1
|
Sampieri-Morán JM, Bravo-Alfaro DA, Uribe-Lam E, Luna-Barcenas G, Montiel-Sánchez M, Velasco-Rodríguez LDC, Acosta-Osorio AA, Ferrer M, García HS. Delivery of Magnolia bark extract in nanoemulsions formed by high and low energy methods improves the bioavailability of Honokiol and Magnolol. Eur J Pharm Biopharm 2025; 208:114627. [PMID: 39761833 DOI: 10.1016/j.ejpb.2025.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/23/2025]
Abstract
Honokiol (HK) and Magnolol (MG), isomers found in Magnolia officinalis bark extract (MBE), possess bioactive properties attributed to their biphenolic structure. However, their low polarity results in poor oral absorption, limiting their bioavailability. To enhance their systemic absorption after passing through the digestive tract, efficient carrier systems are essential. Nanoemulsions (NE) have been suggested to enhance their solubility in the oily core and enable passive diffusion through absorptive cells. Surfactants ensure stability by reducing surface tension between hydrophobic and hydrophilic compounds. In this study we report the preparation of NE containing HK and MG using high and low-energy methods (SNEDDS); we aimed to improve their absorption after oral administration. Results demonstrated that NE enhanced their bioavailability significantly. Compared to the free forms, HK bioavailability increased by 3.47 times, and MG by 3.03 times. SNEDDS further increased HK bioavailability by 3.98 times and MG by 7.97 times compared to their free forms.
Collapse
Affiliation(s)
- Jessica M Sampieri-Morán
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Diego A Bravo-Alfaro
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Qro. 76130, Mexico
| | - Esmeralda Uribe-Lam
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, Qro. 76130, Mexico
| | - Gabriel Luna-Barcenas
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Epigmenio González 500 Fracc. San Pablo, Querétaro, Qro. 76130, Mexico
| | - Mara Montiel-Sánchez
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Luz Del C Velasco-Rodríguez
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Andrés A Acosta-Osorio
- CONAHCYT-Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, UAM, Madrid, Spain.
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Col. Formando Hogar, Veracruz, Ver. 91897, Mexico.
| |
Collapse
|
2
|
Rolim PADS, Catanoze IA, Fracasso JAR, Barbosa DB, dos Santos L, Ximenes VF, Guiotti AM. Antifungal, Antioxidant, and Irritative Potential of Citronella Oil (Cymbopogon nardus) Associated with Phenethyl Ester of Caffeic Acid (CAPE). COSMETICS 2024; 11:162. [DOI: 10.3390/cosmetics11050162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The present study aimed to analyze the antifungal, antioxidant, and irritant potential of citronella oil, both isolated and combined with caffeic acid phenethyl ester (CAPE), for topical oral candidiasis. The antioxidant potential was evaluated using two methods, the DPPH test and the reducing power test (FRAP), while the irritant potential of the solutions was assessed through the hen’s egg chorioallantoic membrane test (HET-CAM). The DPPH test (IC50) values for the CITRO III + CAPE III combination were 32 ± 9 mg/mL, and for isolated CAPE, 13 ± 3 mg/mL. The results from the FRAP method revealed a low iron-reducing power for the combination of 1.25 mg/mL of citronella and 0.0775 mg/mL of CAPE (CITRO III + CAPE III), showing no significant difference compared to the isolated solution of 0.15 mg/mL of CAPE. The antibacterial activity of CAPE and isolated citronella in vitro against microorganisms was evaluated using two methods: microdilution and biofilm assay. The results showed that the MIC and MFC values were 0.5 mg/mL for citronella at both tested times (24 h and 48 h). For CAPE, the MFC values were 0.031 mg/mL. For the biofilm assay, the isolated compounds and combinations at 1 min and 6 h showed significantly different results from the controls (p < 0.05). Furthermore, the HET-CAM results demonstrated the absence of irritability. Based on these premises, the antifungal and antioxidant actions, and absence of irritability were proven. Moreover, this work presents a natural antifungal of interest to the pharmaceutical industry.
Collapse
Affiliation(s)
- Pedro Antônio de Souza Rolim
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| | - Isabela Araguê Catanoze
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| | | | - Debora Barros Barbosa
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| | - Lucineia dos Santos
- Faculty of Sciences and Letters, São Paulo State University (UNESP), 2100, Dom Antonio Avenue, Assis 19806-900, Brazil
| | - Valdecir Farias Ximenes
- School of Sciences, São Paulo State University (UNESP), 14-01, Eng. Luiz Edmundo Carrijo Coube Avenue, Bauru 17033-360, Brazil
| | - Aimée Maria Guiotti
- School of Dentistry, São Paulo State University (UNESP), 1193, José Bonifacio Street, Araçatuba 16015-050, Brazil
| |
Collapse
|
3
|
Yu S, Xu X, Ma L, Zhao F, Mao J, Zhang J, Wang Z. Versatile and Tunable Performance of PVA/PAM Tridimensional Hydrogel Models for Tissues and Organs: Augmenting Realism in Advanced Surgical Training. ACS APPLIED BIO MATERIALS 2024; 7:6261-6275. [PMID: 39194173 DOI: 10.1021/acsabm.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The increasing complexity and difficulty of surgical procedures have led to a rise in medical errors within clinical settings in recent years. Gastrointestinal diseases, in particular, present significant medical challenges and impose substantial economic burdens, underscoring the urgent need for experiential, high-fidelity gastrointestinal surgical training tools. This study leverages patient-specific computed tomography (CT) and magnetic resonance imaging (MRI) data, combined with 3D printed manufacturing, to develop hydrogel organ models with tunable performance and tissue-mimicking softness. These properties are achieved by regulating the freeze-thaw cycles, cross-linking agents, and the concentration of incorporated antibacterial nanoparticles in DN hydrogels. Through the application of indirect 3D printing and the "sacrificial material method", we successfully fabricate organ tissues such as the stomach, intestines, and blood vessels with high precision. In ex vivo surgical training demonstrations, these tissue-like soft hydrogels provide an effective platform for preoperative simulation and surgical training in digestive surgery, accommodating various surgical procedures and accurately simulating intraoperative bleeding. The development of advanced bionic organ models with specific and tunable characteristics based on DN hydrogels is poised to significantly advance surgical training, medical device testing, and the reform of medical education.
Collapse
Affiliation(s)
- ShiJie Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - XiaoDong Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Liang Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Fei Zhao
- Center for General Practice Medicine, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - JinLei Mao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - ZhiFei Wang
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
4
|
Henao-Ardila A, Quintanilla-Carvajal MX, Moreno FL. Emulsification and stabilisation technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon 2024; 10:e32150. [PMID: 38873677 PMCID: PMC11170136 DOI: 10.1016/j.heliyon.2024.e32150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Food industry is increasingly using functional ingredients to improve the food product quality. Lipid-containing functional ingredients are important sources of nutrients. This review examines the current state of emulsification and stabilisation technologies for incorporating lipophilic functional ingredients into food systems. Lipophilic functional ingredients, such as omega-3 fatty acids, carotenoids, and fat-soluble vitamins, offer numerous health benefits but present challenges due to their limited solubility in water-based food matrices. Emulsification techniques enable the dispersion of these ingredients in aqueous environments, facilitating their inclusion in a variety of food products. This review highlights recent advances in food emulsion formulation, emulsification methods and stabilisation techniques which, together, improve the stability and bioavailability of lipophilic compounds. The role of various emulsifiers, stabilizers, and encapsulation materials in enhancing the functionality of these ingredients is also explored. Furthermore, the review discusses different stabilisation techniques which can yield in emulsion in a solid or liquid state. By providing a comprehensive overview of current technologies, this review aims to guide future research and application in the development of functional foods enriched with lipophilic ingredients.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
5
|
Zhang X, Wang Y, Wang D, Tang J, Xu M. Synergistic stabilization of garlic essential oil nanoemulsions by carboxymethyl chitosan/Tween 80 and application for coating preservation of chilled fresh pork. Int J Biol Macromol 2024; 266:131370. [PMID: 38580027 DOI: 10.1016/j.ijbiomac.2024.131370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/18/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Garlic essential oil (GEO) is a potential natural antioxidant and antimicrobial agent for food preservation, but its intrinsic low water-solubility, high volatility and poor stability severely limit its application and promotion. In this work, we investigated the synergistic stabilization of the GEO-in-water nanoemulsion using carboxymethyl chitosan (CCS) and Tween 80 (TW 80). Additionally, the nanoemulsion was fabricated through high-pressure microfluidization and utilized for the coating-mediated preservation of chilled pork. The garlic essential oil nanoemulsion (GEON) with 3.0 % CCS and 3.0 % TW 80 exhibited more homogeneous droplet size (around 150 nm) and narrower size distribution, while maintained long-term stability with no significant change in size during 30 d storage. Compared with free GEO, the GEONs exhibited a higher scavenging capacity to DPPH and ABTS free radicals as well as higher inhibitory effects against Escherichia coli and Staphylococcus aureus, suggesting that the encapsulation of GEO in nanoemulsion considerably improved its antioxidant and antibacterial activities. Furthermore, the results of coating preservation experiments showed that the GEON coating effectively expanded the shelf-life of chilled fresh pork for approximately one week. Altogether, this study would guide the development of GEO-loaded nanoemulsions, and promote GEON as a promising alternative for coating preservation of chilled fresh meat.
Collapse
Affiliation(s)
- Xingzhong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Ying Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dan Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Min Xu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
6
|
Wang Y, Zhu S, Zhang T, Gao M, Zhan X. New Horizons in Probiotics: Unraveling the Potential of Edible Microbial Polysaccharides through In Vitro Digestion Models. Foods 2024; 13:713. [PMID: 38472826 DOI: 10.3390/foods13050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
In vitro digestion models, as innovative assessment tools, possess advantages such as speed, high throughput, low cost, and high repeatability. They have been widely applied to the investigation of food digestion behavior and its potential impact on health. In recent years, research on edible polysaccharides in the field of intestinal health has been increasing. However, there is still a lack of systematic reviews on the application of microbial-derived edible polysaccharides in in vitro intestinal models. This review thoroughly discusses the limitations and challenges of static and dynamic in vitro digestion experiments, while providing an in-depth introduction to several typical in vitro digestion models. In light of this, we focus on the degradability of microbial polysaccharides and oligosaccharides, with a particular emphasis on edible microbial polysaccharides typically utilized in the food industry, such as xanthan gum and gellan gum, and their potential impacts on intestinal health. Through this review, a more comprehensive understanding of the latest developments in microbial polysaccharides, regarding probiotic delivery, immobilization, and probiotic potential, is expected, thus providing an expanded and deepened perspective for their application in functional foods.
Collapse
Affiliation(s)
- Yuying Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Ma W, Shan J, Wang M, Xie J, Chen Y, Sun N, Song Y, Hu X, Yu Q. Effects of Xanthan gum and Potassium carbonate on the quality and flavor properties of frozen Jiuniang doughs. Int J Biol Macromol 2023; 253:127191. [PMID: 37804886 DOI: 10.1016/j.ijbiomac.2023.127191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Chinese Jiuniang (CJ) is a flavorful and nutritious food, but underutilized in frozen dough (FD) production. In addition, frozen storage can harm FD's gluten structure and degrade quality and flavor. Therefore, the impacts of two excellent protective agents (XG-Xanthan Gum; PC-Potassium Carbonate) on frozen Jiuniang dough (F-JD) quality and flavor during dynamic freezing were investigated. The results suggested that adding XG conferred F-JD with good processing stability, maintained the bound water levels, stabilized rheological properties, diminished ice crystal damage to the protein structure, and inhibited the increase in frozen water content during the freezing process. In contrast, although PC reduced free water production during freezing, it increased dough hardness and offered less protein protection than XG. Additionally, GC-QTOF/MS analysis showed that adding XG during freezing increased the relative content of pleasant flavor compounds like Phenylethyl Alcohol and decreased undesirable ones like Hexanal. Moreover, PC lowered the relative content of undesirable flavor substances (Formic acid) but reduced the relative content of beneficial flavor compounds (1-Hexanol). Importantly, the study confirmed that XG maintained the new F-JD product's storage quality during dynamic freezing. In conclusion, this study broadens CJ's application possibilities and provides new insights into mechanisms for preserving F-JD's quality and flavor.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jialuo Shan
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Mengyao Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Nan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yiming Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
8
|
Zhu YA, Sun P, Duan C, Cao Y, Kong B, Wang H, Chen Q. Improving stability and bioavailability of curcumin by quaternized chitosan coated nanoemulsion. Food Res Int 2023; 174:113634. [PMID: 37986538 DOI: 10.1016/j.foodres.2023.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
This study aims to enhance the stability and bioavailability of curcumin (Cur) using nanoemulsion coating technology. The nanoemulsion system was developed by encapsulating Cur with quaternized chitosan (QMNE), and the nanoemulsion containing Cur and medium-chain triglyceride (MCT) oil (MNE) was used as control sample. The microstructure of the nanoemulsion was examined using Dynamic light scattering (DLS), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The storage, thermal, ionic strength, and pH stability of QMNE were also evaluated, respectively. The results indicate that QMNE demonstrates superior stability, in vitro gastric fluid stability, bioavailability compared to MNE. QMNE exhibits excellent emulsification activity and stability. In addition, QMNE shows significant protection against oxidation in both emulsion systems after different heat treatments. The antimicrobial activity results reveal that QMNE exhibits greater efficacy than that of MNE. Consequently, this study provides valuable insights into the formulation of a system to encapsulate Cur and the improvement of its stability and bioavailability.
Collapse
Affiliation(s)
- Ying-Ao Zhu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Pengyuan Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengyu Duan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuhang Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
9
|
Zhang X, Xu W, Li X, Pan G, Chen N, Xie Q, Wang X. Preparation of pH sensitive bacteriostatic W/O/W emulsion microcapsules. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2060-2075. [PMID: 37161405 DOI: 10.1080/09205063.2023.2211499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
This experiment was done to study the zeolite molecular sieve as a drug-binding effector, the non-antibiotic drug potassium diformate uniformly disperse in the internal aqueous phase of the 'egg box' structure formed by pectin-calcium ions. With oil phase as the intermediate phase and Xanthan gum Chitosan as the external water phase, the W/O/W type sustained release bacteriostatic microcapsules with pH response were prepared and characterized by Fourier transform infrared, thermogravimetric, SEM, and TEM. It can be obtained through characterization experiments that the inner water phase, oil phase, and outer water phase were formed by observation, and W/O/W emulsion microcapsules were obtained and the bacteriostasis effect of microcapsules was verified by bacteriostasis experiment. The permeance experiment showed that the molecular sieve was successfully coated in the microsphere. Studying on drug release mechanism and sustaining release performance of composite emulsion microcapsules. In vitro drug release study showed that the encapsulation efficiency and drug loading rate of microcapsules were improved by adding molecular sieve, reaching 12.31% and 61.55%, respectively. At the same time, we observed that the drug release rate slowed down during the simulated intestinal release process, and the drug release kinetics were in line with the first-order kinetic model and Ritger-Peppas model equation. Experiments had proven that the drug-loaded microcapsules exerted a significant bacteriostatic effect on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, with the highest antibacterial rates of 97.25%, 94.05%, and 95.93%, respectively. Therefore, the composite emulsion microcapsules can be used as a new controlled-release drug delivery system in vivo.
Collapse
Affiliation(s)
- XiaoNan Zhang
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - WenQin Xu
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - Xing Li
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - GuangHua Pan
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
| | - NanChun Chen
- College of Material Science and Engineering, Guilin University of Technology, Guilin, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficiency Utilization of Resources, Guilin University of Technology, Guilin, China
| | - QingLin Xie
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - XiuLi Wang
- College of Chemical and Biomedical Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
10
|
Vadivel D, Zitarosa N, Dondi D. Influence of pH on the release of an active principle from 3D printed carrageenan-k combined with alginate or xanthan gum. Heliyon 2023; 9:e16850. [PMID: 37484387 PMCID: PMC10360943 DOI: 10.1016/j.heliyon.2023.e16850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
The use of 3D printing began to diffuse in the pharmaceutical field in recent times, since 2015, with the approval of the first 3D printed drug from the FDA. The most used materials in association with this technique in this specific scope are hydrogels, already used widely in tissue engineering to produce scaffolds used in the realization of synthetic tissues. The aim of this project was to study the influence of different pH conditions on the release of a therapeutic molecule from a Carrageenan-k combined with alginate or xanthan gum hydrogel with a high level of biocompatibility and enough mechanical resistance to be used as printing material for a 3D bioprinter. The addition of biologically active supplements without affecting the model of the 3D printing structure of the biocompatible polymers was achieved by adopting the extrusion at moderately low temperatures. This study aimed to produce the necessary percentage of hydrogels which is responsible for the release of active drugs which respect to the pH of the system. In this case, the chosen curcumin drug which exhibits active release in the pH of the small intestine is a pH value of 6.
Collapse
Affiliation(s)
- Dhanalakshmi Vadivel
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
- INFN, Sezione di Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| | - Nicolò Zitarosa
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
- INFN, Sezione di Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| |
Collapse
|
11
|
Kaimal AM, Singhal RS. A bigel based formulation protects lutein better in the gastric environment with controlled release and antioxidant profile than other gel based systems. Food Chem 2023; 423:136304. [PMID: 37159969 DOI: 10.1016/j.foodchem.2023.136304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Gel based formulations offer an opportunity to fortify bioactives in food. However, a comparative evaluation of gel systems is scantly available. Thus, this study intended to evaluate the impact of various gel formulations (hydrogel, oleogel, emulsion gel, bigels of different compositions) on the delivery and antioxidant activity of lutein. Ethyl cellulose (EC,15 %w/w) and guar-xanthan gum mixture (1:1,1.5 %w/w) was used as oleogelator and hydrogelator, respectively. The microscopic evaluation indicated an oil-based continuous-phase for bigel with 75% oleogel. An increase in oleogel content enhanced textural and rheological properties. An increase in hydrogel composition (25%-75%) of bigel improved the lutein release (70.4%-83.2%). The highest release of lutein was recorded for emulsion gel (84.9%) and bigel with 25% oleogel (83.2%). The antioxidant activity was comparatively lower in gastric medium than simulated intestinal fluid. It could be inferred that the gel matrix significantly affected the lutein release, antioxidant profile, physiochemical and mechanical characteristics.
Collapse
Affiliation(s)
- Admajith M Kaimal
- Department of Food Engineering and Technology, Institute of Chemical Technology, ICT-IOC Campus, Bhubaneswar 751013, India.
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga (E), Mumbai 400 019, India
| |
Collapse
|
12
|
Yang Q, Li Y, Cao Z, Miao J, Feng J, Xi Q, Lu W. Structure-property relationship in the evaluation of xanthan gum functionality for oral suspensions and tablets. Int J Biol Macromol 2023; 226:525-534. [PMID: 36513178 DOI: 10.1016/j.ijbiomac.2022.12.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The functional properties of xanthan gum (XG) in pharmaceutical preparations depend on its rheological properties, which inevitably rely on its molecular structure. Hence, this work investigated the relationship between the molecular structure of XG and its rheological properties and functional characteristics, and revealed the structural factors influencing the XG functionalities in oral suspensions and matrix tablets. Primarily, the molecular structures of four commercial XG products were characterized by infrared spectroscopy, differential scanning calorimetry and measuring the monosaccharide composition, average molecular weight, and pyruvate and acetyl contents. Furthermore, the flow behavior and viscoelasticity of XG solutions, the viscoelasticity of XG hydrogels, and XG combinations (XGC, aqueous solution containing XG, liquid glucose, and glycerin) were investigated. Finally, the dissolution time of XGC and the swelling and erosion properties of the XG matrix were studied to evaluate XG functionality in oral suspensions and matrix tablets, respectively. Results showed that the polydispersity of molecular weight and the pyruvate content affected the functionality and performance of XG in suspension and tablet forms. The higher polydispersity and pyruvate content of XG improved the hydrogel strength, which led to a longer dissolution time of XGC and a higher swelling extent of the XG matrix but a slower erosion rate.
Collapse
Affiliation(s)
- Qiuxia Yang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
| | - Ying Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Zhen Cao
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Jiaying Miao
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
| | - Jiaqi Feng
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
| | - Quan Xi
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China.
| | - Weigen Lu
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China.
| |
Collapse
|
13
|
Hu Y, Zhang Y, Xu J, Zi Y, Peng J, Zheng Y, Wang X, Zhong J. Fish gelatin-polysaccharide Maillard products for fish oil-loaded emulsion stabilization: Effects of polysaccharide type, reaction time, and reaction pH. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Rakha A, Mehak F, Shabbir MA, Arslan M, Ranjha MMAN, Ahmed W, Socol CT, Rusu AV, Hassoun A, Aadil RM. Insights into the constellating drivers of satiety impacting dietary patterns and lifestyle. Front Nutr 2022; 9:1002619. [PMID: 36225863 PMCID: PMC9549911 DOI: 10.3389/fnut.2022.1002619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Food intake and body weight regulation are of special interest for meeting today's lifestyle essential requirements. Since balanced energy intake and expenditure are crucial for healthy living, high levels of energy intake are associated with obesity. Hence, regulation of energy intake occurs through short- and long-term signals as complex central and peripheral physiological signals control food intake. This work aims to explore and compile the main factors influencing satiating efficiency of foods by updating recent knowledge to point out new perspectives on the potential drivers of satiety interfering with food intake regulation. Human internal factors such as genetics, gender, age, nutritional status, gastrointestinal satiety signals, gut enzymes, gastric emptying rate, gut microbiota, individual behavioral response to foods, sleep and circadian rhythms are likely to be important in determining satiety. Besides, the external factors (environmental and behavioral) impacting satiety efficiency are highlighted. Based on mechanisms related to food consumption and dietary patterns several physical, physiological, and psychological factors affect satiety or satiation. A complex network of endocrine and neuroendocrine mechanisms controls the satiety pathways. In response to food intake and other behavioral cues, gut signals enable endocrine systems to target the brain. Intestinal and gastric signals interact with neural pathways in the central nervous system to halt eating or induce satiety. Moreover, complex food composition and structures result in considerable variation in satiety responses for different food groups. A better understanding of foods and factors impacting the efficiency of satiety could be helpful in making smart food choices and dietary recommendations for a healthy lifestyle based on updated scientific evidence.
Collapse
Affiliation(s)
- Allah Rakha
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fakiha Mehak
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad Asim Shabbir
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Alexandru Vasile Rusu
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Rana Muhammad Aadil
| |
Collapse
|
15
|
Kavimughil M, Leena MM, Moses JA, Anandharamakrishnan C. 3D printed MCT oleogel as a co-delivery carrier for curcumin and resveratrol. Biomaterials 2022; 287:121616. [PMID: 35716629 DOI: 10.1016/j.biomaterials.2022.121616] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
Designing a suitable matrix to protect sensitive bioactive compounds is an important stage in nutraceutical development. In this study, emulsion templated medium-chain triglycerides (MCT) oleogel was developed as co-delivery carriers for synergistic nutraceuticals, curcumin, and resveratrol and to 3D print in customized shapes for personalized nutrition. To obtain the stable emulsion, gelatin and gellan gum were added such that their protein-polysaccharide interaction helps in the structuring of the oil phase. Increasing the amount of gellan gum had a positive effect on stabilizing the emulsion but became the critical parameter during 3D printing. Hence, gellan gum of 1.5% (w/v) and gelatin at 10% (w/v) of water were considered optimum to produce a stable 30% O/W emulsion for 3D printing. Upon analyzing the in-vitro digestion behavior of the oleogel, it was observed that the bioactives were protected under oral and gastric conditions and allowed intestinal targeted delivery. The total bioaccessible fraction increased up to 1.13-fold and 1.2-fold for curcumin and resveratrol respectively compared to control (MCT oil). The FFAs release profile also indicated that gelators play an important role in lipase activity. Also, the ex-vivo everted gut sac analysis showed enhanced permeation of about 1.83 times and 1.13 times for curcumin and resveratrol respectively. Thus, this study provides useful insights into the 3D printing of emulsion templated oleogel as personalized nutraceutical carriers.
Collapse
Affiliation(s)
- M Kavimughil
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India.
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India.
| |
Collapse
|
16
|
Tang W, Pang S, Luo Y, Sun Q, Tian Q, Pu C. Improved protective and controlled releasing effect of fish oil microcapsules with rice bran protein fibrils and xanthan gum as wall materials. Food Funct 2022; 13:4734-4747. [PMID: 35388381 DOI: 10.1039/d1fo03500b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to prepare fish oil microcapsules by freeze-drying an emulsion co-stabilized by rice bran protein fibrils (RBPFs) and xanthan gum (XG) to improve the oxidation stability and controlled release effect. Emulsions stabilized either solely by RBPFs or unfibrillated rice bran protein (RBP) or by a combination of RBP and XG were also fabricated as microcapsule templates for comparison. The rheological properties, particle size, and zeta potential of the emulsions were examined. In addition, the characteristics of the fish oil microcapsules such as surface oil content, encapsulation efficiency, water activity, moisture content, morphological structure, oxidation stability, and digestive performance were also assessed. The rheological properties revealed that the addition of XG increased the storage modulus of the emulsion and reduced the loss modulus and apparent viscosity. At shear rates of 0-100 s-1, the fish oil emulsion did not exhibit any gel properties or shear thinning. Fibrillation increased the particle size of the fish oil emulsion, whereas adding XG reduced the droplet size. The combination of RBP fibrillation and XG addition provided the highest encapsulation efficiency for fish oil. Fibrillation reduced the water activity and moisture content of the fish oil microcapsules. The anisotropy of the fibrils and the high viscosity of XG produced a layer of wrapping on the continuous heterogeneous surface of the freeze-dried powder particles. RBPF/XG microcapsules stored at 45 °C for 1 month had the lowest peroxide value and thiobarbituric acid value, the lowest surface oil content, and the lightest yellowness. These results suggest that the combination of RBPFs and XG provides better encapsulation and protective effects for fish oil microcapsules. Upon simulated digestion, the microcapsules containing XG and RBPFs exhibited a more favorable controlled release of free fatty acids. These findings indicate that microcapsules formed from emulsions co-stabilized by XG and RBPFs are suitable for encapsulating fish oil in functional foods.
Collapse
Affiliation(s)
- Wenting Tang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuxian Pang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yongxue Luo
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Qin Tian
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Chuanfen Pu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
17
|
Pereira M, Silva FC, Simões S, Ribeiro HM, Almeida AJ, Marto J. Innovative, Sugar-Free Oral Hydrogel as a Co-administrative Vehicle for Pediatrics: a Strategy to Enhance Patient Compliance. AAPS PharmSciTech 2022; 23:107. [PMID: 35381882 DOI: 10.1208/s12249-022-02265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Palatability and swallowability in the pediatric population are perceived as true challenges in the oral administration of medication. Pediatric patients have high sensitivity to taste and reduced ability to take solid dosage forms, which can often lead to a poor therapeutic compliance. It is crucial to find new strategies to simplify the oral administration of drugs to children. The present paper reports the development of a new hydrogel vehicle adapted to the pediatric population. Several polymers with similar properties were selected and adjustments were made to obtain the desired characteristics of the final product. The developed formulations were studied for organoleptic properties, rheology, mucoadhesion properties, preservative efficacy, and stability. Physical and chemical compatibilities between the vehicle and several drugs/medicines, at the time of administration, were also studied. Six final formulations with different polymers, odor, and color were chosen, and no known interactions with medications were observed. The proposed new oral vehicles are the first sugar-free vehicle hydrogels designed to make the intake of oral solid forms a more pleasant and safer experience for pediatric patients.
Collapse
|
18
|
Katsouli M, Tzia C. O1/W/O2 nanoemulsions and emulsions based on extra virgin olive oil produced by ultrasound-assisted homogenization process: Characterization of structure, physical and encapsulation efficiency. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2035235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maria Katsouli
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Greece
| |
Collapse
|
19
|
Tangsrianugul N, Winuprasith T, Suphantharika M, Wongkongkatep J. Effect of hydrocolloids on physicochemical properties, stability, and digestibility of Pickering emulsions stabilized by nanofibrillated cellulose. Food Funct 2022; 13:990-999. [PMID: 35015014 DOI: 10.1039/d1fo02933a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, the effect of hydrocolloids with different electrostatic characteristics, namely negatively charged xanthan gum (XG), positively charged chitosan (CH), and non-ionic guar gum (GG), on the physicochemical properties, stability, and lipid digestibility of 10% (w/w) soybean oil-in-water Pickering emulsions stabilized by nanofibrillated cellulose (NFC) was investigated. Addition of XG and CH to the NFC-stabilized emulsions significantly increased the oil droplet sizes and apparent viscosity at high shear rates as compared with the addition of GG. The XG added emulsion showed the lowest rate and extent of creaming, whereas the CH added emulsion gave the highest extent of creaming. The addition of XG and CH led to a more pronounced effect on in vitro lipid digestion, i.e. changes in droplet sizes, surface charges, microstructure, and free fatty acid (FFA) release, than the addition of GG. The XG added emulsion showed the lowest rate and extent of lipid digestion possibly due to the high viscosity of the aqueous phase, large oil droplet sizes, and interaction of XG and calcium, resulting in the reduction of lipase activity. The CH added emulsion exhibited the highest extent of lipid digestion possibly due to binding between CH and FFAs and move away from the droplet surfaces, thereby facilitating the lipase activity. In summary, it can be concluded that ionic hydrocolloids exerted more influence on NFC-stabilized Pickering emulsions than non-ionic ones. These results may facilitate the design of highly stable emulsion-based functional food products with added hydrocolloids to promote health and wellness.
Collapse
Affiliation(s)
- Nuttinee Tangsrianugul
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.
| | | | - Manop Suphantharika
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.
| | - Jirarut Wongkongkatep
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.
| |
Collapse
|
20
|
Essential-Oil-Loaded Nanoemulsion Lipidic-Phase Optimization and Modeling by Response Surface Methodology (RSM): Enhancement of Their Antimicrobial Potential and Bioavailability in Nanoscale Food Delivery System. Foods 2021; 10:foods10123149. [PMID: 34945700 PMCID: PMC8700816 DOI: 10.3390/foods10123149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023] Open
Abstract
Nanoencapsulation is an attractive technique used for incorporating essential oils in foods. Thus, our main goal was to formulate a novel nanoemulsion (NE) with nanoscale droplet size and lowest interfacial tension in the oil–water interface, contributing positively to the stability and the enhancement of essential oil potential. Thereby, response surface methodology (RSM), with mixture design was used to optimize the composition of the NE lipid phase. The essential oil combinations were encapsulated through high-pressure homogenization (HPH) with the binary emulsifier system (Tween 80: Gum Arabic). Then, the electrophoretic and physical properties were evaluated. We also conducted a follow-up stability and antimicrobial study that examined the stabilization mechanism of optimal NE. Thereafter, the effect of nanoencapsulation on the essential oil composition was assessed. The RSM results were best fitted into polynomial models with regression coefficient values of more than 0.95. The optimal NE showed a nanometer-sized droplet (270 nm) and lower interfacial tension (~11 mN/m), favoring negative ζ-potential (−15 mV), showing good stability under different conditions—it synergistically enhances the antimicrobial potential. GC-MS analysis showed that the use of HPH affected the active compounds, consistent with the differences in linalool and 2-Caren-10-al content. Hence, the novel nanometric delivery system contributes to food industry fortification.
Collapse
|
21
|
Zhao GX, Zhu LJ, Li H, Liu XY, Yang LN, Wang SN, Liu H, Ma T. A hierarchical emulsion system stabilized by soyasaponin emulsion droplets. Food Funct 2021; 12:10571-10580. [PMID: 34581363 DOI: 10.1039/d1fo01607e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oil/water (O/W) emulsion droplets coated with soyasaponin (Ssa) were used as emulsifiers to prepare emulsions with hierarchical configurations (2.82 μm). Ssa is a natural triterpenoid with amphiphilic properties and an excellent emulsifying activity. Stable O/W emulsions were prepared and characterized using an ultrasonic method at a Ssa concentration of 2.5 wt%. The resultant hierarchical emulsions were further prepared using O/W droplets as emulsifiers. It was observed that the stability of the hierarchical emulsions changed with alterations to the ratio of O/W droplets to the oil phase. As the number of droplets increased, the more the surface area of the hierarchical emulsion was covered. Additional observations included a decreased particle size, increased negative charge and viscoelastic behavior, and enhanced emulsion stability. The emulsion was most stable when the O/W droplet addition was 29%. The addition of O/W droplets continued to increase, and there was an imbalance in the ratio of O/W droplets to the oil phase; the excess O/W droplets induced instability in the emulsion, resulting in a degradation of the emulsion quality. We monitored hierarchical emulsions with different concentrations of emulsifiers for 30 days, and the results indicated that hierarchical emulsions could meet the demand for long-term storage. This provides a new theoretical basis for the construction and application of complex emulsion systems.
Collapse
Affiliation(s)
- Guo-Xiu Zhao
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Li-Jie Zhu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiu-Ying Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Li-Na Yang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Sheng-Nan Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - He Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Tao Ma
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
22
|
Structural characteristics of gluconic acid δ-lactone induced casein gels as regulated by gellan gum incorporation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106897] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Fonseca JVDS, Batista JDF, de Oliveira MC, Diniz NCM, Lima MDS, Madruga MS, Magnani M, Borges GDSC. Low-fat and rich-fibers macauba (Acrocomia spp.) sauces: Physical and oxidative stability, nutritional quality and sensory characteristics. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Yang J, Zhou S, Gu Z, Cheng L, Cui C, Shen Y, Hong Y. Effect of starch-hydrocolloid complexes with heat-moisture treatment on in vivo digestibility. Food Funct 2021; 12:8017-8025. [PMID: 34269784 DOI: 10.1039/d1fo01586a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the effect of starch-hydrocolloid (gum arabic, xanthan gum, and guar gum) complexes with heat-moisture treatment (HMT) on in vivo digestibility. In vivo digestibility experiments revealed that the body weight, liver weight, and fat index of mice in the intervention group were significantly reduced compared with those in the high-fat group. Glucose tolerance improved, and blood lipid levels, liver and adipose tissue morphology returned to normal. The results of mRNA expression levels showed that the intervention of corn starch-hydrocolloid complexes after HMT down-regulated the expression level of genes related to fat synthesis compared with the high-fat group, which could decrease lipid deposition and stabilize blood lipid levels. Results revealed that starch-xanthan gum complex (1 : 40 ratio) with HMT could markedly reduce the digestibility of starch. Overall, this study provides new ideas for the application of low-glycemic-index and functional foods.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Li P, Guo C, Li X, Yuan K, Yang X, Guo Y, Yang X. Preparation and structural characteristics of composite alginate/casein emulsion gels: A microscopy and rheology study. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Riaz T, Iqbal MW, Jiang B, Chen J. A review of the enzymatic, physical, and chemical modification techniques of xanthan gum. Int J Biol Macromol 2021; 186:472-489. [PMID: 34217744 DOI: 10.1016/j.ijbiomac.2021.06.196] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Xanthan gum (XG), a bacterial polysaccharide has numerous valuable characteristics in the food, biomedical, pharmaceuticals, and agriculture sector. However, XG has also its particular limitations such as its vulnerability to microbial contamination, inadequate mechanical and thermal stability, unusable viscosity, and poor water solubility. Therefore, XG's structure and conformation need to be modified enzymatically, chemically, or physically to improve its optimistic features and decrease the formation of crystals, increase antioxidant ability, and radical scavenging activity. We have found out different means to modify XG and elaborate the importance and significance of the modified structure of XG. In this review, different enzymes are reviewed for XG degradation, which modifies their structure from different points (main chain or side chain). This article also reviews various physical methods (ultrasound, shear, pressure, sonication, annealing, and heat treatments) based on prevailing publications to alter XG conformation and produce low molecular weight (LMW) and less viscous end-product. Moreover, some chemical means are also discussed that result in modified XG through crosslinking, grafting, acetylation, pyruvation, as well as by applying different chemical agents. Overall, the current progress on XG degradation is very auspicious to develop a new molecule with considerable uses, in various industries with future assessments.
Collapse
Affiliation(s)
- Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
27
|
Comunian TA, Drusch S, Brodkorb A. Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds. Crit Rev Food Sci Nutr 2021; 62:6485-6504. [PMID: 33775182 DOI: 10.1080/10408398.2021.1902262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food researchers are currently showing a growing interest in in vitro digestibility studies due to their importance for obtaining food products with health benefits and ensuring a balanced nutrient intake. Various bioactive food compounds are sensitive to the digestion process, which results in a lower bioavailability in the gut. The main objective of structured food delivery systems is to promote the controlled release of these compounds at the desired time/place, in addition to protecting them during digestion processes. This review provides an overview of the influence of structured delivery systems on the in vitro digestive behavior. The main delivery systems are summarized, the pros and cons of different structures are outlined, and examples of several studies that optimized the use of these structured systems are provided. In addition, we have reviewed the use of plant-based systems, which have been of interest to food researchers and the food industry because of their health benefits, improved sustainability as well as being an alternative for vegetarian, vegan and consumers suffering from food allergies. In this context, the review provides new insights and comprehensive knowledge regarding the influence of plant-based structured systems on the digestibility of encapsulated compounds and proteins/polysaccharides used in the encapsulation process.
Collapse
Affiliation(s)
- Talita A Comunian
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|
28
|
Cai X, Wang Y, Du X, Xing X, Zhu G. Stability of pH-responsive Pickering emulsion stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106093] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Gomes A, Costa ALR, Cardoso DD, Furtado GDF, Cunha RL. Impact of whey protein/surfactant mixture and oil type on the gastrointestinal fate of emulsions: Ingredient engineering. Food Res Int 2020; 137:109360. [DOI: 10.1016/j.foodres.2020.109360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
|
30
|
Iacob AT, Drăgan M, Ionescu OM, Profire L, Ficai A, Andronescu E, Confederat LG, Lupașcu D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020; 12:E983. [PMID: 33080849 PMCID: PMC7589858 DOI: 10.3390/pharmaceutics12100983] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, despite the thoroughgoing scientific research carried out in the area of wound healing management, the treatment of skin injuries, regardless of etiology remains a big provocation for health care professionals. An optimal wound dressing should be nontoxic, non-adherent, non-allergenic, should also maintain a humid medium at the wound interfacing, and be easily removed without trauma. For the development of functional and bioactive dressings, they must meet different conditions such as: The ability to remove excess exudates, to allow gaseous interchange, to behave as a barrier to microbes and to external physical or chemical aggressions, and at the same time to have the capacity of promoting the process of healing by stimulating other intricate processes such as differentiation, cell adhesion, and proliferation. Over the past several years, various types of wound dressings including hydrogels, hydrocolloids, films, foams, sponges, and micro/nanofibers have been formulated, and among them, the electrospun nanofibrous mats received an increased interest from researchers due to the numerous advantages and their intrinsic properties. The drug-embedded nanofibers are the potential candidates for wound dressing application by virtue of: Superior surface area-to volume ratio, enormous porosity (can allow oxy-permeability) or reticular nano-porosity (can inhibit the microorganisms'adhesion), structural similitude to the skin extracellular matrix, and progressive electrospinning methodology, which promotes a prolonged drug release. The reason that we chose to review the formulation of electrospun nanofibers based on polysaccharides as dressings useful in wound healing was based on the ever-growing research in this field, research that highlighted many advantages of the nanofibrillary network, but also a marked versatility in terms of numerous active substances that can be incorporated for rapid and infection-free tissue regeneration. In this review, we have extensively discussed the recent advancements performed on electrospun nanofibers (eNFs) formulation methodology as wound dressings, and we focused as well on the entrapment of different active biomolecules that have been incorporated on polysaccharides-based nanofibers, highlighting those bioagents capable of improving the healing process. In addition, in vivo tests performed to support their increased efficacy were also listed, and the advantages of the polysaccharide nanofiber-based wound dressings compared to the traditional ones were emphasized.
Collapse
Affiliation(s)
- Andreea-Teodora Iacob
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Maria Drăgan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Oana-Maria Ionescu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Lenuța Profire
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Luminița Georgeta Confederat
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania;
| | - Dan Lupașcu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| |
Collapse
|
31
|
Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydr Polym 2020; 247:116705. [PMID: 32829833 DOI: 10.1016/j.carbpol.2020.116705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/29/2022]
Abstract
Electrospinning has garnered significant attention in view of its many advantages such as feasibility for various polymers, scalability required for mass production, and ease of processing. Extensive studies have been devoted to the use of electrospinning to fabricate various electrospun nanofibers derived from carbohydrate gum polymers in combination with synthetic polymers and/or additives of inorganic or organic materials with gums. In view of the versatility and the widespread choice of precursors that can be deployed for electrospinning, various gums from both, the plants and microbial-based gum carbohydrates are holistically and/or partially included in the electrospinning solution for the preparation of functional composite nanofibers. Moreover, our strategy encompasses a combination of natural gums with other polymers/inorganic or nanoparticles to ensue distinct properties. This early established milestone in functional carbohydrate gum polymer-based composite nanofibers may be deployed by specialized researchers in the field of nanoscience and technology, and especially for exploiting electrospinning of natural gums composites for diverse applications.
Collapse
|
32
|
Riquelme N, Robert P, Troncoso E, Arancibia C. Influence of the particle size and hydrocolloid type on lipid digestion of thickened emulsions. Food Funct 2020; 11:5955-5964. [PMID: 32609135 DOI: 10.1039/d0fo01202e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrocolloids are used as stabilizing agents in order to enhance the physical stability of emulsions during their storage. However, they can also play an important role in nutrient release and bioavailability. In this context, the aim of this research was to study the effect of the emulsion type and thickener type on the physical-structural changes and free fatty acid release during in vitro digestion. Oil-in-water emulsions were prepared with different particle sizes (CE: conventional emulsions and NE: nanoemulsions) and thickening agents (starch and xanthan gum). The experimental conditions of homogenization used allowed food emulsions to be obtained at the microscale and nanoscale, with particle sizes ranging among 3.2-3.4 μm and 78-107 nm for CE and NE, respectively. The addition of thickening agents (XG and ST) modified the physical properties of emulsions (particle size, zeta potential and stability) slightly, and thickened samples with similar viscosity were obtained. The kinetics of FFAs released during the in vitro intestinal digestion showed no significant differences (p > 0.05) in the digestion rate among samples; however, emulsion and thickener types decreased the final extent of free fatty acids, being more evident for those samples with starch. Xanthan gum kept the particle size of nanoemulsions stable during the oral and gastric phases, which promoted the release of FFAs during the intestinal phase. Therefore, xanthan gum could be used as a thickening agent of nanoemulsions exerting a minor impact on their lipid bioaccessibility.
Collapse
Affiliation(s)
- N Riquelme
- Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central, Chile.
| | | | | | | |
Collapse
|
33
|
Structural changes of filling creams after in vitro digestion. Application of hydrocolloid based emulsions as fat source. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Espert M, Bresciani A, Sanz T, Salvador A. Functionality of low digestibility emulsions in cocoa creams. Structural changes during in vitro digestion and sensory perception. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|