1
|
Rathee S, Ojha A, Sagar P, Upadhyay A, Rather IA, Shukla S. Decoration of Fe 3O 4-vitamin C nanoparticles on alginate-chitosan nanocomplex: Characterization, safety, bioacessibility boost and Iron Nanofortification in A2 goat milk gels. Food Chem 2025; 470:142711. [PMID: 39756086 DOI: 10.1016/j.foodchem.2024.142711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/14/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
In this study, an alginate-chitosan (AL-CS) nanocomplex decorated with vitamin C coated iron oxide nanoparticles (Fe3O4-vit C NPs) was investigated as a novel nanoiron fortification agent. The Fe3O4-vit C NPs decorated on AL-CS nanocomplex underwent comprehensive characterization, including zeta potential, fourier transform infrared spectroscopy, X-ray diffraction, and UV-vis spectroscopy. The transmission electron microscopy (TEM) analysis confirmed the decoration of Fe3O4-vit C NPs on AL-CS nanocomplex. The dynamic light scattering and thermogravimetric analysis showed enhanced thermal properties of decorated nanocomplex than the undecorated control. Biocompatibility testing on HepG2 cell lines revealed improved compatibility, while intestinal Caco2 cell lines showed approximately 51 % greater bioacessibility than controls. Further, 8 mg of Fe3O4-vit C NPs decorated AL-CS nanocomplex nanofortified 80 g of A2 goat milk gels (GMGs) which provided 0.072 mg/g of nanoiron without showing significant changes in texture and color compared to the control A2 GMGs. The PCA analysis helped to identify the impact of various factors for the preparation of decorated nanocomplex.
Collapse
Affiliation(s)
- Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli (NIFTEM-K), Sonipat 131028, Haryana, India.
| | - Ankur Ojha
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli (NIFTEM-K), Sonipat 131028, Haryana, India.
| | - Poonam Sagar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Mohali, Punjab 140208, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Science Technology Entrepreneurship and Management, Kundli (NIFTEM-K), Sonipat 131028, Haryana, India
| | - Irfan A Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Shruti Shukla
- Department of Nanotechnology, North-Eastern Hill University (NEHU), Shillong 793022, Meghalaya, India.
| |
Collapse
|
2
|
Kumar SA, Negi A, Santhoshkumar P, Moses JA, Sinija VRN. Coconut: Expanding avenues in processing and an exposition on non-conventional value-added products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1522-1532. [PMID: 39073106 DOI: 10.1002/jsfa.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Coconut palm (Cocos nucifera) is a treasured tree of the tropics, with every part put to use. The edible portions are loaded with diverse nutrients and nutraceutical ingredients. While the unique mineral profile of the liquid endosperm, the low-glycemic inflorescence sap (neera) and the medium-chain triglyceride fraction of coconut oil are better recognized, other fractions such as the haustorium remain underexplored. Overall, it is evident that, globally, the present status of coconut value addition is conventional, limited to a handful of products, and novel products hold a promising scope. A massive fraction of global coconut production goes for culinary and religious purposes. In the article, value-added products from coconut are classified into conventional and non-conventional products, with the latter in focus. Based on the part from which it is collected, all products have been categorized as haustorium-based, inflorescence-based, kernel-based and water-based products. For each non-conventional product introduced, its production approach and unique application range are highlighted. Given its health-promoting capabilities, characteristic sensorial attributes, wide application range and technological advancements, coconuts are increasingly being recognized around the world, even in regions that do not cultivate them; this applies to non-food products as well. In the context of value-added products from coconuts, this decade has witnessed a surge in research and commercial interest considering the inclusion of coconut as an ingredient in several food and nutraceutical products. The future will certainly consider regulatory protocols and standards, better documentation of the health impact of coconut-based diets, and the sustainability of coconut production, processing and consumption. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sarangapany Ashwin Kumar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Aditi Negi
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Paramasivam Santhoshkumar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Jeyan Arthur Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | | |
Collapse
|
3
|
Chen X, Zhu J, Tian D, Li Z. Preparation of soybean protein isolate-ester emulsifier oleogels and comparative study of their structure and properties. Food Chem 2024; 461:140927. [PMID: 39181049 DOI: 10.1016/j.foodchem.2024.140927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
In recent years, oleogel as a viscoelastic semi-solid to replace trans fatty acids and reduce saturated fatty acids in food has received more and more attention. Herein, an emulsion template method was used to produce soybean oil-based oleogels with seven different ester emulsifiers and soy protein isolate as oleogelators. The chemical and physical characteristics of oleogels produced via various crosslinking factors were comparatively examined. Results revealed that all oleogels generated β-type needle crystals and exhibited high oil-holding capacity (>80 %), among which glycerol monolaurate G2 and diacetyl tartaric acid ester of mono-diglycerides G6 exhibited the strongest oil-holding capacity (96.6 % and 96.2 %, respectively). Furthermore, all oleogels exhibited strong thixotropic recovery, high thermal stability, as well as high gel strength (G' > G''). Of these, G2 and G6 exhibited the highest thixotropic recovery rates at 74.54 % and 78.19 %, respectively. Additionally, in accelerated oxidation trials, the peroxide value and thiobarbituric acid reactive substances of all oleogels had low oxidation rates, indicating high oxidative stability. These results contribute to a better understanding of oleogels for formulating trans-free and low-saturated foodstuffs with desired physical and functional properties.
Collapse
Affiliation(s)
- Xi Chen
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jianfei Zhu
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro-Products, Chongqing 400067, China.
| | - Dongling Tian
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zongyang Li
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| |
Collapse
|
4
|
Zhu Q, Wang H, Li Y, Yu H, Pei J, Chen H, Chen W. Dynamic interfacial adsorption and emulsifying performance of self-assembled coconut protein and fucoidan mixtures. Int J Biol Macromol 2024; 276:133928. [PMID: 39038582 DOI: 10.1016/j.ijbiomac.2024.133928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
The functional properties of protein are affected by their aggregation behavior and morphology. In this study, the self-assembled coconut protein aggregates with specific morphology, including small amorphous aggregates (WLA), spherical-like aggregates (SLA) and rod-like aggregates (RLA), were regulated to form. The self-assembled process resulted in a decrease in fluorescence intensity and an increase in the surface hydrophobicity of coconut protein. Fucoidan was added to improve the stability of protein solutions, and the interfacial adsorption behavior was evaluated by dilatational rheology analysis. The results showed that the aggregation state of coconut protein affected its ability to reduce surface tension, and the interfacial layers mainly exhibited elastic property at oil-water interface (tanφ < 0.5). For macroscale analysis, the emulsions based on self-assembled coconut protein exhibited smaller droplet size, better rheological properties and centrifugal stability, especially WLA and RLA. This study may provide a reference to inspire the utilization of self-assembled coconut protein in the food industry.
Collapse
Affiliation(s)
- Qianqian Zhu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hao Wang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yang Li
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hanhan Yu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jianfei Pei
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Wenxue Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
5
|
Lu Y, Zhang Y, Wang S. From Palm to Plate: Unveiling the Potential of Coconut as a Plant-Based Food Alternative. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15058-15076. [PMID: 38920018 DOI: 10.1021/acs.jafc.3c09838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This review investigates coconut as a sustainable and nutrient-rich plant-based alternative to traditional animal-based food sources. We have explored the nutritional profile, culinary versatility, particularly focusing on the use of coconut meat, milk, cream, and oil in diverse dietary contexts when consumed in balance. Comparative analysis with animal-derived products reveals the high content of medium-chain triglycerides (MCTs), essential vitamins, and minerals in coconut, contrasted with its lower protein content. Researchers have underscored the environmental sustainability of coconut, advocating for its role in eco-friendly food production chains. We have also addressed challenges like potential allergies, nutritional balance, sensory attributes, and consumer motivations for coconut-based products, in terms of understanding the market dynamics. In conclusion, this review positions coconut as a promising candidate within sustainable diet frameworks, advocating for further research to augment its nutritional value, sensory characteristics, and product stability, thereby facilitating its integration into health-conscious and eco-centric dietary practices.
Collapse
Affiliation(s)
- Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Wu J, Tang Y, Zhang M, Chen W, Chen H, Zhong Q, Pei J, He R, Chen W. Mechanism for improving the in vitro digestive properties of coconut milk by modifying the structure and properties of coconut proteins with monosodium glutamate. Food Res Int 2024; 185:114288. [PMID: 38658074 DOI: 10.1016/j.foodres.2024.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
In this paper, the effect of monosodium glutamate (MSG) on coconut protein (CP) solubility, surface hydrophobicity, emulsification activity, ultraviolet spectroscopy and fluorescence spectroscopy was investigated. Meanwhile, the changes in the in vitro digestive properties of coconut milk were also further analyzed. MSG treatment altered the solubility and surface hydrophobicity of CP, thereby improving protein digestibility. Molecular docking showed that CP bound to pepsin and trypsin mainly through hydrogen bonds and salt bridges. And MSG increased the cleavable sites of pepsin and trypsin on CP, thus further improving the protein digestibility. In addition, MSG increased the Na+ concentration in coconut milk, promoted flocculation and aggregation between coconut milk droplets, which prevented the binding of lipase and oil droplets and inhibited lipid digestion. These findings may provide new ideas and insights to improve the digestive properties of plant-based milk.
Collapse
Affiliation(s)
- Jiawu Wu
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Yingjiao Tang
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Ming Zhang
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Wenxue Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Haiming Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Qiuping Zhong
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Jianfei Pei
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Rongrong He
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| | - Weijun Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| |
Collapse
|
7
|
Tian H, Gu Y, Lv Z, Wang L. The exopolysaccharides produced by Leuconostoc mesenteroides XR1 and its effect on silk drawing phenomenon of yoghurt. Int J Biol Macromol 2024; 262:129952. [PMID: 38320635 DOI: 10.1016/j.ijbiomac.2024.129952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Yoghurt fermented by Leuconostoc mesenteroides XR1 from Kefir grains was found to produce a unique silk drawing phenomenon. This property was found to be associated with the exopolysaccharides (EPS), X-EPS, produced by strain XR1. In order to better understand the mechanism that produced this phenomenon, the X-EPS was extracted, purified and characterized. The molecular weight and monosaccharide composition were determined by size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS) and ion chromatography (IC) analysis, respectively. The results showed that its molecular weight was 4.183 × 106 g/mol and its monosaccharide composition was glucose, and glucuronic acid, with the contents of 567.6148 and 0.2096 μg/mg, respectively. FT-IR and NMR analyses showed that X-EPS was an α-pyranose polysaccharide and was composed of 92.22 % α-(1 → 6) linked d-glucopyranose units and 7.77 % α-(1 → 3) branching. Furthermore, it showed a chain-like microstructure with branches in atomic force microscopy (AFM) and scanning electron microscopy (SEM) experiments. These results suggested that the unique structure of X-EPS, gave the yoghurt a strong viscosity and cohesiveness, which resulted in the silk drawing phenomenon. This work suggested that X-EPS holds the potential for food and industrial applications.
Collapse
Affiliation(s)
- Huimin Tian
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Yachun Gu
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Zili Lv
- School of Medical and Life Sciences/Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu 610041, China.
| | - Liang Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
8
|
Chen Y, Chen Y, Fang Y, Pei Z, Zhang W. Coconut milk treated by atmospheric cold plasma: Effect on quality and stability. Food Chem 2024; 430:137045. [PMID: 37541035 DOI: 10.1016/j.foodchem.2023.137045] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Commercial sterilization plays an important role in extending the shelf-life of coconut milk. However, thermal sterilization affects the quality of coconut milk. This study was initiated to evaluate the effects of atmospheric cold plasma (ACP) treatment on some important quality parameters of coconut milk. ACP treatment had a slight effect on physicochemical characteristics and nutritional ingredients while it obviously reduced the colony count. Furthermore, ACP treatment obviously promoted the formation of lactone, an indispensable volatile substance in coconut milk. Insufficient or moderate ACP treatment had subtle effect on the sensory quality. Notably, moderate ACP treatment reduced the droplet size from 28.0 μm to 18.6 μm, and improved the stability during storage and centrifugation, especially at 60 kV 60 s. Overall, sterilization of coconut milk by ACP at 60 kV 60 s was the most ideal. This study can provide theoretical guidance for the application of ACP in liquid food.
Collapse
Affiliation(s)
- Yang Chen
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Yile Chen
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Yajing Fang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Zhisheng Pei
- School of Food Science and Engineering, Hainan University, Hainan 570228, China; School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China.
| |
Collapse
|
9
|
Wu J, Tang Y, Chen W, Chen H, Zhong Q, Pei J, Han T, Chen W, Zhang M. Mechanism for improving coconut milk emulsions viscosity by modifying coconut protein structure and coconut milk properties with monosodium glutamate. Int J Biol Macromol 2023; 252:126139. [PMID: 37543272 DOI: 10.1016/j.ijbiomac.2023.126139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/06/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
In this study, monosodium glutamate (MSG) was used to improve the viscosity of coconut milk and the underlying mechanism was explored by investigating the changes in structures of coconut milk protein and physicochemical properties of coconut milk. Firstly, the effect of MSG on the properties of coconut milk was studied. The results showed that MSG increased the pH and zeta potential, reduced the particle size, thus enhancing the droplet interaction and increasing the viscosity of coconut milk. Subsequently, the effects of MSG on the structure and properties of coconut proteins (CP) were investigated. FTIR spectroscopy and circular dichroism spectroscopy showed that MSG was able to change the secondary structure of CP. The results of SDS-PAGE showed that MSG was able to bind to CP to form a larger molecular weight protein, thus improving the viscosity of coconut milk. Moreover, MSG was also able to increase the water-binding capacity of CP. In addition, molecular docking and driving force analysis revealed that hydrogen bonds, electrostatic forces, disulfide bonds, and hydrophobic interactions are the main interactions between MSG and CP. Studying the effect of MSG on the viscosity of coconut milk provides theoretical support to improve the viscosity of other plant protein emulsions.
Collapse
Affiliation(s)
- Jiawu Wu
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Yingjiao Tang
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Wenxue Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Haiming Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China; Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qiongshan Road, Haikou 571126, PR China
| | - Qiuping Zhong
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Jianfei Pei
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Tao Han
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Weijun Chen
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| | - Ming Zhang
- HNU-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| |
Collapse
|
10
|
Liu Q, Liu Y, Huang H, Xiong M, Yang Y, Lin C, Yang F, Xie Y, Yuan Y. Improvement of the emulsifying properties of Zanthoxylum seed protein by ultrasonic modification. ULTRASONICS SONOCHEMISTRY 2023; 100:106638. [PMID: 37826892 PMCID: PMC10582558 DOI: 10.1016/j.ultsonch.2023.106638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
The influence of ultrasonic treatment (100-500 W, 30 min) on the molecular structures and emulsifying properties of Zanthoxylum seed protein (ZSP) was explored for the first time in this work. Research results indicated that the all ultrasonic treatments at different power levels decreased the particle size but increased the surface charge of ZSP. In addition, the ultrasonic treatments induced the structural unfolding of the ZAP, as indicated by the increase in α-helix, ultraviolet-visible absorbance, surface hydrophobicity and the amount of surface free sulfhydryl groups, as well as the decrease in β-sheet and intrinsic fluorescence intensity. As a result, the significantly (p < 0.05) increased emulsifying activity index (EAI) and emulsion stability index (ESI) of ZSP were observed after ultrasonic treatment. In addition, the emulsion prepared by ultrasonically treated ZSP exhibited the smaller and more uniform droplets with significantly improved stability against environmental stress (temperature, salt concentration, pH), creaming and oxidation due to the increased ratio of interfacially adsorbed ZSP. Furthermore, ultrasonic treatment at 400 W was found to be the optimum condition for modification. These findings will provide a theoretical foundation for the utilization of ultrasound in enhancing the emulsifying properties of ZSP and promoting its application in the field of food processing.
Collapse
Affiliation(s)
- Qingqing Liu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Yanting Liu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - He Huang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Mingming Xiong
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yunting Yang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Chutian Lin
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Feng Yang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yisha Xie
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yongjun Yuan
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
11
|
He Z, Chi C, Huang S, Li X. A novel method for obtaining high amylose starch fractions from debranched starch. Curr Res Food Sci 2023; 7:100589. [PMID: 37744555 PMCID: PMC10514404 DOI: 10.1016/j.crfs.2023.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
High amylose starch shows wide applications in food and non-food-based industries. Traditional complex-precipitation approach for the amylose fractionation required a large volume of organic reagents and was possibly risky for food safety. The object of this work was to establish a novel method to obtain starch fractions rich in amylose from debranch starch through repeated short-term retrogradation and centrifugation. Four starch fractions were obtained with the amylose content of 52.08% (C1), 62.28% (C2), 63.58% (C3), and 64.74% (C4). The thermograms of samples displayed that multiple endothermic peaks were detected in C1 and C2 and only one endothermic peak with melting temperature over 120 °C were observed in C3 and C4, indicating their differences in retrogradation behavior. The chain length distribution results of sample exhibited that C1 and C2 contained more short chains (DP ≤ 24), while C3 and C4 consisted of mainly long chains (DP ≥ 25). Accordingly, the differences in fine structures could provide more choices for these fractionated high amylose starch to utilize in practical applications.
Collapse
Affiliation(s)
- Zhongchao He
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chengdeng Chi
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuangxia Huang
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
12
|
Zhao Q, Wang Z, Yu Z, Gao Z, Mu G, Wu X. Influence on physical properties and digestive characters of fermented coconut milk with different loading proportion of skimmed coconut drink using Lactiplantibacillus plantarum MWLp-4 from human milk mixing with commercial bacteria. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Changes in structure and emulsifying properties of coconut globulin after the atmospheric pressure cold plasma treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Sun Y, Chen H, Chen W, Zhong Q, shen Y, Zhang M. Effect of ultrasound on pH-shift to improve thermal stability of coconut milk by modifying physicochemical properties of coconut milk protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Li X, Peng B, Chi-Keung Cheung P, Wang J, Zheng X, You L. Depolymerized non-digestible sulfated algal polysaccharides produced by hydrothermal treatment with enhanced bacterial fermentation characteristics. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Dong G, Xiong H, Zeng W, Li J, Du D. Ectopic Expression of the Rice Grain-Size-Affecting Gene GS5 in Maize Affects Kernel Size by Regulating Endosperm Starch Synthesis. Genes (Basel) 2022; 13:1542. [PMID: 36140710 PMCID: PMC9498353 DOI: 10.3390/genes13091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Maize is one of the most important food crops, and maize kernel is one of the important components of maize yield. Studies have shown that the rice grain-size affecting gene GS5 increases the thousand-kernel weight by positively regulating the rice grain width and grain grouting rate. In this study, based on the GS5 transgenic maize obtained through transgenic technology with specific expression in the endosperm, molecular assays were performed on the transformed plants. Southern blotting results showed that the GS5 gene was integrated into the maize genome in a low copy number, and RT-PCR analysis showed that the exogenous GS5 gene was normally and highly expressed in maize. The agronomic traits of two successive generations showed that certain lines were significantly improved in yield-related traits, and the most significant changes were observed in the OE-34 line, where the kernel width increased significantly by 8.99% and 10.96%, the 100-kernel weight increased by 14.10% and 10.82%, and the ear weight increased by 13.96% and 15.71%, respectively; however, no significant differences were observed in the plant height, ear height, kernel length, kernel row number, or kernel number. In addition, the overexpression of the GS5 gene increased the grain grouting rate and affected starch synthesis in the rice grains. The kernels' starch content in OE-25, OE-34, and OE-57 increased by 10.30%, 7.39%, and 6.39%, respectively. Scanning electron microscopy was performed to observe changes in the starch granule size, and the starch granule diameter of the transgenic line(s) was significantly reduced. RT-PCR was performed to detect the expression levels of related genes in starch synthesis, and the expression of these genes was generally upregulated. It was speculated that the exogenous GS5 gene changed the size of the starch granules by regulating the expression of related genes in the starch synthesis pathway, thus increasing the starch content. The trans-GS5 gene was able to be stably expressed in the hybrids with the genetic backgrounds of the four materials, with significant increases in the kernel width, 100-kernel weight, and ear weight. In this study, the maize kernel size was significantly increased through the endosperm-specific expression of the rice GS5 gene, and good material for the functional analysis of the GS5 gene was created, which was of great importance in theory and application.
Collapse
Affiliation(s)
- Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinhua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Soy oil and SPI based-oleogels structuring with glycerol monolaurate by emulsion-templated approach: Preparation, characterization and potential application. Food Chem 2022; 397:133767. [PMID: 35905623 DOI: 10.1016/j.foodchem.2022.133767] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
In this study, soybean oil-based oleogels were prepared using soy-protein isolate (SPI) and glycerol monolaurate (GML) in an emulsion-template approach. The rheological, texture, microstructure, and oil-retention properties of the obtained oleogels were analyzed. Results showed that the soy oil-based oleogel prepared with 6 wt% GML exhibited high oil loss, low-hardness, and needle-like morphology compared to the soy-oil/SPI-based oleogel. On the other hand, soy oil-based /SPI-based oleogels structured by 3 or 6 wt% GML presented moderate thermal-stability and lowest oil loss than those prepared without GML. Furthermore, SPI-based oleogel containing 6 wt% GML showed highest free fatty acids release (62.07%) with significantly improved elastic modulus and apparent viscosity. Additionally, the obtained oleogels displayed the occurrence of van der Waals interactions and intermolecular hydrogen bonds, presenting enhanced thermal stability. These results contribute to a better understanding of oleogelation-based emulsions for formulating trans-free and low-saturated foodstuffs with desired physical and functional properties.
Collapse
|
18
|
Evaluation of the synergistic effect of plant-based components on the stability of curcuminoid emulsion. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04074-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractIn this study, the effect of matrix compounds from natural curcuminoid resources on the stability of curcuminoids and emulsions thereof was evaluated. Curcuminoid emulsions were prepared curcuminoid rich sources (curcuminoid extract, an aqueous turmeric concentrate and turmeric powder) with medium-chain triglyceride oil as lipid phase, lecithin, and pectin as emulsifiers. The curcuminoid emulsions were exposed to light in the visible wavelength range (300 nm–800 nm) at the specific energy input of 0.47 kW/m2 for 7 days and to the temperature of 4 °C, 25 °C, 40 °C for 49 days. The total curcuminoid retention (TC), droplet size (DS) change, instability index (InI), and yellowness reduction (YR) was observed during the storage time. The half-life of curcuminoids in emulsions was increased to 21 h, while the half-life of free curcuminoids was 1.3 h in the light exposure test. The co-compounds from the curcuminoid sources contributed to the emulsion stability by increasing the viscosity. In the thermal exposure test, the matrix compound system retained more than 93% curcuminoids after 49 days of storage at 40 °C, whereas the phase separation increased significantly. However, the TC reduction was independent of the InI change and droplet agglomeration. The YR depended on the TC and the amount of co-components in the emulsion.
Collapse
|
19
|
Zhao X, Liang Q. EPS-Producing Lactobacillus plantarum MC5 as a Compound Starter Improves Rheology, Texture, and Antioxidant Activity of Yogurt during Storage. Foods 2022; 11:foods11111660. [PMID: 35681410 PMCID: PMC9179970 DOI: 10.3390/foods11111660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
This study evaluated the effects of probiotic Lactobacillus plantarum MC5 on the quality, antioxidant activity, and storage stability of yogurt, to determine its possible application as a starter in milk fermentation. Four groups of yogurt were made with different proportions of probiotic L. plantarum MC5 and commercial starters. The yogurt samples’ rheological properties, texture properties, antioxidant activity, storage stability, and exopolysaccharides (EPS) content during storage were determined. The results showed that 2:1 and 1:1 yogurt samples (supplemented with L. plantarum MC5) attained the highest EPS content (982.42 mg/L and 751.71 mg/L) during storage. The apparent viscosity, consistency, cohesiveness, and water holding capacity (WHC) of yogurt samples supplemented with L. plantarum MC5 were significantly higher than those of the control group (p < 0.05). Further evaluation of antioxidant activity revealed that yogurt samples containing MC5 starter significantly increased in DPPH, ABTS, OH, and ferric iron-reducing power. The study also found that adding MC5 can promote the growth of Streptococcus thermophilus. Therefore, yogurt containing L. plantarum MC5 had favorable rheological properties, texture, and health effects. The probiotic MC5 usage in milk fermentation showed adequate potential for industrial application.
Collapse
Affiliation(s)
| | - Qi Liang
- Correspondence: ; Tel.: +86-139-1903-4438
| |
Collapse
|
20
|
Effects of Ultrasound Combined with Preheating Treatment to Improve the Thermal Stability of Coconut Milk by Modifying the Physicochemical Properties of Coconut Protein. Foods 2022; 11:foods11071042. [PMID: 35407129 PMCID: PMC8997637 DOI: 10.3390/foods11071042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
In the food industry, coconut milk has a unique flavor and rich nutritional value. However, the poor emulsifying properties of coconut proteins restrict its development. In this study, the effect of ultrasound combined with preheating on coconut globulin and coconut milk was evaluated by physicochemical properties and structural characteristics. The results showed that ultrasound and 90 °C preheating gave coconut protein better emulsifying and thermal properties, demonstrated by higher solubility (45.2% to 53.5%), fewer free sulfhydryl groups (33.24 to 28.05 μmol/g) and higher surface hydrophobicity (7658.6 to 10,815.1). Additionally, Fourier transform infrared spectroscopy and scanning electron microscopy showed obvious changes in the secondary structure. Furthermore, the change in the physicochemical properties of the protein brought a higher zeta potential (−11 to −23 mV), decreased the thermal aggregation rate (148.5% to 13.4%) and increased the viscosity (126.9 to 1103.0 m·Pa·s) of the coconut milk, which indicates that ultrasound combined with preheating treatment provided coconut milk with better thermal stability. In conclusion, ultrasound combined with preheating will have a better influence on modifying coconut globulin and increasing the thermal stability of coconut milk. This study provides evidence that ultrasound and other modification technologies can be combined to solve the problems encountered in the processing of coconut protein products.
Collapse
|
21
|
Iqbal S, Zhang P, Wu P, Deng R, Chen XD. Impact of amylose from maize starch on the microstructure, rheology and lipolysis of W/O emulsions during simulated semi‐dynamic gastrointestinal digestion. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shahid Iqbal
- Life Quality Engineering Interest Group School of Chemical and Environmental Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| | - Ping Zhang
- Life Quality Engineering Interest Group School of Chemical and Environmental Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| | - Peng Wu
- Life Quality Engineering Interest Group School of Chemical and Environmental Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| | - Renpan Deng
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi 832003 China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group School of Chemical and Environmental Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
22
|
Silva AR, Silva MM, Ribeiro BD. Plant-based milk products. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Huang A, McClements DJ, Luo S, Chen T, Ye J, Liu C. Fabrication of rutin-protein complexes to form and stabilize bilayer emulsions: Impact of concentration and pretreatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
DENG L, LIU Y, ZHANG S, LI L, ZHU J, YU H. One-step method for improving the stability of coconut milk emulsion and keeping its flavor based on dynamic high-pressure microfluidization. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.05522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Limei DENG
- Guangdong University of Technology, China; Dongguan University of Technology, China
| | - Yujia LIU
- Dongguan University of Technology, China
| | | | - Lin LI
- Dongguan University of Technology, China
| | - Jie ZHU
- Dongguan University of Technology, China
| | | |
Collapse
|
25
|
Yuan Y, Cai W, Chen Y, Chong Y, Dong X, Wei J, Liu F, Shi Y. Effects of modified starch and homogeneous process on quality and volatile compounds of squid ink sauces. J Food Saf 2021. [DOI: 10.1111/jfs.12959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan‐wei Yuan
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| | - Wen‐qiang Cai
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- National Engineering Research Center of Seafood Dalian China
| | - Yue‐wen Chen
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| | - Yun‐qing Chong
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| | - Xiu‐ping Dong
- School of Food Science and Technology Dalian Polytechnic University Dalian China
- National Engineering Research Center of Seafood Dalian China
| | - Jian‐ling Wei
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| | - Fei‐jian Liu
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| | - Yu‐gang Shi
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition Zhejiang Gongshang University Hangzhou China
| |
Collapse
|
26
|
Xiao Y, Wu X, Zhang B, Luo F, Lin Q, Ding Y. Understanding the aggregation structure, digestive and rheological properties of corn, potato, and pea starches modified by ultrasonic frequency. Int J Biol Macromol 2021; 189:1008-1019. [PMID: 34455004 DOI: 10.1016/j.ijbiomac.2021.08.163] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Corn starch (CS), potato starch (PtS), and pea starch (PS) were modified by ultrasonic frequency (codes as UFCS, UFPtS and UFPS), and changes in aggregation structure, digestibility and rheology were investigated. For UFCS, the apparent amylose content and gelatinization enthalpy (∆H) decreased, while the R1047/1022 values and relative crystallinity (RC) increased under lower ultrasonic frequencies (20 kHz and 25 kHz). For UFPtS, the apparent amylose content, R1047/1022 values and RC increased, while the ∆H decreased under a higher ultrasonic frequency (28 kHz). For UFPS, the apparent amylose content, R1047/1022 values, RC, ∆H decreased at 20 kHz, 25 kHz and 28 kHz. Cracks were observed on the surface of UFCS, UFPtS and UFPS. These aggregation structure changes increased the resistant starch content to 31.11% (20 kHz) and 26.45% (25 kHz) for UFCS and to 39.68% (28 kHz) for UFPtS, but decreased the resistant starch content to 18.46% (28 kHz) for UFPS. Consistency coefficient, storage modulus, and loss modulus of UFCS, UFPtS and UFPS increased, while the flow behavior index and damping factor decreased. Results indicated that CS, PtS and PS had diverse digestion and rheology behaviors after ultrasonic frequency modification, which fulfilled different demands in starch-based products.
Collapse
Affiliation(s)
- Yiwei Xiao
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaonian Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Biao Zhang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
27
|
Pachekrepapol U, Kokhuenkhan Y, Ongsawat J. Formulation of yogurt-like product from coconut milk and evaluation of physicochemical, rheological, and sensory properties. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Wang L, Gu Y, Zheng X, Zhang Y, Deng K, Wu T, Cheng H. Analysis of physicochemical properties of exopolysaccharide from Leuconostoc mesenteroides strain XR1 and its application in fermented milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Arlai A, Tananuwong K. Quality of chilled and frozen starch gels as affected by starch type, highly concentrated sucrose and coconut milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
The nutritional and physicochemical properties of whole corn slurry prepared by a novel industry-scale microfluidizer system. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Characteristics of sow milks at different lactation stages and their frozen storage stabilities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Zhou Y, Niu H, Luo T, Yun Y, Zhang M, Chen W, Zhong Q, Zhang H, Chen H, Chen W. Effect of glycosylation with sugar beet pectin on the interfacial behaviour and emulsifying ability of coconut protein. Int J Biol Macromol 2021; 183:1621-1629. [PMID: 34000314 DOI: 10.1016/j.ijbiomac.2021.05.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to investigate the effect of glycosylation with sugar beet pectin (SBP) on the interfacial behaviour and emulsifying ability of coconut protein (CP). The physical stabilities of the emulsions were predicted by transmission variation, droplet distribution and zeta potentials. The results showed that SBP-CP-stabilized emulsions showed better stability during centrifugation than those stabilized by CP because SBP-CP reduced the degree of variation in the CP transmission profile. The adsorption kinetics of all emulsifiers at the oil-water interface were determined to investigate the relationship between the interfacial behaviour and emulsion stability. The presence of SBP considerably reduced the adsorption rate of CP (0.698 mN/m/s1/2) and hampered the development of a highly viscoelastic network at the oil-water interface. The values of the dilatational elastic modulus (Ed = 19.477 mN/m) and dilatational viscous modulus (E = 19.719 mN/m) were approximately equal, indicating that the adsorption process was mainly dominated by elastic behaviour. Additionally, the SBP-CP interaction enhanced the dilatational property of the CP-absorbed layer.
Collapse
Affiliation(s)
- Yongjie Zhou
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Hui Niu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, PR China; College of Food Sciences & Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Tian Luo
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Yonghuan Yun
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Ming Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Wenxue Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Qiuping Zhong
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Hailing Zhang
- College of Life Sciences, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Haiming Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, PR China; Huachuang Institute of Areca Research-Hainan, 88 People Road, Haikou 570208, PR China.
| | - Weijun Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, PR China; Chunguang Agro-product Processing Institute, Wenchang 571333, PR China.
| |
Collapse
|
33
|
Chen Y, Yi X, Pan MH, Chiou YS, Li Z, Wei S, Yin X, Ding B. The interaction mechanism between liposome and whey protein: Effect of liposomal vesicles concentration. J Food Sci 2021; 86:2491-2498. [PMID: 33929043 DOI: 10.1111/1750-3841.15708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022]
Abstract
The interaction mechanism between liposomes (Lips) and whey protein isolates (WPI) with different mass ratios was explored in this paper. After binding with different concentration of Lips, the changes in hydrophilic and hydrophobic regions of WPI were investigated with fluorescein isothiocyanate (FITC) and pyrene fluorescence probes. The spatial structure changes of WPI were further characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, and circular dichroism. The results indicated that the structure of WPI was changed due to binding with Lips in hydrophilic and hydrophobic groups. The binding process might result in the migration, recombination, and alignment of WPI and Lip groups. Moreover, the oil-water interfacial tension with WPI decreased from 9.20 mN/m to 3.29 mN/m upon increasing the Lip-to-WPI ratio. This work suggests that the physiochemical properties of Lip-WPI complexes could be manipulated by adjusting the Lip-to-WPI ratio. This study shed some light on the mechanism explanation of the WPI structural changes due to the interaction with Lips during food processing.
Collapse
Affiliation(s)
- Yang Chen
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Xiangzhou Yi
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China.,College of Food Science and Technology, Hainan University, Haikou, Hainan, 570228, P.R. China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan, 10617, Republic of China
| | - Yi-Shiou Chiou
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen, P.R. China
| | - Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Xiaoli Yin
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China.,Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan, 10617, Republic of China
| |
Collapse
|
34
|
Iqbal S, Wu P, Kirk TV, Chen XD. Amylose content modulates maize starch hydrolysis, rheology, and microstructure during simulated gastrointestinal digestion. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106171] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Huang Z, Brennan CS, Mohan MS, Stipkovits L, Zheng H, Kulasiri D, Guan W, Zhao H, Liu J. Milk lipid
in vitro
digestibility in wheat, corn and rice starch hydrogels. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zhiguang Huang
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
- Riddet Research Institute Palmerston North 4442 New Zealand
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
- Riddet Research Institute Palmerston North 4442 New Zealand
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Maneesha S. Mohan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Letitia Stipkovits
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Haotian Zheng
- Department of Food, Bioprocessing and Nutrition Sciences Southeast Dairy Foods Research Center Raleigh NC 27695 USA
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Jianfu Liu
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| |
Collapse
|
36
|
Zheng Y, Ou Y, Zhang Y, Zheng B, Zeng H, Zeng S. Physicochemical properties and in vitro digestibility of lotus seed starch-lecithin complexes prepared by dynamic high pressure homogenization. Int J Biol Macromol 2020; 156:196-203. [DOI: 10.1016/j.ijbiomac.2020.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022]
|
37
|
Su H, Tu J, Zheng M, Deng K, Miao S, Zeng S, Zheng B, Lu X. Effects of oligosaccharides on particle structure, pasting and thermal properties of wheat starch granules under different freezing temperatures. Food Chem 2020; 315:126209. [PMID: 32007811 DOI: 10.1016/j.foodchem.2020.126209] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/11/2019] [Accepted: 01/11/2020] [Indexed: 11/25/2022]
Abstract
The effects of fructooligosaccharides (FOS), galactooligosaccharides (GOS), and xylooligosaccharides (XOS) on gelatinization, retrogradation, thermal properties and particle size of wheat starch at different freezing temperatures were studied. The results showed that the wheat starch porosity, particle size, peak viscosity increased with increasing freezing temperature. With the addition of 16% oligosaccharides to starch, the porosity, particle size, crystallinity, initial gelatinization temperature, peak value, breakdown and retrogradation viscosity of the starch granules significantly decreased in the order of XOS > GOS > FOS. However, the pasting temperature of the granules increased. The addition of oligosaccharides (especially XOS, which has the most significant effect in inhibiting starch retrogradation) can inhibit the formation of starch crystal structures to a certain extent, reduce the damage from ice crystals to starch granules and delay starch retrogradation. Therefore, functional oligosaccharides can be used as a potentially effective additive to increase freezing stability in frozen starch-based foods.
Collapse
Affiliation(s)
- Han Su
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jinjin Tu
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Mingjing Zheng
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Institute of Food Science and Technology, Fujian Agriculture and Forestry University, 18 Simon Pit Road, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaibo Deng
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, Co.Cork, Ireland; Institute of Food Science and Technology, Fujian Agriculture and Forestry University, 18 Simon Pit Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Miao
- Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, Co.Cork, Ireland; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Institute of Food Science and Technology, Fujian Agriculture and Forestry University, 18 Simon Pit Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Institute of Food Science and Technology, Fujian Agriculture and Forestry University, 18 Simon Pit Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, Co.Cork, Ireland; Institute of Food Science and Technology, Fujian Agriculture and Forestry University, 18 Simon Pit Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
38
|
Coconut Wastes as Bioresource for Sustainable Energy: Quantifying Wastes, Calorific Values and Emissions in Ghana. ENERGIES 2020. [DOI: 10.3390/en13092178] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coconut husks with the shells attached are potential bioenergy resources for fuel-constrained communities in Ghana. In spite of their energy potential, coconut husks and shells are thrown away or burned raw resulting in poor sanitation and environmental pollution. This study focuses on quantifying the waste proportions, calorific values and pollutant emissions from the burning of raw uncharred and charred coconut wastes in Ghana. Fifty fresh coconuts were randomly sampled, fresh coconut waste samples were sun-dried up to 18 days, and a top-lit updraft biochar unit was used to produce biochar for the study. The heat contents of the coconut waste samples and emissions were determined. From the results, 62–65% of the whole coconut fruit can be generated as wastes. The calorific value of charred coconut wastes was 42% higher than the uncharred coconut wastes. PM2.5 and CO emissions were higher than the WHO 24 h air quality guidelines (AQG) value at 25 °C, 1 atmosphere, but the CO concentrations met the WHO standards based on exposure time of 15 min to 8 h. Thus, to effectively utilise coconut wastes as sustainable bioresource-based fuel in Ghana, there is the need to switch from open burning to biocharing in a controlled system to maximise the calorific value and minimise smoke emissions.
Collapse
|
39
|
Li Y, Fan L. Comparative studies on the stabilization of Flos Sophorae Immaturus beverages by various hydrocolloids. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|