oral Bioavailability of a Newly Synthesized Thienopyrimidine Derivative with Anti-Proliferative Activity Against Pancreatic Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3071-3093. [PMID: 34305395 PMCID: PMC8292977 DOI: 10.2147/dddt.s321962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Purpose This research aimed to improve water solubility and oral bioavailability of a newly synthesized thienopyrimidine derivative (TPD) with anti-pancreatic cancer activity by loading on starch nanoparticles (SNPs). Methods TPD was synthesized, purified and its ADME behavior was predicted using Swiss ADME software. A UV spectroscopy method was developed and validated to measure TPD concentration at various dosage forms. SNPs loaded with TPD (SNPs-TPD) were prepared, characterized for particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), entrapment efficiency, in-vitro release, and in-vivo animal study. Results The Swiss ADME results showed that TPD can be administered orally; however, it has low oral bioavailability (0.55) and poor water solubility. The significant regression coefficient of the calibration curve (r2 = 0.9995), the precision (%RSD < 0.5%) and the accuracy (99.46−101.72%) confirmed the efficacy of the developed UV method. SNPs-TPD had a spherical monodispersed (PDI= 0.12) shape, nanoparticle size (22.98 ± 4.23) and good stability (−21 ± 4.72 mV). Moreover, FT-IR and DSC revealed changes in the physicochemical structure of starch resulting in SNPs formation. The entrapment efficiency was 97% ± 0.45%, and the in-vitro release showed that the SNPs enhanced the solubility of the TPD. The in-vivo animal study and histopathology showed that SNPs enhanced the oral bioavailability of TPD against solid Ehrlich carcinoma. Conclusion SNPs-TPD were superior in drug solubility and oral bioavailability than those obtained from TPD suspension.
Collapse
Affiliation(s)
- Ahmed R Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, 21110, Jordan
| | - Ahmed S G Srag El-Din
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science & Technology, Gamasa City, Egypt
| | - Mohamed S H Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.,The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Yasser Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Chavan P, Sinhmar A, Nehra M, Thory R, Pathera AK, Sundarraj AA, Nain V. Impact on various properties of native starch after synthesis of starch nanoparticles: A review. Food Chem 2021; 364:130416. [PMID: 34192635 DOI: 10.1016/j.foodchem.2021.130416] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
In recent years, interdisciplinary research is more focused on particle size, which helps in exploring the relation between micro and macroscopic properties of various materials. Starch nanoparticles are generally synthesized by using acid/enzymatic hydrolysis, gamma irradiation, simple nanoprecipitation, ultra-sonication, and homogenization treatments. The properties like amylose content, pasting, rheological, morphological, size distribution, etc. are affected after the formation of nanoparticles from starch. This study emphasizes how various properties are changed in starch nanoparticles. Starch nanoparticles are mainly used in the formulation of nano-emulsion, nano starch-based composite film, and drug delivery. The impact on various native starch properties after the preparation of starch nanoparticles are less reported. So, all the aspects related to various starch properties and their nanoparticles are extensively reviewed in this study so that the listed findings can be utilized in future processes to increase the various foods and non-food utilization of starch nanoparticles.
Collapse
Affiliation(s)
- Prafull Chavan
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India
| | - Archana Sinhmar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India
| | - Manju Nehra
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| | - Rahul Thory
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India.
| | - Ashok Kumar Pathera
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt., Solan 173229, HP, India
| | - Antony Allwyn Sundarraj
- Sri Shakti Institute of Engineering and Technology, Sri Shakti Nagar, Coimbatore 641062, TN, India
| | - Vikash Nain
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| |
Collapse
|
8
|
Study of the Performance of Particles Based on Modified Starches Containing Potassium Sorbate and Incorporated into Biodegradable Films: Physicochemical Characterization and Antimicrobial Action. CHEMISTRY 2021. [DOI: 10.3390/chemistry3020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ultrasound technique was used to produce native and acetylated cassava starch particles containing potassium sorbate (KS). In order to obtain an active packaging, films with addition of native starch particles containing KS (NKSPF) or added with acetylated starch particles containing KS (AKSPF) were formulated. As control systems, films without KS (CF) or added with KS that was not retained in particles (KSF), were produced. The NKSPF and AKSPF microstructure was consistent with composite materials. Tensile test revealed that CF and KSF were ductile and extensible (stress at break (σb) 2.8–2.5 MPa and strain at break (εb) 284–206%), while NKSPF and AKSPF were more resistant films with higher Young’s Modulus (148–477 MPa) and σb (3.6–17 MPa) but lower εb (40–11%). Moreover, NKSPF and AKSPF developed lower Yellowness Index (6.6–6.5) but higher opacity (19–23%) and solubility in water (31–35%) than KSF (9, 10.8% and 9%, respectively). It was observed that KSF and NKSPF moderately reduced the Zygosaccharomyces bailii growth while AKSPF showed the highest yeast inhibition, three Log-cycles, compared to CF. Additionally, FTIR spectroscopy revealed intensified interactions between KS and modified starch. It was concluded that starch sonication and acetylation were useful modifications to produce particles carrier of KS that improved the physical and antimicrobial performance of active films.
Collapse
|
9
|
Wangprasertkul J, Siriwattanapong R, Harnkarnsujarit N. Antifungal packaging of sorbate and benzoate incorporated biodegradable films for fresh noodles. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107763] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Influence of esterification and ultrasound treatment on formation and properties of starch nanoparticles and their impact as a filler on chitosan based films characteristics. Int J Biol Macromol 2021; 179:154-160. [PMID: 33675824 DOI: 10.1016/j.ijbiomac.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/23/2022]
Abstract
Starch nanoparticles were prepared by citrate esterification and ultrasound treatment. With the increase of ultrasonic treatment time, the mean size and PDI of the particles decreased gradually, when the ultrasonic treatment time was 5 min, the prepared starch nanoparticles had a mean size and PDI of 352.8 nm and 0.292, respectively. X-ray diffraction (XRD) showed that the starch nanoparticles prepared by ultrasonic treatment for 5 min had an A-type crystalline structure and a crystallinity of 41.42%. The chitosan composite films were reinforced by esterified starch with different ultrasound treatment times, the results indicated that the addition of starch nanoparticles resulted in a significant increase in the mechanical properties of films. This study indicates that esterification and ultrasound treatment can be used to prepare starch nanoparticles with a higher crystallinity and higher efficiency, which will further promote the application of nanocomposite films in packaging applications.
Collapse
|
11
|
Alzate P, Gerschenson L, Flores S. Ultrasound application for production of nano-structured particles from esterified starches to retain potassium sorbate. Carbohydr Polym 2020; 247:116759. [PMID: 32829872 DOI: 10.1016/j.carbpol.2020.116759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
Ultrasound technique was successfully used to obtain nanostructured particles from native and esterified starch, able to support the antimicrobial potassium sorbate (PS). The starch used (native, acetate or oleate) affected the nanoparticles morphology and size: globular or plate like shapes were observed for esterified and native starch respectively, while the hydrodynamic diameters were between 28 and 236 nm, with a trend towards smaller sizes for modified starches. The PS retention capacity ranged from 41.5 -90 mg/g, showing acetylated particles the highest value. The particles were amorphous and had a low average molecular weight of 1.9-6.7 × 105 Da. Water retention capacity and solubility (S) were higher for modified starch particles. PS addition had minor effect, increasing S and reducing the apparent amylose content, with respect to particles without sorbate. These results demonstrated that starch modification combined with ultrasound were appropriate strategies to obtain novel and appropriate matrices to retain PS.
Collapse
Affiliation(s)
- Paola Alzate
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Industrias, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ). Buenos Aires, Argentina
| | - Lía Gerschenson
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Industrias, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ). Buenos Aires, Argentina
| | - Silvia Flores
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales (FCEN), Departamento de Industrias, Intendente Güiraldes 2160, (1428), Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ). Buenos Aires, Argentina.
| |
Collapse
|
12
|
Production of tapioca starch nanoparticles by nanoprecipitation-sonication treatment. Int J Biol Macromol 2020; 143:136-142. [DOI: 10.1016/j.ijbiomac.2019.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/09/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022]
|