1
|
Yaseen K, Ejaz S, Imran M. Surface engineering of biomedical catheters using N-acetyl cysteine functionalized carboxymethyl chitosan nanosystems to combat biofouling and device-associated infections. Int J Biol Macromol 2025; 306:141516. [PMID: 40020837 DOI: 10.1016/j.ijbiomac.2025.141516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/09/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Functionalized anti-biofouling nanosystems were developed to engineer the surface of silicone catheters for mitigating the incidence of device-associated infections (DAIs). These infections are typically a consequence of microbial biofilms and antimicrobial resistance (AMR) which lead to increased hospitalization costs and mortality rates. Covalent coupling of N-acetyl cysteine (NAC) with O-carboxymethyl chitosan (O-CMC) was optimized to develop NAC-functionalized CMC nanosystems (NAC-CMC-NS). The coupling was confirmed by nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and 4, 6-trinitrobenzene sulfonic acid (TNBS) assay indicating 80 ± 2 % functionalization efficacy. Subsequently, meropenem-loaded NAC-CMC NS exhibited an average particle size of 273 ± 4.2 nm with 0.4 ± 0.03 polydispersity index (PDI), a zeta potential of -9.15 ± 0.5 mV and encapsulation efficiency (EE) of 67 ± 3.2 %. These functionalized NS employing the dual strategy of contact-killing and meropenem-release, exhibited exceptional antimicrobial activity leading to the 76 ± 1.5 % and 60 ± 1 % inhibition of E. coli and P. aeruginosa biofilms, respectively. After the successful grafting of functionalized NS onto silicone catheters, the resulting substrate remarkably reduced the bacterial colonization, offering a promising solution for reducing DAIs like ventilator-associated pneumonia (VAP) and catheter-associated urinary tract infections (CAUTI). Moreover, the excellent hemocompatibility and low cytotoxicity of these nanovesicles highlight their potential applications for clinical use.
Collapse
Affiliation(s)
- Kinza Yaseen
- Department of Biosciences, Faculty of Health Sciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan
| | - Sadaf Ejaz
- Department of Biosciences, Faculty of Health Sciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Health Sciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan.
| |
Collapse
|
2
|
Chrószcz-Porębska M, Gadomska-Gajadhur A. Cysteine Conjugation: An Approach to Obtain Polymers with Enhanced Muco- and Tissue Adhesion. Int J Mol Sci 2024; 25:12177. [PMID: 39596243 PMCID: PMC11594736 DOI: 10.3390/ijms252212177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The modification of polymers towards increasing their biocompatibility gathers the attention of scientists worldwide. Several strategies are used in this field, among which chemical post-polymerization modification has recently been the most explored. Particular attention revolves around polymer-L-cysteine (Cys) conjugates. Cys, a natural amino acid, contains reactive thiol, amine, and carboxyl moieties, allowing hydrogen bond formation and improved tissue adhesion when conjugated to polymers. Conjugation of Cys and its derivatives to polymers has been examined mostly for hyaluronic acid, chitosan, alginate, polyesters, polyurethanes, poly(ethylene glycol), poly(acrylic acid), polycarbophil, and carboxymethyl cellulose. It was shown that the conjugation of Cys and its derivatives to polymers significantly increased their tissue adhesion, particularly mucoadhesion, stability at physiological pH, drug encapsulation efficiency, drug release, and drug permeation. Conjugates were also non-toxic toward various cell lines. These properties make Cys conjugation a promising strategy for advancing polymer applications in drug delivery systems and tissue engineering. This review aims to provide an overview of these features and to present the conjugation of Cys and its derivatives as a modern and promising approach for enhancing polymer tissue adhesion and its application in the medical field.
Collapse
|
3
|
Yan Z, Liu J, Cao S, Wang Z, Li C, Ren J, Zhang R, Zhang M, Liu X. Substitution of sucrose by erythritol in angel cake: Effect on protein foaming, baking performance and digestion properties. Int J Biol Macromol 2023; 253:126759. [PMID: 37678696 DOI: 10.1016/j.ijbiomac.2023.126759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Sugars played an important role in the processing of products such as cakes, however, their high-calorie character often posed a health risk to consumers. Therefore, this paper aimed to better investigate the effect of sugar substitutes on the improvement of egg white foaming properties and angle cake digestibility characteristics. It was demonstrated that the addition of erythritol improved the surface properties of egg whites, thus enhancing their foaming properties. Particularly, when the erythritol substitution was 50 %, the sugar-egg white complex structure unfolded and had the best foaming capacity. On this basis, the baking performance of angel cakes with sucrose replaced by erythritol was analyzed. When the erythritol substitution was lower than 50 %, the specific volume and the baking loss rate of the cakes were basically unchanged, and the texture and sensory taste of the cakes were all excellent. Finally, the gastrointestinal digestive kinetic analysis suggested that erythritol substitution for sucrose was beneficial for reducing blood glucose levels in vivo. Furthermore, for the MgCl2-based samples, both the degree of protein destruction after digestion was weakened and the glucose-lowering effect was better exerted. Overall, this study provided a new theoretical basis for the low-calorie sugar-substituted health food products development in the future.
Collapse
Affiliation(s)
- Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhi Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chenman Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jianqi Ren
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Min Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Yang Q, Lyu S, Xu M, Li S, Du Z, Liu X, Shang X, Yu Z, Liu J, Zhang T. Potential Benefits of Egg White Proteins and Their Derived Peptides in the Regulation of the Intestinal Barrier and Gut Microbiota: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13168-13180. [PMID: 37639307 DOI: 10.1021/acs.jafc.3c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Impaired intestinal barrier function can impede the digestion and absorption of nutrients and cause a range of metabolic disorders, which are the main causes of intestinal disease. Evidence suggests that proper dietary protein intake can prevent and alleviate intestinal diseases. Egg white protein (EWP) has received considerable attention, because of its high protein digestibility and rich amino acid composition. Furthermore, bioactive peptides may have an increased repair effect due to their high degradation efficiency in the gut. In this study, we aimed to review the effects of EWP and its bioactive peptides on intestinal structural repair. The potential modulation mechanisms by which EWP and their peptides regulate the gut microbiota and intestinal barrier can be summarized as follows: (1) restoring the structure of the intestinal barrier to its intact form, (2) enhancing the intestinal immune system and alleviating the inflammatory response and oxidative damage, and (3) increasing the relative abundance of beneficial bacteria and metabolites. Further in-depth analysis of the coregulation of multiple signaling pathways by EWP is required, and the combined effects of these multiple mechanisms requires further evaluation in experimental models. Human trials can be considered to understand new directions for development.
Collapse
Affiliation(s)
- Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Menglei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Shengrao Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, 570228 Haikou, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| |
Collapse
|
5
|
Cui L, Liu X, Yan R, Chen Q, Wang L, Nawaz S, Qin D, Wang D. Amino acid modified OCMC-g-Suc- β-CD nanohydrogels carrying lapatinib and ginsenoside Rg1 exhibit high anticancer activity in a zebrafish model. Front Pharmacol 2023; 14:1149191. [PMID: 37251325 PMCID: PMC10210146 DOI: 10.3389/fphar.2023.1149191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Nanohydrogels show great potential as efficient drug carriers due to their biocompatibility, low toxicity, and high water absorbability. In this paper, we prepared two O-carboxymethylated chitosan (OCMC)-based polymers functionalized with β-cyclodextrin (β-CD) and amino acid. The structures of the polymers were characterized by Fourier Transform Infrared (FTIR) Spectroscopy. Morphological study was carried out on a Transmission Electron Microscope (TEM), and the results indicated that the two polymers had irregular spheroidal structure with some pores distributed on their surface. The average particle diameter was below 500 nm, and the zeta potential was above +30 mV. The two polymers were further used for preparing nanohydrogels loaded with anticancer drugs lapatinib and ginsenoside Rg1, and the resulting nanohydrogels showed high drug loading efficiency and pH-sensitive (pH = 4.5) drug release behavior. In vitro cytotoxicity investigation revealed that the nanohydrogels exhibited high cytotoxicity against lung cancer (A549) cells. In vivo anticancer investigation was performed in a transgenic Tg(fabp10:rtTA2s-M2; TRE2:EGFP-kras V12) zebrafish model. The results showed that the synthesized nanohydrogels significantly inhibited the expression of EGFP-kras v12 oncogene in zebrafish liver, and the L-arginine modified OCMC-g-Suc-β-CD nanohydrogels loading lapatinib and ginsenoside Rg1 showed the best results.
Collapse
Affiliation(s)
- Li Cui
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | | | - Rongjun Yan
- Jinan International Travel Healthcare Center, Jinan, China
| | - Qixu Chen
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shah Nawaz
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Dawei Qin
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Daijie Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Biological Engineering Technology Innovation Center of Shandong Province, Heze Branch of Qilu University of Technology (Shandong Academy of Sciences), Heze, China
| |
Collapse
|
6
|
Song X, Wu J, Song W, Chen L, Zhang S, Ji H, Liu J, Gu J. Thiolated chitosan nanoparticles for stable delivery and smart release of As 2O 3 for liver cancer through dual actions. Carbohydr Polym 2023; 303:120462. [PMID: 36657859 DOI: 10.1016/j.carbpol.2022.120462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
In this work, multifunctional thiolated chitosan derivatives (DCA-CS-PEG-FA-NAC) were synthesized, and arsenic trioxide (ATO) was loaded onto the derivatives through glutathione (GSH)-sensitive AsIII-S bonds, and stable CS-ATO nanodrugs were prepared by simple self-assembly method. By adjusting the thiol substitution degree of CS, the drug loading capacity of the nanodrugs was significantly improved, which could reach 20 ATO per CS molecule (DCA10.7-CS-PEG3.1-FA-NAC20.2-ATO). In vitro release studies obviously showed the low leakage of ATO under physiological conditions while over 95 % ATO was released after 24 h under GSH. In vitro and in vivo investigations demonstrated that the DCA10.7-CS-PEG3.1-FA-NAC20.2-ATO nanodrug could significantly enhance the tumor intracellular accumulation of ATO, reduce the toxic and side effects of ATO on healthy organs, and improve the therapeutic effect of ATO on the HepG2 mice tumor model (tumor inhibition rate was as high as 86.4 %), indicating the potential application of ATO in clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Xiaoli Song
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Jiamin Wu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Weimin Song
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Lu Chen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Shuwei Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Hangyu Ji
- Xishan People's Hospital, Wuxi 214011, PR China
| | - Junliang Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Jun Gu
- Xishan People's Hospital, Wuxi 214011, PR China.
| |
Collapse
|
7
|
Gao Y, Li X, Xie Y, Huang X, Cheng C, Julian McClements D, Zhang L, Chen X, Zou L, Wei L. Encapsulation of bitter peptides in diphasic gel double emulsions: bitterness masking, sustained release and digestion stability. Food Res Int 2022; 162:112205. [DOI: 10.1016/j.foodres.2022.112205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
8
|
Typical application of electrostatic layer-by-layer self-assembly technology in food safety assurance. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
|
10
|
Polysaccharides-based delivery system for efficient encapsulation and controlled release of food-derived active peptides. Carbohydr Polym 2022; 291:119580. [DOI: 10.1016/j.carbpol.2022.119580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
|
11
|
Encapsulation of selenium-containing peptides in xanthan gum-lysozyme nanoparticles as a powerful gastrointestinal delivery system. Food Res Int 2022; 156:111351. [DOI: 10.1016/j.foodres.2022.111351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022]
|
12
|
Yang M, Liu J, Li Y, Yang Q, Liu C, Liu X, Zhang B, Zhang H, Zhang T, Du Z. Co-encapsulation of Egg-White-Derived Peptides (EWDP) and Curcumin within the Polysaccharide-Based Amphiphilic Nanoparticles for Promising Oral Bioavailability Enhancement: Role of EWDP. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5126-5136. [PMID: 35412315 DOI: 10.1021/acs.jafc.1c08186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The comprehensive utilization of food-derived nutraceuticals with different polarities has been extremely restricted by their poor bioavailability and coexistence in a single system. This study aimed to fabricate a self-assembly of amphiphilic nanoparticles (NPs) for the hydrophilic EWDP and hydrophobic curcumin based on the carboxymethyl chitosan (CMCS) shell and γ-cyclodextrin (γ-CD) core. Notably, EWDP could cooperate with CMCS to yield superior colloidal properties with an excellent curcumin aqueous solubility and co-encapsulation capacity (>10%) for the NPs (pH 2.0-7.0). This phenomenon was mainly ascribed to the additional hydrogen-bonding network and hydrophobic interaction introduced by EWDP. Besides, the overall antioxidant activity, bioaccessibility, gastrointestinal stability, and Caco-2 cell absorption properties were significantly improved in the presence of EWDP (>20% increase). Therefore, EWDP could function as both a potential affinity agent and a nutrition enhancer to expand the co-delivery applications for diverse nutraceuticals with promising oral bioavailability enhancement in food and pharmaceutical areas.
Collapse
Affiliation(s)
- Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Biying Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
13
|
Liu J, Guo J, Zhang H, Liao Y, Liu S, Cheng D, Zhang T, Xiao H, Du Z. The fabrication, characterization, and application of chitosan-NaOH modified casein nanoparticles and their stabilized long-term stable high internal phase Pickering emulsions. Food Funct 2022; 13:1408-1420. [PMID: 35048100 DOI: 10.1039/d1fo02202d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The demand for facile delivery systems from natural biopolymers with long-term storage stability to deliver liposoluble nutraceuticals such as β-carotene (BC) is increasing. In this work, a facile and reliable emulsifier of chitosan (CS)-NaOH-modified casein (CA) nanoparticles (NPs) was fabricated for the stabilization of high internal phase Pickering emulsions (HIPPEs) with versatile stability. Dynamic light scattering, TEM, FTIR, and interface tension results indicated that CS-CA NPs exhibited nanoscale (109-373 nm), positive charge (22-38 mV), pH-response, spherical in shape, assembled spontaneously by non-covalent interactions, and high surface activity. Optical microscopy, confocal laser scanning microscopy (CLSM), and rheometer results demonstrated that HIPPEs were emulsified by a dense and compact 3D network between the continuous phase and the interfacial region. Hence, the CS-CA NP-stabilized HIPPEs showed long-term storage stability (over 18 months at ambient temperature) and thermostabilization (1 month at 80 °C). The robust and compact CS-CA NPs dramatically declined the contents of primary and secondary oxidation production in HIPPEs than that by corn oil. Moreover, CS-CA NPs stabilized HIPPEs appreciably enhanced the bioaccessibility (2.56 times) and chemical stability (thermal, UV-light, and storage) of BC. This research evidenced that CS-protein or polysaccharide-CA-based systems could be an encouraging formulation to commercially construct tunable HIPPEs with adorable stability for liposoluble nutraceuticals with enhanced attributes.
Collapse
Affiliation(s)
- Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Jian Guo
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Yinan Liao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Shuaiyan Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Dahao Cheng
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
14
|
Cui H, Si X, Tian J, Lang Y, Gao N, Tan H, Bian Y, Zang Z, Jiang Q, Bao Y, Li B. Anthocyanins-loaded nanocomplexes comprising casein and carboxymethyl cellulose: stability, antioxidant capacity, and bioaccessibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
16
|
Kulkarni N, Shinde SD, Jadhav GS, Adsare DR, Rao K, Kachhia M, Maingle M, Patil SP, Arya N, Sahu B. Peptide-Chitosan Engineered Scaffolds for Biomedical Applications. Bioconjug Chem 2021; 32:448-465. [PMID: 33656319 DOI: 10.1021/acs.bioconjchem.1c00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peptides are signaling epitopes that control many vital biological events. Increased specificity, synthetic feasibility with concomitant lack of toxicity, and immunogenicity make this emerging class of biomolecules suitable for different applications including therapeutics, diagnostics, and biomedical engineering. Further, chitosan, a naturally occurring linear polymer composed of d-glucosamine and N-acetyl-d-glucosamine units, possesses anti-microbial, muco-adhesive, and hemostatic properties along with excellent biocompatibility. As a result, chitosan finds application in drug/gene delivery, tissue engineering, and bioimaging. Despite these applications, chitosan demonstrates limited cell adhesion and lacks biosignaling. Therefore, peptide-chitosan hybrids have emerged as a new class of biomaterial with improved biosignaling properties and cell adhesion properties. As a result, recent studies encompass increased application of peptide-chitosan hybrids as composites or conjugates in drug delivery, cell therapy, and tissue engineering and as anti-microbial material. This review discusses the recent investigations involving chitosan-peptide materials and uncovers various aspects of these interesting hybrid materials for biomedical applications.
Collapse
|
17
|
Li S, Liang N, Yan P, Kawashima Y, Sun S. Inclusion complex based on N-acetyl-L-cysteine and arginine modified hydroxypropyl-β-cyclodextrin for oral insulin delivery. Carbohydr Polym 2021; 252:117202. [DOI: 10.1016/j.carbpol.2020.117202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
|
18
|
He W, Yu Q, Wang N, Ouyang XK. Efficient adsorption of Cu(II) from aqueous solutions by acid-resistant and recyclable ethylenediamine tetraacetic acid-grafted polyvinyl alcohol/chitosan beads. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113856] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
McClements DJ. Nano-enabled personalized nutrition: Developing multicomponent-bioactive colloidal delivery systems. Adv Colloid Interface Sci 2020; 282:102211. [PMID: 32721626 DOI: 10.1016/j.cis.2020.102211] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
There is growing interest in the production of foods and beverages with nutrient and nutraceutical profiles tailored to an individual's specific nutritional requirements. In principle, these personalized nutrition products are formulated based on the genetics, epigenetics, metabolism, microbiome, phenotype, lifestyle, age, gender, and health status of a person. A challenge in this area is to create customized functional food and beverage products that contain the required combination of bioactive agents, such as lipids, proteins, carbohydrates, vitamins, minerals, nutraceuticals, prebiotics and probiotics. Nanotechnology may facilitate the development of these kind of products since it can be used to encapsulate one or more bioactive agent in a single colloidal delivery system. This delivery system may contain one or more different kinds of colloidal particle, specifically designed to protect each nutrient in the food, but then deliver it in a bioavailable form after ingestion. This review article provides an overview of the different kinds of bioactives that need to be delivered, as well as some of the challenges associated with incorporating them into functional foods and beverages. It then highlights how nanotech-enabled colloidal delivery systems can be developed to encapsulate multiple bioactive agents in a form suitable for functional food applications, particularly in the personalized nutrition field.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Zhejiang, Hangzhou 310018, China.
| |
Collapse
|
20
|
|
21
|
Maviah MBJ, Farooq MA, Mavlyanova R, Veroniaina H, Filli MS, Aquib M, Kesse S, Boakye-Yiadom KO, Wang B. Food Protein-Based Nanodelivery Systems for Hydrophobic and Poorly Soluble Compounds. AAPS PharmSciTech 2020; 21:101. [PMID: 32152890 DOI: 10.1208/s12249-020-01641-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
The hydrophobicity of bioactive molecules poses a considerable problem in the pharmaceutical and the food industry. Using food-based protein nanocarriers is one promising way to deliver hydrophobic molecules. These types of protein possess many functional properties such as surface activity, water-binding capacity, emulsification, foaming, gelation, and antioxidant activity, as well as their incorporation in the food industry as ingredients. Besides, they express low toxicity, are less expensive compared to synthetic polymers, and are biodegradable. This review aims to give a brief overview of the recent studies done using food proteins as colloidal delivery systems for hydrophobic and poorly soluble compounds.
Collapse
|
22
|
Du Z, Liu J, Zhang H, Chen Y, Wu X, Zhang Y, Li X, Zhang T, Xiao H, Liu B. l-Arginine/l-lysine functionalized chitosan–casein core–shell and pH-responsive nanoparticles: fabrication, characterization and bioavailability enhancement of hydrophobic and hydrophilic bioactive compounds. Food Funct 2020; 11:4638-4647. [DOI: 10.1039/d0fo00005a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study developed novel oral delivery systems for the encapsulation, protection, and controlled release of hydrophobic and hydrophilic bioactive compounds based on l-arginine- or l-lysine-functionalized chitosan–casein nanoparticles.
Collapse
|
23
|
Affiliation(s)
- Yabin Meng
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Shuyan Han
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| | - Zhipeng Gu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 P. R. China
| | - Jun Wu
- Department of Biomedical Engineering, School of EngineeringSun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
24
|
Du Z, Liu J, Zhang H, Wu X, Zhang B, Chen Y, Liu B, Ding L, Xiao H, Zhang T. N-Acetyl-l-cysteine/l-Cysteine-Functionalized Chitosan-β-Lactoglobulin Self-Assembly Nanoparticles: A Promising Way for Oral Delivery of Hydrophilic and Hydrophobic Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12511-12519. [PMID: 31626537 DOI: 10.1021/acs.jafc.9b05219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembled and cross-linked hybrid hydrogels for entrapment and delivery of hydrophilic and hydrophobic bioactive compounds were developed based on N-acetyl-l-cysteine (NAC)- or l-cysteine (CYS)-functionalized chitosan-β-lactoglobulin nanoparticles (NPs). In both the systems, amphiphilic protein β-lactoglobulin (β-lg) was self-assembled by using glutaraldehyde for affinity binding with egg white-derived peptides (EWDP) and curcumin and then coated with NAC- or CYS-functionalized chitosan (CS) by electrostatic interaction. The resulting NPs were characterized in terms of size, polydispersity, and surface charge by dynamic light scattering. Results corroborated pH-sensitive properties of NAC-CS-β-lg NPs and CYS-CS-β-lg NPs with the particle size as small as 118 and 48 nm, respectively. The two kinds of NPs also showed excellent entrapment of EWDP and curcumin with the entrapment efficiency (EE) of EWDP and curcumin ranging from 51 to 89% and 42 to 57% in NAC-CS-β-lg NPs, as well as 50-81% and 41-57% in CYS-CS-β-lg NPs under different pH values. Fourier transform infrared and molecular docking studies provided support for the interaction mechanism of NAC/CYS-CS with β-lg as well as the NPs with EWDP and curcumin. Strikingly, the in vitro release kinetics of EWDP and curcumin exhibited the controlled and sustained release properties up to 58 and 70 h from the NPs, respectively. Note that the permeability of QIGLF (pentapeptide, isolated from EWDP) and curcumin passing through Caco-2 cell monolayers were all improved after the entrapment in the NPs. This work offers promising methods for effective entrapment and oral delivery of both hydrophilic and hydrophobic bioactive compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Long Ding
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , People's Republic of China
| | - Hang Xiao
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | | |
Collapse
|