1
|
Dong Y, Wang Y, Zhang M, Gao M, Wang S, Wang Y, Wang Z. Electrostatic induced Rana chensinensis ovum protein isolates/xanthan gum complex particles stabilized HIPPE for β-carotene loading and dysphagia. Food Chem 2025; 478:143520. [PMID: 40058263 DOI: 10.1016/j.foodchem.2025.143520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 04/06/2025]
Abstract
Rana chensinensis ovum protein isolates and xanthan gum complex particles were constructed through electrostatic induced aggregation and their ability as an emulsifier for high internal phase Pickering emulsions (HIPPE) was explored. The complex particles showed a clear aggregated structure as the xanthan gum content increased. It also impacted the particle size of the HIPPE droplets, which decreased to 35 μm with a zeta potential of -41.6 ± 1.23 mV. Rheological tests showed that the oscillatory frequency G' increased with increasing xanthan gum. It was higher than G" and appeared to be shear-thinning. In addition, the prepared HIPPE showed impressive stability under freeze-thaw reversible, centrifugal, and heating conditions. The HIPPE also showed notable β-carotene delivery potential with an encapsulation rate of achieved 90.9 %, while improving stability and bioaccessibility. Meanwhile, The HIPPE met the dietary criteria of International Dysphagia Diet Standardization Initiative (IDDSI) Class 4 viscous/extremely dense foods.
Collapse
Affiliation(s)
- Yuying Dong
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yuezhen Wang
- Department of Pharmacy, Changchun Medical College, Changchun, Jilin 130031, China
| | - Meiru Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Min Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shihan Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yongsheng Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhihan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Guo X, Zhang J, Zhu M, Xu X, Liu L, Chen S, Wang Y, Gao X, Chen Q. High internal phase Pickering emulsions stabilized by tea residue protein: Application in β-carotene encapsulation. Int J Biol Macromol 2025; 310:143141. [PMID: 40246092 DOI: 10.1016/j.ijbiomac.2025.143141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/16/2025] [Accepted: 04/12/2025] [Indexed: 04/19/2025]
Abstract
The increasing production and consumption of tea drinks has led to the generation of large amounts of discarded extracted tea residues. As a result, researchers have attempted to extract tea water-insoluble protein (TP) from discarded tea residues to produce food emulsifiers. Thus, in this study, high-internal-phase Pickering emulsions (HIPPEs) stabilized by TP were developed and characterized. First, the effects of salt ions on the emulsifying properties of TP were examined using interfacial tension and hydrophobicity. Fourier transform infrared spectroscopy was used to determine the suitable range of salt ions in the processing stage. Then, the particle size distribution, microstructure, rheological properties, and stability of the emulsions were systematically investigated by controlling the oil phase volume, particle concentration of TP, and emulsification method. The results showed that TP was effectively adsorbed on the oil-water interface and formed a stable particle layer, which means that TP-stable high-internal-phase Pickering emulsions (TPHIPPEs) has been successfully prepared. Further analysis showed that TPHIPPEs exhibited good stability and gelation properties. The pH range was 7-9, and the salt ion concentration was <0.5 M. Additionally, TPHIPPEs exhibited excellent temperature tolerance and antioxidant ability. Finally, the application development results revealed that the loading and retention rates of β-carotene in TPHIPPEs were significantly higher than those of the control group of camellia oil, and that TPHIPPEs exhibited good resistance to UV light and thermal degradation. This study provides new insights into the high-value utilization of tea residue resources.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Junjie Zhang
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Minghui Zhu
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Xiaohan Xu
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Lu Liu
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Shengnan Chen
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Yu Wang
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China
| | - Xueling Gao
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China; National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036, Hefei, China
| | - Qi Chen
- Joint Research Center for Food Nutrition and Health of IHM, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, 230036 Hefei, China; National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, 230036, Hefei, China.
| |
Collapse
|
3
|
Chang J, Zhao Y, Xu J. High internal phase Pickering emulsion stabilized by thermally treated quinoa protein isolate: Improved stability and bioaccessibility of curcumin and astaxanthin. J Food Sci 2025; 90:e70192. [PMID: 40271827 DOI: 10.1111/1750-3841.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/25/2025]
Abstract
High internal phase Pickering emulsions (HIPPEs) were stabilized by thermally treated quinoa protein isolate (QPI), including atmospheric pressure boiling (AB), high pressure boiling (HPB), and baking (B), respectively, for the encapsulation of curcumin (CUR) and astaxanthin (AST) to retard its degradation during storage and improve their bioaccessibility. The QPI dispersion was sonicated to generate nanoparticles for the production of HIPPEs. Thermal treatments caused the reduction in the particle size and increased water contact angle compared to the control QPI nanoparticles, and further improving the emulsion properties of QPI. The microstructure results further supported the nature of oil-in-water of HIPPEs stabilized by QPI nanoparticles by showing that the nanoparticles formed a tight interfacial film and closely coated the surface of oil droplets. Thermal treatment reduced the droplet size by approximately 11%, 15%, and 3% for HIPPEs stabilized by AB-QPI, HPB-QPI, and B-QPI, respectively, compared to those of control QPI, which effectively improved the emulsion's viscoelasticity and storage stability. Retention rate and bioaccessibility of CUR and AST in HIPPEs were improved compared to the encapsulation by corn oil, showing HPB-QPI > AB-QPI > B-QPI > control QPI. HIPPEs stabilized by thermally treated QPI-protected lipophilic bioactive compounds and were beneficial for the advancement of functional foods based on QPI. PRACTICAL APPLICATION: The emulsifying properties of QPI nanoparticles were significantly improved after thermal treatment. High internal phase Pickering emulsion stabilized by thermally treated QPI nanoparticles significantly improved the stability and bioaccessibility of curcumin and astaxanthin. It provides a theoretical basis for utilizing thermally treated QPI nanoparticles as emulsifiers in delivery systems, broadening the development of curcumin and astaxanthin in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Jiaojiao Chang
- College of Food Science, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science, Shanghai Ocean University, Shanghai, China
| | - Jingwen Xu
- College of Food Science, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Hu WX, Liao LS, Shi L, Su QR, Fu JY, Yu X, Du SK. Oxidation and carboxymethylation of starch nanocrystals: Crystalline structure, dispersibility, dispersion stability, and protein loading efficiency study. Int J Biol Macromol 2025; 304:140845. [PMID: 39929452 DOI: 10.1016/j.ijbiomac.2025.140845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Herein, oxidation and carboxymethylation were employed to improve the dispersibility and stability of starch nanocrystal (SNC) in aqueous solution by enhancing intermolecular electrostatic repulsion between SNCs, as well as to promote their protein loading capacity. FT-IR, XPS, and NMR analyses confirmed the successful surface modification of SNC, with oxidation likely occurring at the C6-OH position of anhydroglucose units. Oxidation selectively degraded the amorphous parts with small molecular weight, while carboxymethylation removed surface hydrocarbons, promoting relative crystallinity, crystalline lamellae thickness, and structural compactness in the oxidized and carboxymethylated SNC (OSNC and CSNC). Morphologically, OSNC and CSNC exhibited regular square shapes, with CSNC showing a more uniform appearance. Both OSNC and CSNC displayed small hydrodynamic size and high zeta potential, along with high transparency suspensions at pH 7, indicating good dispersibility and stability driven by electrostatic repulsion. Only OSNC, with the highest degree of oxidation, maintained stability at pH 3, due to its strong buffer capacity against protonation. Furthermore, both OSNC and CSNC showed enhanced protein loading capacity, with OSNC achieving higher capacity than CSNC, suggesting its potential as a protein delivery carrier. This work offers alternative strategies to reduce interparticle aggregation in SNCs, broadening their industrial applications.
Collapse
Affiliation(s)
- Wen-Xuan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Liang-Sen Liao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Le Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Qian-Ru Su
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Jia-Yang Fu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, PR China
| | - Shuang-Kui Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, PR China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
5
|
Hao Y, Li S, Guo X, Gong Z, Wu Y, Liu X. Amorphous cassava starch/spirulina protein mixtures stabilized Pickering emulsions: Preparation and stability. Food Chem 2025; 468:142382. [PMID: 39667232 DOI: 10.1016/j.foodchem.2024.142382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
This study explored stabilized emulsions using cassava starch (CS) and spirulina protein (SP) mixtures, targeting microbial proteins as potential replacements for animal proteins in food stability applications. The final viscosity and enthalpy change of the CS/SP mixtures decreased from 3.78 to 1.58 Pa·s and from 11 to 6.2 J/g with increased SP content (from 0 % to 40 %). Hydrophobic interactions were predominant in mixtures. Optimal emulsion stability was achieved with 70 % oil fraction and 40 % SP content, where adjustments in CS/SP ratio enhanced the robustness of cross-linked network. Thermal treatment, pH, and ionic strength differently affect emulsion storage stability for 42 days, with optimal performance at 70 °C, pH 3, and 50 mM NaCl. Synergistic stabilization of CS and SP was achieved through interfacial structures providing steric barriers and electrostatic repulsion, preventing droplet coalescence. This research highlights the potential of emulsions as nutrient delivery systems with high resilience against environmental stresses.
Collapse
Affiliation(s)
- Yacheng Hao
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Sai Li
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xiao Guo
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yongning Wu
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing 100021, PR China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, PR China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
6
|
Ma Y, Sun H, Zhang S, Yang C, Musazade E, Fan H, Liu T, Zhang Y. Structural modification of whey protein isolate via electrostatic complexation with Tremella polysaccharides and its effect on emulsion stability at pH 4.5. Int J Biol Macromol 2025; 297:139870. [PMID: 39814289 DOI: 10.1016/j.ijbiomac.2025.139870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Emulsions play an important role in food systems by encapsulating and delivering active compounds, but maintaining their stability under various conditions can be challenging. This study explored how the concentrations of Tremella polysaccharides (TPs) (0-0.75 %) affects the structural of whey protein isolate (WPI) and the stability of their emulsions at pH 4.5. At this pH, electrostatic interactions between WPI and TPs exposed hydrophobic groups within the protein, increased β-sheet contents, and improved the hydrophilic-hydrophobic balance, which enhanced emulsifying performance. WPI-TPs complexes (WTS) showed a high emulsifying activity index (57.85 m2/g) and emulsion stability index (82.03 %). Compared to WPI-only emulsions, WTS emulsions had smaller particle sizes, lower Turbiscan Stability Index (TSI) values, and higher viscoelasticity, thermal stability, freeze-thaw stability, and re-emulsification capacity. Importantly, when the TPs concentration in WTS emulsions exceeded 0.375 %, the TSI value dropped below 1, showing no particle migration or peak thickness, indicating full emulsion stability. These findings suggest that TPs help stabilize WPI emulsions near their isoelectric point (pH 4.5) and offer a promising approach to improving WPI functionality in acidic environments. The WTS system provides a reliable way to stabilize emulsions under acidic conditions, supporting the development of natural, stable emulsifiers for food applications.
Collapse
Affiliation(s)
- Yongqin Ma
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Huixue Sun
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Chenhe Yang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Elshan Musazade
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China.
| |
Collapse
|
7
|
Pan Y, Zhu C, Yue X, Liu C, Guo R, Guo Y. High internal phase Pickering emulsions stabilized by Pleurotus eryngii protein-polysaccharide conjugates. Int J Biol Macromol 2025; 296:139531. [PMID: 39761896 DOI: 10.1016/j.ijbiomac.2025.139531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
In this work, Pleurotus eryngii protein-polysaccharide conjugates (PE-PPCs) were used as the only stabilizer for the preparation of high internal phase emulsions (HIPEs). PE-PPCs presented spherical particles in solution, and their three-phase contact angle had a strong correlation with pH values, and the angle at pH 10.0 was almost 90°, showing the most balanced hydrophilicity and hydrophobicity. Subsequent tests had also confirmed that the emulsion prepared under this pH condition had the best performance. As expected, droplet size, apparent viscosity, and viscoelasticity of HIPEs stabilized by PE-PPCs were related to varying degrees with pH values, PE-PPC concentrations (c), and oil phase volume fraction (φ). Finally, the optimal conditions (pH 10.0, PE-PPCs concentration of 30 mg/mL, φ = 0.77) were obtained. Our findings in this study can be helpful for the preparation of food-grade HIPEs, and also have reference value in the field of studying the stability of protein-polysaccharide conjugates at the oil-water interface.
Collapse
Affiliation(s)
- Yuqian Pan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Caiping Zhu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China.
| | - Xiaoxia Yue
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Chu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Rui Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Chang an Avenue, Xian, Shaanxi 710119, China
| |
Collapse
|
8
|
Yang Y, Deng Z, Chen Z, Li P, Du B, Li L. Modification of Inca peanut albumin-polyphenol conjugates by chitosan through laccase catalysis: Structural, interfacial, and functional properties. Int J Biol Macromol 2025; 289:138898. [PMID: 39701237 DOI: 10.1016/j.ijbiomac.2024.138898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As a green method, enzyme crosslinking can catalyze chitosan (CS) to improve further the structural, interfacial, and functional properties of Inca peanut albumin (IPA)-polyphenols. However, the structural impact of laccase-catalyzed CS on different IPA-polyphenol conjugates has not been reported. Results revealed that enzymatic cross-linking of IPA-gallic acid (GA) and IPA- (-)-epigallocatechin-3-gallate (EGCG) with CS resulted in a decrease in α-helices, an increase in β-helices, and a more ordered structure. The contact angles of IPA-GA-CS and IPA-EGCG-CS decreased from 99.4° and 101.2° to 89.9° and 95.4°, respectively, indicating reduced hydrophobicity and enhanced interfacial adsorption. Furthermore, using copolymers as emulsifiers significantly improved the emulsification and antioxidant properties of high internal phase Pickering emulsions (HIPEs). In particular, the apparent viscosity and viscoelasticity of HIPEs constructed with IPA-GA-CS notably improved, and the EGCG-induced copolymers exhibited superior lipid antioxidation. The method of laccase-mediated crosslinking for the preparation of protein-polyphenol-polysaccharide polymers enhances the functional properties and anti-pH sensitivity of IPA, representing a novel protein modification strategy.
Collapse
Affiliation(s)
- Yishuang Yang
- College of Food Science, South China Agricultural University, No. 483, Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Ziqi Deng
- College of Food Science, South China Agricultural University, No. 483, Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Zhanpeng Chen
- College of Food Science, South China Agricultural University, No. 483, Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, No. 483, Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, No. 483, Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Lu Li
- College of Food Science, South China Agricultural University, No. 483, Wushan Street, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
9
|
Hou Y, Ning X, Liu Z, Li R, Fan Y, Li N, Li X, Xu X, Li K, Liu Q. Strong self-association of chitosan microgels at interface mediated high stabilities in Pickering emulsion. Int J Biol Macromol 2025; 289:138796. [PMID: 39689789 DOI: 10.1016/j.ijbiomac.2024.138796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The spontaneous self-organization of naturally-occurring polysaccharide particles into a thick and robust gel network at interface in Pickering emulsion is challenging. Inspired by the phenomenon that chitosan microgels (CSMs) with a certain size could self-associate into a solidified gel phase upon freezing, here we tentatively used CSMs to construct a highly-stable Pickering emulsion. CSMs can form a stable Langmuir's layer at the water/oil interface through the network deformation and re-arrangement of dangling chains, while the subsequent negative polymer coating can avoid the bridging resulting from the cross-association for CSMs on different emulsion droplets upon freezing. The experimental results indicated that the emulsion showed excellent features, including the wide pH range stability (3-12), long-term storage stability (> 3 months), thermal stability (121 °C, 30 min). Moreover, CSMs could self-associate into a reliable gel layer around the oil droplet in freezing, leading to the better freeze-thaw stability (1-3 cycles). The negative coating not only facilitates the formation of interfacial gel network around each emulsion droplet, but also produces huge steric hindrance and electrostatic repulsion to suppress the coalescence. This work provides a different way to modulate the interfacial structure, thus developing a more stable polysaccharide-based Pickering emulsion.
Collapse
Affiliation(s)
- Yarui Hou
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Xuan Ning
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Zeqi Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Ran Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Yiyuan Fan
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Na Li
- College of Biological Sciences and Technology, Taiyuan Normal University, No. 319 Daxue Street, Yuci District, Jinzhong 030619, China
| | - Xiaojun Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500 Kunming, China.
| | - Qingye Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| |
Collapse
|
10
|
Li L, Wang W, Ji S, Xia Q. Soy protein isolate-xanthan gum complexes to stabilize Pickering emulsions for quercetin delivery. Food Chem 2024; 461:140794. [PMID: 39146680 DOI: 10.1016/j.foodchem.2024.140794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
This study aimed to prepare soy protein isolate-xanthan gum complexes (SPI-XG) at pH 7.0 and as emulsifiers to prepare Pickering emulsions for delivering quercetin (Que). The results showed that SPI-XG exhibited a gel network structure in which protein particles were embedded. Fourier transform infrared spectroscopy (FTIR) and molecular docking elucidated that SPI-XG formed through hydrogen bonding, hydrophobic, and electrostatic interactions. Three-phase contact angle (θo/w) of SPI-XG approached 90° with biphasic wettability. SPI-XG adsorbed at the oil-water interface to form an interfacial layer with a gel network structure, which prevented droplet aggregation. Following in vitro simulated digestion, Que displayed higher bioaccessibility in SPI-XG stabilized Pickering emulsions (SPI-XG PEs) than SPI stabilized Pickering emulsions. In conclusion, SPI-XG PEs were a promising system for Que delivery.
Collapse
Affiliation(s)
- Lele Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Wenjuan Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Suping Ji
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
11
|
Ashfaq A, Osama K, Yousuf O, Younis K. Protein-based Emulsion Hydrogels and Their Application in the Development of Sustainable Food Products. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:759-768. [PMID: 39136829 DOI: 10.1007/s11130-024-01214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 11/19/2024]
Abstract
Consumers have become more conscious of their diet, resulting in an increased demand for low-calorie and nutrient-rich food. Therefore, finding alternative ways to develop food products with improved nutritional values has become necessary without compromising the textural and sensorial properties. In the last few years, emulsion gels have gained much popularity for oil structuring, delivery of bioactive compounds, and development of nutritious food products. Protein-stabilized emulsion hydrogels have the most significant potential to be utilized in the food industry as they contain natural ingredients that help with clean label tags. Different gelation methods can be used to fabricate emulsion gels depending on the requirements of end products. Emulsion hydrogels' rheological, textural, mechanical, and structural properties can be modified by altering their composition, oil concentration, gelation method, and gelling environment, such as pH, temperature, etc. This review addresses using protein-based emulsion gels to develop novel food products with reduced-calorie and nutrition-rich content.
Collapse
Affiliation(s)
- Alweera Ashfaq
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, UAE
| | - Khwaja Osama
- Department of Bioengineering, Integral University, Lucknow, 226026, U.P, India
| | - Owais Yousuf
- Department of Food Technology, Islamic University of Science and Technology, J & K, 192122, India
| | - Kaiser Younis
- Department of Food Technology, Islamic University of Science and Technology, J & K, 192122, India.
| |
Collapse
|
12
|
Lu F, Chi Y, Chi Y. Preparation of high internal phase emulsions based on high-temperature glycation-modified egg white protein: Structural characteristics, stability, and β-carotene bioavailability under multi-parameter regulation. Int J Biol Macromol 2024; 283:137870. [PMID: 39566798 DOI: 10.1016/j.ijbiomac.2024.137870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
In recent years, freeze-thaw stability of high internal phase emulsions (HIPEs) has gained increasing attention. High-temperature glycosylation-modified proteins have shown to produce stable HIPEs. This study examines the effects of high-temperature glycosylation on egg white protein (EWP) and fructo-oligosaccharides (FO), focusing on how pH and EWP/FO ratios affect the structure of glycosylated EWPs (GEWPs) and HIPEs stability. Specifically, strong alkaline conditions promoted the glycosylation reaction, with the highest DG value at pH 11.0. At pH 5.0, close to the isoelectric point of EWP, GEWPs could not successfully stabilize HIPEs. However, they stabilized HIPEs under other pH conditions, with the best freeze-thaw stability and flocculation resistance when EWP ≥ FO. At pH 3.0, HIPEs had high viscosity and storage modulus, but phase transitions occurred after freeze-thaw when EWP ≤ FO. GEWPs-stabilized HIPEs formed gel structures with elastic properties upon thermal induction. Encapsulation experiments with β-carotene demonstrated that HIPEs prepared from GEWPs showed potential in DPPH and ABTS+ radical scavenging, improving β-carotene stability and bioavailability. Our findings show that GEWPs-stabilized HIPEs offer excellent stability, rheological properties, and carrier performance, with enhanced applications through optimized emulsifiers and preparation processes.
Collapse
Affiliation(s)
- Fei Lu
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Wang Q, Wang X, Qi X, Liu L, Zhang G, Du P, Li C. Sanxan-Protein Complex Particles for Stabilization of Pickering Emulsions: Improving Emulsification Properties. Foods 2024; 13:3854. [PMID: 39682926 DOI: 10.3390/foods13233854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Sanxan (SAN) is a novel microbial polysaccharide that is both safe and edible and represents a promising new source of food resources. It exhibits gelling properties and certain emulsifying properties. To date, there have been few studies published on the enhancement of protein emulsification by sanxan. In this study, three widely used proteins were used: casein (CS), pea protein isolate (PPI), and soy protein isolate (SPI). SAN-protein composite particles were prepared by non-covalent interactions to evaluate the availability of SAN in Pickering emulsions. The effect of SAN on the ability of the complexes to stabilize the emulsion was investigated by measuring and characterizing the physicochemical properties of three SAN-protein complexes. Fourier transform infrared (FTIR) and fluorescence spectroscopy analyses showed that SAN was able to bind to three proteins to form complexes. All three complexes formed by SAN with SPI, PPI and CS had good emulsification properties, with PPI-SAN being the best. Storage results showed better stability of the composite particle-stabilized emulsion. These results indicate that the complexation of SAN with proteins improves the emulsification of proteins and increases the stability of Pickering emulsions. The findings of this study provide valuable information for the utilization of SAN in emulsions.
Collapse
Affiliation(s)
- Qianqian Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xinyu Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xiaoxi Qi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Peng Du
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
- Heilongjiang Institute of Green Food Science, Northeast Agricultural University, Harbin 150028, China
| |
Collapse
|
14
|
Wang Y, Teng H, Bai S, Li C, Wang Y, Ma L, Zhang Y, Chen L. Pickering emulsion of camellia oil stabilized by Octenyl succinic acid starch: Interaction, lipid oxidation and digestibility. Int J Biol Macromol 2024; 279:135108. [PMID: 39244123 DOI: 10.1016/j.ijbiomac.2024.135108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
The application of camellia oil is limited by its susceptibility to oxidation and insolubility in water, particularly under high humidity and temperature conditions. In order to effectively reduce the oxidation rate of camellia oil, prolong the shelf life in order to improve the stability in storage under different conditions, this study encapsulates camellia oil in Pickering emulsions stabilized by Octenyl succinic acid (OSA) starch, achieving a 100-fold reduction in release rate and enhanced lipid oxidation stability. The smooth surface and complete particles of the emulsion were observed and no new chemical bonds were formed. The minimum particle sizes were 1.72 μm and 2.73 μm, when the Pickering emulsion was set at pH 6 and 0.1 M NaCl. In the digestion process, the microstructures observed that Pickering emulsion possessed super stability against oral and gastric digestions, prolonged the release time and improved the bioavailability compared with camellia oil, and the digestibility of the emulsion was 56.16 % within 120 min. All these results indicate that OSA-starch stabilized camellia oil can effectively increase solubility, improve stability and expand the application range.
Collapse
Affiliation(s)
- Yitong Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shuxian Bai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chen Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ye Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Linyin Ma
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China.
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| |
Collapse
|
15
|
Li H, Wu X, Wu W. Natural protein-polysaccharide-phenol complex particles from rice bran as novel food-grade Pickering emulsion stabilizers. Int J Biol Macromol 2024; 277:134314. [PMID: 39094879 DOI: 10.1016/j.ijbiomac.2024.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
To develop novel food-grade Pickering emulsion stabilizers, insoluble rice bran protein-polysaccharide-phenol natural complex (IRBPPP) was prepared into Pickering emulsion stabilizers after different mechanical pretreatments (shear, high-pressure homogenization, ultrasonic, and combined mechanical pretreatment). With the increase in mechanical pretreatment types, the covalent binding of proteins and polysaccharides in IRBPPP gradually enhanced, the breakage efficiency of IRBPPP gradually increased (IRBPPP particle size decreased from 220.54 to 67.89 μm, the specific surface area of IRBPPP particle increased from 993.47 to 2033.86 cm-1/g), and the microstructure of IRBPPP gradually showed an orderly network structure, which enhanced the IRBPPP dispersion stability and the Pickering emulsion stability. Pickering emulsion stability was highly correlated (P < 0.01) with the breakage efficiency of IRBPPP particles. Overall, the combined mechanical pretreatment improved the stability of the IRBPPP-stabilized Pickering emulsion. The study added value to rice bran products and offered a new way to create stable food-grade Pickering emulsions for functional foods using natural protein-polysaccharide-phenol complex particles.
Collapse
Affiliation(s)
- Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
16
|
Zhu Q, Wang H, Li Y, Yu H, Pei J, Chen H, Chen W. Dynamic interfacial adsorption and emulsifying performance of self-assembled coconut protein and fucoidan mixtures. Int J Biol Macromol 2024; 276:133928. [PMID: 39038582 DOI: 10.1016/j.ijbiomac.2024.133928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
The functional properties of protein are affected by their aggregation behavior and morphology. In this study, the self-assembled coconut protein aggregates with specific morphology, including small amorphous aggregates (WLA), spherical-like aggregates (SLA) and rod-like aggregates (RLA), were regulated to form. The self-assembled process resulted in a decrease in fluorescence intensity and an increase in the surface hydrophobicity of coconut protein. Fucoidan was added to improve the stability of protein solutions, and the interfacial adsorption behavior was evaluated by dilatational rheology analysis. The results showed that the aggregation state of coconut protein affected its ability to reduce surface tension, and the interfacial layers mainly exhibited elastic property at oil-water interface (tanφ < 0.5). For macroscale analysis, the emulsions based on self-assembled coconut protein exhibited smaller droplet size, better rheological properties and centrifugal stability, especially WLA and RLA. This study may provide a reference to inspire the utilization of self-assembled coconut protein in the food industry.
Collapse
Affiliation(s)
- Qianqian Zhu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hao Wang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yang Li
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hanhan Yu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jianfei Pei
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Wenxue Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
17
|
Zhang Y, Yu D, Zhao R, Hu F, Li Z, Dong B, Lu P, Song Z, Wang H, Zhang F, Chen W, Liu W, Li H. Enhanced stability and biocompatibility of HIPEs stabilized by cyclodextrin-metal organic frameworks with inclusion of resveratrol and soy protein isolate for β-carotene delivery. Int J Biol Macromol 2024; 274:133431. [PMID: 38936573 DOI: 10.1016/j.ijbiomac.2024.133431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
High internal phase Pickering emulsions (HIPEs) constitute a significant research domain within colloid interface chemistry, addressing the demand for robust emulsion systems across various applications. An innovative nanoparticle, synthesized from a cyclodextrin metal-organic framework encapsulated with a composite of resveratrol and soy isolate protein (RCS), was employed to fortify a high internal phase emulsion. The emulsion's three-dimensional printing capabilities, alongside the encapsulated delivery efficacy for β-carotene, were thoroughly examined. Cyclodextrin metal-organic frameworks (CD-MOFs), facilitated by cellulose nanofibrils, were synthesized to yield particles at the nanoscale, maintaining a remarkable 97.67 % cellular viability at an elevated concentration of 1000 μg/ml. The RCS nanoparticles demonstrated thermal stability and antioxidant capacities surpassing those of CD-MOF. The integration of soybean isolate protein augmented both the hydrophobicity (from 21.95 ± 0.64° to 59.15 ± 0.78°) and the interfacial tension (from 14.36 ± 0.46 mN/m to 5.34 ± 0.81 mN/m) of the CD-MOF encapsulated with resveratrol, thereby enhancing the RCS nanoparticles' adsorption at the oil-water interface with greater stability. The durability of the RCS-stabilized high internal phase emulsions was contingent upon the RCS concentration. Emulsions stabilized with 5 wt%-RCS exhibited optimal physical and chemical robustness, demonstrating superior performance in emulsion 3D printing and β-carotene encapsulation delivery. This investigation furnishes a novel perspective on the amalgamation of food customization and precision nutrition.
Collapse
Affiliation(s)
- Yannan Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China; Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China.
| | - Rui Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Feihong Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Zhuo Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Baoting Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong Province 250353, China
| | - Huihui Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012, China.
| |
Collapse
|
18
|
Wang Y, Huang Y, Li H, Luo Y, Dai D, Zhang Y, Wang H, Chen H, Wu J, Dai H. Low gelatin concentration assisted cellulose nanocrystals stabilized high internal phase emulsion: The key role of interaction. Carbohydr Polym 2024; 337:122175. [PMID: 38710578 DOI: 10.1016/j.carbpol.2024.122175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Low concentrations of gelatin (0.02-0.20 wt%) were applied to regulate the surface and interface properties of CNC (0.50 wt%) by forming CNC/G complexes. As gelatin concentration increased from 0 to 0.20 wt%, the potential value of CNC/G gradually changed from -44.50 to -17.93 mV. Additionally, various gelatin concentrations led to micromorphology changes of CNC/G complexes, with the formation of particle interconnection at gelatin concentration of 0.10 wt%, followed by network structure and enhanced aggregation at gelatin concentration of 0.15 and 0.20 wt% respectively. The water contact angle (25.91°-80.23°) and interface adsorption capacity of CNC/G were improved due to hydrophobic group exposure of gelatin. When gelatin concentration exceeded 0.10 % at a fixed oil phase volume fraction (75 %), a high internal phase emulsion (HIPE) stabilized by CNC/G can be formed with a good storage stability. The rheological and microstructure results of HIPE confirmed that low gelatin concentration can assist CNC to form stable emulsion structure. Especially, the auxiliary stabilization mechanism of various gelatin concentration was different. CNC/G-0.10 % and CNC/G-0.15 % stabilized HIPE mainly depended on the enhanced interface adsorption and network structure, while CNC/G-0.20 % stabilized HIPE mainly relied on enhanced interface adsorption/accumulation due to weak electrostatic repulsion and aggregate granular morphology of CNC/G-0.20 %.
Collapse
Affiliation(s)
- Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yue Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing 400700, China
| | - Huameng Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuyuan Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Difei Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jihong Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
19
|
Gao T, Wu X, Gao Y, Teng F, Li Y. Construction of emulsion gel based on the interaction of anionic polysaccharide and soy protein isolate: Focusing on structural, emulsification and functional properties. Food Chem X 2024; 22:101377. [PMID: 38633741 PMCID: PMC11021368 DOI: 10.1016/j.fochx.2024.101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
In this study, the effects on the structures and emulsion gels of carrageenan (CA) and gum arabic (GA) with soybean protein isolate (SPI) were investigated. The results showed that CA and GA exposed hydrophobic groups to SPI, and formed complexes through non-covalent interactions to improve the stability of the complexes. Furthermore, the emulsion gels based on the emulsions exhibited that CA formed emulsion-filled gels with higher elasticity, stronger gel strength, and thermal reversibility, whereas GA formed emulsion-aggregated gels with higher viscosity, and a weak-gel network. The results of digestion showed that, CA was more helpful to slow down the release of free fatty acids and protect vitamin E during digestion. Compared with SPI-GA emulsion gel, SPI-CA emulsion gel had better physicochemical properties and stronger network structure. The results of this study may be useful in the development of anionic polysaccharides that interact with SPI, and they may provide new insights on the preparation of emulsion gels that slowly release fat-soluble nutrients.
Collapse
Affiliation(s)
- Tian Gao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xixi Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yiting Gao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
20
|
Zhao M, Li F, Li H, Lin Q, Zhou X, Wu X, Wu W. Effects of rice bran rancidity on the interfacial adsorption properties of rice bran protein fibril aggregates and stability of high internal phase Pickering emulsions. Food Chem 2024; 443:138611. [PMID: 38309025 DOI: 10.1016/j.foodchem.2024.138611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The effects of rice bran rancidity-induced protein oxidation and heating time on the stability of rice bran protein fibril aggregates (RBPFA)-high internal phase Pickering emulsions (HIPPEs) were investigated. The optimal conditions for RBPFA-HIPPEs were 8 mg/mL RBPFA with an oil phase volume fraction of 75 %. Moderate oxidation (rice bran stored for 3 d) and moderate heating (8 h) enhanced the wettability, flexibility, diffusion rate, and adsorption rate of RBPFA, meanwhile, the rheological properties of RBPFA-HIPPEs increased. RBPFA-HIPPEs could be stably stored for 50 d at 25 °C. Moderate oxidized and moderate heated RBPFA-stabilized HIPPEs could remain stable after heat treatment and could be re-prepared after freeze-thaw (3 cycles). Additionally, the stability of RBPFA-HIPPEs was significantly related to the structural characteristics and interfacial properties of RBPFA. Overall, moderate oxidation and moderate heating enhanced the storage, thermal, and freeze-thaw stability of RBPFA-HIPPEs by improving the interfacial properties of RBPFA.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fang Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoling Zhou
- Chen Keming Food Manufacturing Co., Ltd, Changsha, Hunan 414000, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
21
|
Sun C, Wang S, Wang S, Wang P, Zhang G, Liu H, Zhu D. Characterization of high-internal-phase emulsions based on soy protein isolate with varying concentrations of soy hull polysaccharide and their capabilities for probiotic delivery: In vivo and in vitro release and thermal stability. Food Res Int 2024; 186:114371. [PMID: 38729729 DOI: 10.1016/j.foodres.2024.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
In this study, the impact of soy hull polysaccharide (SHP) concentration on high-internal-phase emulsions (HIPEs) formation and the gastrointestinal viability of Lactobacillus plantarum within HIPEs were demonstrated. Following the addition of SHP, competitive adsorption with soy protein isolate (SPI) occurred, leading to increased protein adhesion to the oil-water interface and subsequent coating of oil droplets. This process augmented viscosity and enhanced HIPEs stability. Specifically, 1.8 % SHP had the best encapsulation efficiency and delivery efficiency, reaching 99.3 % and 71.1 %, respectively. After 14 d of continuous zebrafishs feeding, viable counts of Lactobacillus plantarum and complex probiotics in the intestinal tract was 1.1 × 107, 1.3 × 107, respectively. In vitro experiments further proved that HIPEs' ability to significantly enhance probiotics' intestinal colonization and provided targeted release for colon-specific delivery. These results provided a promising strategy for HIPEs-encapsulated probiotic delivery systems in oral food applications.
Collapse
Affiliation(s)
- Chenyuan Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Shumin Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Guangchen Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| |
Collapse
|
22
|
Rayees R, Gani A, Noor N, Ayoub A, Ashraf ZU. General approaches to biopolymer-based Pickering emulsions. Int J Biol Macromol 2024; 267:131430. [PMID: 38599428 DOI: 10.1016/j.ijbiomac.2024.131430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Pickering emulsion is a type of emulsion that uses solid particles or colloidal particles as emulsifiers rather than surfactants to adhere at oil-water interface. Pickering emulsions have gathered significant research attention recently due to their excellent stability and wide range of potential uses compared to traditional emulsions. Major advancements have been made in development of innovative Pickering emulsions using different colloidal particles by various techniques including homogenization, emulsification and ultrasonication. Use of biopolymer particles gives Pickering emulsions a more escalating possibilities. In this review paper, we seek to present a critical overview of development in food-grade particles that have been utilized to create Pickering emulsions with a focus on techniques and application of Pickering emulsions. Particularly, we have evaluated protein, lipid, polysaccharide-based particles and microalgal proteins that have emerged in recent years with respect to their potential to stabilize and add novel functionalities to Pickering emulsions. Some preparation methods of Pickering emulsions in brief, applications of Pickering emulsions are also highlighted. Encapsulation and delivery of bioactive compounds, fat substitutes, film formation and catalysis are potential applications of Pickering emulsions. Pickering double emulsions, nutraceutical and bioactive co-delivery, and preparation of porous materials are among research trends of food-grade Pickering emulsions.
Collapse
Affiliation(s)
- Rahiya Rayees
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India.
| | - Nairah Noor
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Aneesa Ayoub
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| | - Zanoor Ul Ashraf
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu & Kashmir, India
| |
Collapse
|
23
|
Wang Z, Zhao Y, Liu H, Chen Q, Liu Q, Kong B. Soy protein isolate-sodium alginate colloidal particles for improving the stability of high internal phase Pickering emulsions: Effects of mass ratios. Food Chem X 2024; 21:101094. [PMID: 38229671 PMCID: PMC10790022 DOI: 10.1016/j.fochx.2023.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
The potential of sodium alginate (SA) at different mass ratios to improve the emulsifying ability of soy protein isolate (SPI) in high internal phase Pickering emulsions (HIPPEs) was evaluated in this work. SPI-SA particles were used as a natural particle stabilizer of HIPPEs with 80 % oil phase. The properties of particles with varying SPI to SA ratios (10:0, 10:1, 10:3, 10:5, 10:10, and 10:15 w/w) were evaluated. HIPPEs with a 10:10 SPI to SA ratio exhibited the smallest droplet sizes. Both the storage modulus and loss modulus of the HIPPEs increased with increasing SA addition ratios, implying that HIPPEs with higher SA addition have stronger gel characteristics. In addition, super-resolution microscopy and cryogenic scanning electron microscopy indicated that SA addition strengthened the compactness of the interface film and increased the distribution uniformity of HIPPEs. In conclusion, the combination of SPI and SA is beneficial for improving the performance of HIPPEs.
Collapse
Affiliation(s)
- Zhi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yubo Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
24
|
Wan X, Kang Q, Li J, Guo M, Li P, Shi H, Zhang X, Liu Z, Xia G. Effect of NaCl concentration on the formation of high internal phase emulsion based on whey protein isolate microgel particles. Food Chem 2024; 433:137395. [PMID: 37678115 DOI: 10.1016/j.foodchem.2023.137395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/18/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
At present, the effect of structural modification of microgel particles on high internal phase emulsions (HIPEs) is less studied. In this study, the structural modification effect of NaCl on whey protein isolate microgels (WPIMPs) was comprehensively characterized and applied to the construction of HIPEs. WPIMPs were prepared with NaCl (0-150 mM) and the structural changes were analyzed by measuring the particle size, Zeta-potential, and endogenous fluorescence spectra. The results showed that inducing WPIMPs by NaCl enhanced the surface hydrophobicity, decreased the Zeta potential, and elevated the degree of cross-linking. The interfacial behavior of WPIMPs was characterized by measuring interfacial tensions and adsorbed layer properties. The results showed that NaCl induction decreased the interfacial tension, increased the thickness of the adsorbed layer, and improved the viscoelasticity. The HIPEs were analyzed for micromorphology and particle sizes. The results indicated that NaCl-induced WPIMPs favored the formation of HIPEs with small particle sizes and provided HIPEs with superior environmental stability. This study provides a new idea for the structural modification of microgels and a new theoretical basis for the construction conditions of HIPE.
Collapse
Affiliation(s)
- Xiaoshan Wan
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Qi Kang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Jiaqi Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mengxue Guo
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Peng Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, School of Food Science and Technology, Hainan University, Hainan 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
25
|
He X, Lu Q. A review of high internal phase Pickering emulsions: Stabilization, rheology, and 3D printing application. Adv Colloid Interface Sci 2024; 324:103086. [PMID: 38244533 DOI: 10.1016/j.cis.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
High internal phase Pickering emulsion (HIPPE) is renowned for its exceptionally high-volume fraction of internal phase, leading to flocculated yet deformed emulsion droplets and unique rheological behaviors such as shear-thinning property, viscoelasticity, and thixotropic recovery. Alongside the inherent features of regular emulsion systems, such as large interfacial area and well-mixture of two immiscible liquids, the HIPPEs have been emerging as building blocks to construct three-dimensional (3D) scaffolds with customized structures and programmable functions using an extrusion-based 3D printing technique, making 3D-printed HIPPE-based scaffolds attract widespread interest from various fields such as food science, biotechnology, environmental science, and energy transfer. Herein, the recent advances in preparing suitable HIPPEs as 3D printing inks for various applied fields are reviewed. This work begins with the stabilization mechanism of HIPPEs, followed by introducing the origin of their distinctive rheological behaviors and strategies to adjust the rheological behaviors to prepare more eligible HIPPEs as printing inks. Then, the compatibility between extrusion-based 3D printing and HIPPEs as building blocks was discussed, followed by a summary of the potential applications using 3D-printed HIPPE-based scaffolds. Finally, limitations and future perspectives on preparing HIPPE-based materials using extrusion-based 3D printing were presented.
Collapse
Affiliation(s)
- Xiao He
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
26
|
Zheng XQ, Wang DD, Xue S, Cui ZY, Yu HY, Wei JT, Chen HH, Mu HY, Chen R. Composite formation of whey protein isolate and OSA starch for fabricating high internal phase emulsion: A comparative study at different pH and their application in biscuits. Int J Biol Macromol 2024; 259:129094. [PMID: 38159690 DOI: 10.1016/j.ijbiomac.2023.129094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The composites formed by whey protein isolate (WPI) and octenyl succinate anhydride (OSA)-modified starch were characterized with a focus on the effect of pH, and their potential in fabricating high internal phase emulsions (HIPEs) as fat substitutes was evaluated. The particles obtained at pH 3.0, 6.0, 7.0, and 8.0 presented a nanosized distribution (122.04 ± 0.84 nm-163.24 ± 4.12 nm) while those prepared at pH 4.0 and 5.0 were remarkably larger. Results from the shielding agent reaction and Fourier transform infrared spectroscopy (FT-IR) showed that the interaction between WPI and OSA starch was mainly hydrophobic at pH 3.0-5.0, while there was a strong electrostatic repulsion at pH 6.0-8.0. A quartz crystal microbalance with dissipation (QCM-D) study showed that remarkably higher ΔD and lower Δf/n were observed at pH 3.0-5.0 after successive deposition of WPI and OSA starch, whereas slight changes were noted for those made at higher pH values. The WPI-OSA starch (W-O) composite-based HIPEs made at pH 3.0 and 6.0-8.0 were physically stable after long-term storage, thermal treatment, or centrifugation. Incorporation of HIPE into the biscuit formula yielded products with a desirable sensory quality.
Collapse
Affiliation(s)
- Xiao-Qing Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - De-Da Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Sophia Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Canada
| | - Zi-Yan Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Yang Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jian-Teng Wei
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hong-Yan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| | - Run Chen
- Think Ingredients Inc., Burlington, Canada
| |
Collapse
|
27
|
Shao J, Yang J, Jin W, Huang F, Xiao J, Chen Y, Chen H, Geng F, Peng D, Deng Q. Regulation of interfacial mechanics of soy protein via co-extraction with flaxseed protein for efficient fabrication of foams and emulsions. Food Res Int 2024; 175:113673. [PMID: 38129022 DOI: 10.1016/j.foodres.2023.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Enrichment of plant proteins with functionality is of great importance for expanding their application in food formulations. This study proposed an innovation to co-enrich soy protein and flaxseed protein to act as efficient interfacial stabilizers for generating foams and emulsions. The structure, interfacial properties, and functionalities of the soy protein-flaxseed protein natural nanoparticles (SFNPs) obtained by alkali extraction-isoelectric precipitation (AE) and salt extraction-dialysis (SE) methods were investigated. Overall, the foamability of AE-SFNPs (194.67 %) was 1.45-fold that of SE-SFNPs, due to their more flexible structure, smaller particle size, and suitable surface wettability, promoting diffusion and adsorption at the air-water interface. AE-SFNPs showed higher emulsion stability (140.89 min), probably because the adsorbed AE-SFNPs with smaller size displayed soft particle-like properties and stronger interfacial flexibility, and therefore could densely and evenly arrange at the interface, facilitating the formation of a stiff and solid-like interfacial layer, beneficial for more stable emulsion formation. The findings may innovatively expand the applications of SFNPs as food ingredients.
Collapse
Affiliation(s)
- Jiaqi Shao
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Jing Yang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Fenghong Huang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Hongjian Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China.
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China.
| |
Collapse
|
28
|
Zhu Q, Chen H, Chen W, Zhang M, Zhong Q, Chen Z, Pei J, Chen W. Effects of glycation method on the emulsifying performance and interfacial behavior of coconut globulins-fucoidan complexes. Food Chem 2024; 430:137033. [PMID: 37542968 DOI: 10.1016/j.foodchem.2023.137033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Coconut globulins (CG) possesses potential as an emulsifier but has not been utilized well. In this study, the emulsifying performance of glycated CG-fucoidan (CGF) complexes, and the relationship between emulsifying stability and interfacial behavior were investigated. The results showed that the grafting of fucoidan increased the molecular weight of CG, and decreased the zeta potential and fluorescence intensity. With the higher glycosylation degree, the fucoidan modified CG exhibited better emulsifying stability and higher viscosity. Moreover, the result of adsorption kinetics revealed that elasticity was the main property of the interface layer. Compared to CG, CGF complexes with high degree of glycosylation had thicker interfacial layer on the oil-water interface. A thicker elastic interfacial layer may be beneficial to the emulsion stability, owing to the strong interaction of electrostatic repulsion and steric hindrance between oil droplets. These findings may provide useful information for glycated CGF complexes as emulsifiers in functional food.
Collapse
Affiliation(s)
- Qianqian Zhu
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Haiming Chen
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Weijun Chen
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Ming Zhang
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Qiuping Zhong
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Zixin Chen
- Wenchang Zaineng Industrial Co., Ltd., Dongjiao Town, Wenchang 571300, PR China
| | - Jianfei Pei
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| | - Wenxue Chen
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| |
Collapse
|
29
|
Ling M, Huang X, He C, Zhou Z. Tunable rheological properties of high internal phase emulsions stabilized by phosphorylated walnut protein/pectin complexes: The effects of pH conditions, mass ratios, and concentrations. Food Res Int 2024; 175:113670. [PMID: 38129023 DOI: 10.1016/j.foodres.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The current study reported high internal phase emulsions (HIPEs) stabilized by phosphorylated walnut protein/pectin complexes (PWPI/Pec) and elucidated how their rheological properties were modulated by pH conditions, mass ratios, and concentrations of the complexes. At pH 3.0, the HIPEs stabilized by PWPI/Pec exhibited smaller oil droplet sizes, as well as higher storage modulus (G') and flow stress, in comparison to those stabilized by the complexes formed at pH 4.0-6.0. These observations can be directly linked to pH-dependent changes in particle size, surface hydrophobicity, and wettability of the PWPI/Pec complexes. Rheological analysis revealed that all generated HIPEs displayed weak strain overshoot behavior, irrespective of pH conditions. Notably, HIPEs stabilized by PWPI/Pec at mass ratios of 2:1 and 4:1 showed enlarged oil droplet sizes, lower G' and flow stress but higher flow strain with unaffected loss factor compared to those stabilized by PWPI/Pec 1:1. However, reducing the concentration of PWPI/Pec led to a simultaneous decrease in G', flow stress, and flow strain, along with a significant increase in the loss factor of the HIPEs. Furthermore, the HIPEs formed with 1% PWPI/Pec 1:1 at pH 3.0 demonstrated excellent stability against heat treatment and long-term storage. These results provide valuable insights into the modulation of rheological characteristics of HIPEs and offer guidance for the application of walnut protein-based stabilizers in HIPE systems.
Collapse
Affiliation(s)
- Min Ling
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China
| | - Xuan Huang
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China
| | - Changwei He
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China
| | - Zheng Zhou
- School of Food Science and Bioengineering, Xihua University, Chengdu, Sichuan Province 610039, China.
| |
Collapse
|
30
|
Bhardwaj H, Khute S, Sahu RK, Jangde RK. Emerging Trends in Hybrid Nanoparticles: Revolutionary Advances and Promising Biomedical Applications. Curr Drug Metab 2024; 25:248-265. [PMID: 38918986 DOI: 10.2174/0113892002291778240610073122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/24/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024]
Abstract
Modern nanostructures must fulfill a wide range of functions to be valuable, leading to the combination of various nano-objects into hierarchical assemblies. Hybrid Nanoparticles (HNPs), comprised of multiple types of nanoparticles, are emerging as nanoscale structures with versatile applications. HNPs offer enhanced medical benefits compared to basic combinations of distinct components. They address the limitations of traditional nanoparticle delivery systems, such as poor water solubility, nonspecific targeting, and suboptimal therapeutic outcomes. HNPs also facilitate the transition from anatomical to molecular imaging in lung cancer diagnosis, ensuring precision. In clinical settings, the selection of nanoplatforms with superior reproducibility, cost-effectiveness, easy preparation, and advanced functional and structural characteristics is paramount. This study aims toextensively examine hybrid nanoparticles, focusing on their classification, drug delivery mechanisms, properties of hybrid inorganic nanoparticles, advancements in hybrid nanoparticle technology, and their biomedical applications, particularly emphasizing the utilization of smart hybrid nanoparticles. PHNPs enable the delivery of numerous anticancer, anti-leishmanial, and antifungal drugs, enhancing cellular absorption, bioavailability, and targeted drug delivery while reducing toxic side effects.
Collapse
Affiliation(s)
- Harish Bhardwaj
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| | - Sulekha Khute
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, 249161, India
| | - Rajendra Kumar Jangde
- Department of Pharmaceutical Sciences, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
31
|
Li D, Yin H, Wu Y, Feng W, Xu KF, Xiao H, Li C. Ultrastable High Internal Phase Pickering Emulsions: Forming Mechanism, Processability, and Application in 3D Printing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18829-18841. [PMID: 38011315 DOI: 10.1021/acs.jafc.3c05653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) are versatile platforms for various applications owing to their low-density, solid-like structure, and large specific surface area. Here, naturally occurring polysaccharide-protein hybrid nanoparticles (PPH NPs) were used to stabilize HIPPEs with an internal phase fraction of 80% at a PPH NP concentration of 1.5%. The obtained HIPPEs displayed a gel-like behavior with excellent stability against centrifugation (10000g, 10 min), temperature (4-121 °C), pH (1.0-11.0), and ionic strength (0-500 mM). Confocal laser scanning microscope and cryo-scanning electron microscopy results showed that PPH NPs contributed to the stability of HIPPEs by effectively adsorbing and anchoring on the surface of the emulsion droplets layer by layer to form a dense 3D network barrier to inhibit droplet coalescence. The rheological analysis showed that the HIPPEs possessed a higher viscosity and lower frequency dependence with increasing PPH NP concentration, suggesting the potential application of such HIPPEs in three-dimensional (3D) printing, which was subsequently confirmed by a 3D printing experiment. This work provides highly stable and processable HIPPEs, which can be developed as facile and reusable materials for numerous applications. They can also be directly used for future food manufacturing, drug and nutrient delivery, and tissue reconstruction.
Collapse
Affiliation(s)
- Dafei Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Haoran Yin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yingni Wu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Feng
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
32
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. A comparative study of the impacts of preparation techniques on the rheological and textural characteristics of emulsion gels (emulgels). Adv Colloid Interface Sci 2023; 322:103051. [PMID: 37981462 DOI: 10.1016/j.cis.2023.103051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
A subtype of soft solid-like substances are emulsion gels (emulgels; EGs). These composite material's structures either consist of a network of aggregated emulsion droplets or a polymeric gel matrix that contains emulsion droplets. The product's rheological signature can be used to determine how effective it is for a specific application. The interactions between these structured system's separate components and production process, however, have a substantial impact on their rheological imprint. Therefore, rational comprehension of interdependent elements, their structural configurations, and the resulting characteristics of a system are essential for accelerating our progress techniques as well as for fine-tuning the technological and functional characteristics of the finished product. This article presents a comprehensive overview of the mechanisms and procedures of producing EGs (i.e., cold-set and heat-set) in order to determine the ensuing rheological features for various commercial applications, such as food systems. It also describes the influence of these methods on the rheological and textural characteristics of the EGs. Diverse preparation methods are the cause of the rheological-property correlations between different EGs. In many ways, EGs can be produced using various matrix polymers, processing techniques, and purposes. This may lead to various EG matrix structures and interactions between them, which in turn may affect the composition of EGs and ultimately their textural and rheological characteristics.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
33
|
Qayum A, Rashid A, Liang Q, Wu Y, Cheng Y, Kang L, Liu Y, Zhou C, Hussain M, Ren X, Ashokkumar M, Ma H. Ultrasonic and homogenization: An overview of the preparation of an edible protein-polysaccharide complex emulsion. Compr Rev Food Sci Food Saf 2023; 22:4242-4281. [PMID: 37732485 DOI: 10.1111/1541-4337.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 09/22/2023]
Abstract
Emulsion systems are extensively utilized in the food industry, including dairy products, such as ice cream and salad dressing, as well as meat products, beverages, sauces, and mayonnaise. Meanwhile, diverse advanced technologies have been developed for emulsion preparation. Compared with other techniques, high-intensity ultrasound (HIUS) and high-pressure homogenization (HPH) are two emerging emulsification methods that are cost-effective, green, and environmentally friendly and have gained significant attention. HIUS-induced acoustic cavitation helps in efficiently disrupting the oil droplets, which effectively produces a stable emulsion. HPH-induced shear stress, turbulence, and cavitation lead to droplet disruption, altering protein structure and functional aspects of food. The key distinctions among emulsification devices are covered in this review, as are the mechanisms of the HIUS and HPH emulsification processes. Furthermore, the preparation of emulsions including natural polymers (e.g., proteins-polysaccharides, and their complexes), has also been discussed in this review. Moreover, the review put forward to the future HIUS and HPH emulsification trends and challenges. HIUS and HPH can prepare much emulsifier-stable food emulsions, (e.g., proteins, polysaccharides, and protein-polysaccharide complexes). Appropriate HIUS and HPH treatment can improve emulsions' rheological and emulsifying properties and reduce the emulsions droplets' size. HIUS and HPH are suitable methods for developing protein-polysaccharide forming stable emulsions. Despite the numerous studies conducted on ultrasonic and homogenization-induced emulsifying properties available in recent literature, this review specifically focuses on summarizing the significant progress made in utilizing biopolymer-based protein-polysaccharide complex particles, which can provide valuable insights for designing new, sustainable, clean-label, and improved eco-friendly colloidal systems for food emulsion. PRACTICAL APPLICATION: Utilizing complex particle-stabilized emulsions is a promising approach towards developing safer, healthier, and more sustainable food products that meet legal requirements and industrial standards. Moreover, the is an increasing need of concentrated emulsions stabilized by biopolymer complex particles, which have been increasingly recognized for their potential health benefits in protecting against lifestyle-related diseases by the scientific community, industries, and consumers.
Collapse
Affiliation(s)
- Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yue Wu
- Sonochemistry Group, School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Yu Cheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Yuxuan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Chengwei Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| | | | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
34
|
Yu SJ, Hu SM, Zhu YZ, Zhou S, Dong S, Zhou T. Pickering emulsions stabilized by soybean protein isolate/chitosan hydrochloride complex and their applications in essential oil delivery. Int J Biol Macromol 2023; 250:126146. [PMID: 37544563 DOI: 10.1016/j.ijbiomac.2023.126146] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In this work, fabrication of soybean protein isolate (SPI)/chitosan hydrochloride (CHC) composite particles stabilized O/W Pickering emulsions using soybean oil as an oil phase was optimized by examining the effects of pH, SPI/CHC mass ratio, SPI/CHC composite particle concentration and oil phase fraction on the stability of the emulsions. The results showed that under the conditions of SPI/CHC mass ratio 1:1, pH 4 and particle concentration 2 %, the SPI/CHC composite particles could stabilize the emulsions with oil phase fraction up to 80 %. At an oil phase fraction of 60 %, the emulsions had a minimum particle size. The microstructure, storage and oxidation stabilities and rheological properties of the emulsions were determined. Using this SPI/CHC composite particle-stabilized Pickering emulsion template, citrus essential oil (CEO) Pickering emulsion (CEOP) was prepared. CEOP was found to markedly inhibit two food-related microorganisms, Staphylococcus aureus and Escherichia coli. In addition, the CEOP emulsion dilution (containing 4500 μL CEO/L) not only improved the water solubility of CEO, but also effectively retarded the browning and bacterial growth of fresh-cut apple. The SPI/CHC-stabilized Pickering emulsion template constructed in this work provides a promising alternative for the delivery of antimicrobial essential oils in the food industry.
Collapse
Affiliation(s)
- Si-Jia Yu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shu-Min Hu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Yu-Zhu Zhu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shaobo Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK
| | - Shuai Dong
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
35
|
Liu Y, Tan Z, Huang Y, Liu J, Xu X, Zhu B, Dong X. pH-shift strategy improving the thermal stability and oxidation stability of rice starch/casein-based high internal phase emulsions for the application in fish cake. Food Chem X 2023; 18:100694. [PMID: 37187487 PMCID: PMC10176162 DOI: 10.1016/j.fochx.2023.100694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
The thermal stability of the different pH-shift rice starch/casein-based high internal phase emulsions (SC-HIPE) were evaluated in the present study to verify potential in improving the quality of fish cake. The results showed that the pH-shift treatment improved thermal stability (from 27.23% to 76.33%) and oxidation time (from 5.01 h to 6.86 h) of SC-HIPE, which showed the smaller droplet size (decreased from 15.14 to 1.64 μm) and higher storage module. The breaking force of FC with thermal stable SC-HIPE (average 64.95 g) was higher than that with thermal unstable SC-HIPE (51.05 g). The cohesiveness, adhesiveness and chewiness could be improved by adding thermal stable SC-HIPE, compared with pork fat. Additionally, combining sensory evaluation, the thermal stable SC-HIPE improved the gel quality, thus it could be completely replaced pork fat in the preparation of FC, which provided theoretical guidance for the preparation and application of fat substitutes.
Collapse
Affiliation(s)
- Yu Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Zhifeng Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Yizhen Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Jiaqi Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Xianbing Xu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
| | - Beiwei Zhu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
- Corresponding authors at: School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian 116034, Liaoning, China
- Corresponding authors at: School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
36
|
Tu Y, Zhang X, Wang L. Effect of salt treatment on the stabilization of Pickering emulsions prepared with rice bran protein. Food Res Int 2023; 166:112537. [PMID: 36914309 DOI: 10.1016/j.foodres.2023.112537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
In this study, salt addition (NaCl and CaCl2) was utilized to improve the stability of emulsions formed by rice bran protein (RBP). The result showed that salt addition improved the adsorption of protein on the oil-water interface and enhanced the physical stability of emulsions. Compared to NaCl condition, emulsions with CaCl2 (especially 200 mM) addition exhibited more significant storage stability, as microscopy images showed emulsion structure unchanged and droplet size increasing slightly from 12.02 µm to 16.04 µm in 7 days. It was attributed to the strengthened particle complexation with CaCl2 and the increased hydrophobic interactions, which is explained by the improved particle size (260.93 nm), surface hydrophobicity (1890.10) and fluorescence intensity, thus inducing dense and hardly destroyed interfacial layers. Rheological behavior analyses suggested that salt-induced emulsions had higher viscoelasticity and maintained a stable gel-like structure. The result of study explored the mechanism of salt treated protein particles, developed a further understanding of Pickering emulsion, and was beneficial to the application of RBP.
Collapse
Affiliation(s)
- Yi Tu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
37
|
Yang H, Liu Y, Wang S, Zhao L, Liu H, Liu J, Zhu D. Composition, morphology, interfacial rheology and emulsifying ability of soy hull polysaccharides extracted with ammonium oxalate and sodium citrate as extractants. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2325-2336. [PMID: 36628504 DOI: 10.1002/jsfa.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/24/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Soy hull, a by-product of crop processing, is rich in pectin-like polysaccharides that have potential for thickening, gelling and emulsifying applications. The effect of ammonium oxalate (SHPA) and sodium citrate (SHPS) on the conformation, physicochemical properties and emulsifying ability of soy hull polysaccharide (SHP) were investigated. RESULTS The composition analysis showed that SHPS had more polysaccharide, protein, and higher molecular weight than SHPA. Images of atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that SHPS molecules appeared spherical bodies with smooth and firm surfaces, while SHPA molecules appeared chain-like bodies with rough and wrinkled surface. At the oil-water interface, SHPS adsorbed faster and formed a more elastic interfacial layer than SHPA. The characterization of the prepared emulsions showed that the SHPS emulsion was a smaller particle size and more stable system within 30 days than SHPA emulsion, especially at the SHPS concentration of 9 mg mL-1 . Images of cryo-scanning electron microscopy (cryo-SEM) also demonstrated SHPS formed clearer network structure on the surface of the oil droplets, compared to SHPA. CONCLUSION Overall, ammonium oxalate and sodium citrate significantly influenced the composition and properties of the SHP. SHPS exhibited a better emulsifying ability than SHPA, which was mainly due to the higher protein content of SHPS and the sodium ion (Na+ ) residue of sodium citrate. This study is useful for the extraction and application of SHP and other plant-based polysaccharides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Yexuan Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Lingling Zhao
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jun Liu
- Dezhou National Hi-Tech Industrial Development Zone, Shandong Yuwang Ecogical Food Industry Co. Ltd., Yucheng, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
38
|
Zhao Q, Fan L, Li J. Biopolymer-based pickering high internal phase emulsions: Intrinsic composition of matrix components, fundamental characteristics and perspective. Food Res Int 2023; 165:112458. [PMID: 36869475 DOI: 10.1016/j.foodres.2023.112458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Pickering HIPEs have received tremendous attention in recent years due to their superior stability and unique solid-like and rheological properties. Biopolymer-based colloidal particles derived from proteins, polysaccharides and polyphenols have been demonstrated to be safety stabilizers for the construction of Pickering HIPEs, which can meet the demands of consumers for "all-natural" products and provide "clean-label" foods. Furthermore, the functionality of these biopolymers can be further extended by forming composite, conjugated and multi-component colloidal particles, which can be used to modulate the properties of the interfacial layer, thereby adjusting the performance and stability of Pickering HIPEs. In this review, the factors affecting the interfacial behavior and adsorption characteristics of colloidal particles are discussed. The intrinsic composition of matrix components and fundamental characteristics of Pickering HIPEs are emphatically summarized, and the emerging applications of Pickering HIPEs in the food industry are reviewed. Inspired by these findings, future perspectives concerning this field are also put forward, including (1) the exploration of the interactions between biopolymers used to produce Pickering HIPEs and target food ingredients, and the influence of the added biopolymers on the flavor and mouthfeel of the products, (2) the investigation of the digestion properties of Pickering HIPEs under oral administration, and (3) the fabrication of stimulus-responsive or transparent Pickering HIPEs. This review will give a reference for exploring more natural biopolymers for Pickering HIPEs application development.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
39
|
Lin J, Tang ZS, Brennan CS, Chandrapala J, Gao W, Han Z, Zeng XA. Thermomechanically micronized sugar beet pulp: Emulsification performance and the contribution of soluble elements and insoluble fibrous particles. Food Res Int 2023; 165:112467. [PMID: 36869480 DOI: 10.1016/j.foodres.2023.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/04/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
In this work, thermomechanically micronized sugar beet pulp (MSBP), a micron-scaled plant-based byproduct comprised of soluble elements (∼40 wt%) and insoluble fibrous particles (IFPs, ∼60 wt%), was used as a sole stabilizer for oil-in-water emulsion fabrication. The influence of emulsification parameters on the emulsifying properties of MSBP was investigated, including emulsification techniques, MSBP concentration, and oil weight fraction. High-speed shearing (M1), ultrasonication (M2), and microfludization (M3) were used to fabricate oil-in-water emulsions (20% oil) with 0.60 wt% MSBP as stabilizer, in which the d4,3 value was 68.3, 31.5, and 18.2 μm, respectively. Emulsions fabricated by M2 and M3 (higher energy input) were more stable than M1 (lower energy input) during long-term storage (30 days) as no significant increase of d4,3. As compared to M1, the adsorption ratio of IFPs and protein was increased from ∼0.46 and ∼0.34 to ∼0.88 and ∼0.55 by M3. Fabricated by M3, the creaming behavior of emulsions was completely inhibited with 1.00 wt% MSBP (20% oil) and 40% oil (0.60 wt% MSBP), showing a flocculated state and could be disturbed by sodium dodecyl sulfate. The gel-like network formed by IFPs could be strengthened after storage as both viscosity and module were significantly increased. During emulsification, the co-stabilization effect of the soluble elements and IFPs enabled a compact and hybrid coverage onto the droplet surface, which acted as a physical barrier to endow the emulsion with robust steric repulsion. Altogether, these findings suggested the feasibility of using plant-based byproducts as oil-in-water emulsion stabilizers.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Charles S Brennan
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Jayani Chandrapala
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Wenhong Gao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Han
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|
40
|
Zhang Y, Fu W, Chen S, Liang H, Li J, Li Y, Li B. Pickering emulsions stabilized by homogenized ball-milled eggshell particles in combination with sodium alginate. Int J Biol Macromol 2023; 229:1044-1053. [PMID: 36572082 DOI: 10.1016/j.ijbiomac.2022.12.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Eggshells, by-products of egg processing, were ball-milled and homogenized into particles (eggshell particles, ESPs) and then were used as the stabilizer with a two-step oil addition method to produce Pickering emulsions. Meanwhile, sodium alginate (SA) was used to modify the emulsifying ability of ESPs. The results indicated that SA addition helped to improve the dispersion performance and increase the negative charge of ESPs. Pickering emulsions stabilized by ESPs/SA showed much smaller particle size than those stabilized by ESPs. The maximum oil fraction in the ESPs/SA-stabilized emulsions reached up to 0.8, while that was only 0.75 in ESPs-stabilized emulsions. The presence of SA significantly enhanced the freeze-thaw, thermal, dilution, and centrifuge stability of ESPs-stabilized Pickering emulsions. The findings demonstrate the potential of eggshell particles as a kind of natural Pickering stabilizer, which will increase the high value-added utilization of poultry egg industry by-products.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiting Fu
- National Egg Processing Technology R&D Professional Center, Jingmen 448000, China
| | - Siyao Chen
- National Egg Processing Technology R&D Professional Center, Jingmen 448000, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China.
| |
Collapse
|
41
|
High-internal-phase emulsions stabilized solely by chitosan hydrochloride: Fabrication and effect of pH on stabilization mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Su D, Mo H, Huang J, Li Q, Zhong H, Jin B. Soy protein/β-glucan/tannic acid complex coacervates with different micro-structures play key roles in the rheological properties, tribological properties, and the storage stability of Pickering high internal phase emulsions. Food Chem 2023; 401:134168. [DOI: 10.1016/j.foodchem.2022.134168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
|
43
|
Bai Y, Qiu T, Chen B, Shen C, Yu C, Luo Z, Zhang J, Xu W, Deng Z, Xu J, Zhang H. Formulation and stabilization of high internal phase emulsions: Stabilization by cellulose nanocrystals and gelatinized soluble starch. Carbohydr Polym 2023; 312:120693. [PMID: 37059515 DOI: 10.1016/j.carbpol.2023.120693] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]
Abstract
In this work, high internal phase emulsions (HIPEs) stabilized by naturally derived cellulose nanocrystals (CNC) and gelatinized soluble starch (GSS) were fabricated to stabilize oregano essential oil (OEO) in the absence of surfactant. The physical properties, microstructures, rheological properties, and storage stability of HIPEs were investigated by adjusting CNC contents (0.2, 0.3, 0.4 and 0.5 wt%) and starch concentration (4.5 wt%). The results revealed that CNC-GSS stabilized HIPEs exhibited good storage stability within one month and the smallest droplets size at a CNC concentration of 0.4 wt%. The emulsion volume fractions of 0.2, 0.3, 0.4 and 0.5 wt% CNC-GSS stabilized HIPEs after centrifugation reached 77.58, 82.05, 94.22, and 91.41 %, respectively. The effect of native CNC and GSS were analyzed to understand the stability mechanisms of HIPEs. The results revealed that CNC could be used as an effective stabilizer and emulsifier to fabricate the stable and gel-like HIPEs with tunable microstructure and rheological properties.
Collapse
|
44
|
Lin J, Tang ZS, Brennan CS, Chandrapala J, Gao W, Han Z, Zeng XA. Valorizing protein-polysaccharide conjugates from sugar beet pulp as an emulsifier. Int J Biol Macromol 2023; 226:679-689. [PMID: 36436597 DOI: 10.1016/j.ijbiomac.2022.11.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Inspired by the emulsion stability of sugar beet pulp pectin, the hydrophobic protein fraction in sugar beet pulp (SBP) is expected to feature high interfacial activity. This work retrieved alkaline extracted protein-polysaccharide conjugates (AEC) from partially depectinized SBP by hot alkaline extraction. AEC was protein-rich (57.20 %), and the polysaccharide mainly comprised neutral sugar, which adopted a rhamnogalacturonan-I pectin-like structure. The hydrophobic polypeptide chains tangled as a dense 'core' with polysaccharide chains attached as a hydrated 'shell' (hydrodynamic radius of ~110 nm). AEC could significantly decrease the oil-water interfacial tension (11.58 mN/m), featuring superior emulsification performance than three control emulsifiers, especially the excellent emulsifying stability (10 % oil) as the emulsion droplet size of 0.438 and 0.479 μm for fresh and stored (60 °C, 5 d) emulsions, respectively. The relationship of molecular structure to emulsification was investigated by specific enzymic modification, suggesting the intact macromolecular structure was closely related to emulsifying activity and that the NS fraction contributed greatly to emulsifying stability. Moreover, AEC was highly efficient to stabilize gel-like high internal phase emulsions (oil fraction 0.80) with low concentration (0.2 %) and even high ionic strength (0-1000 mM). Altogether, valorizing AEC as an emulsifier is feasible for high-value utilization of SBP.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong-Sheng Tang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | | | - Jayani Chandrapala
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Wenhong Gao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhong Han
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 510700, China.
| |
Collapse
|
45
|
Zhang M, Li X, Zhou L, Chen W, Marchioni E. Protein-Based High Internal Phase Pickering Emulsions: A Review of Their Fabrication, Composition and Future Perspectives in the Food Industry. Foods 2023; 12:482. [PMID: 36766011 PMCID: PMC9914728 DOI: 10.3390/foods12030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Protein-based high internal phase Pickering emulsions (HIPEs) are emulsions using protein particles as a stabilizer in which the volume fraction of the dispersed phase exceeds 74%. Stabilizers are irreversibly adsorbed at the interface of the oil phase and water phase to maintain the droplet structure. Protein-based HIPEs have shown great potential for a variety of fields, including foods, due to the wide range of materials, simple preparation, and good biocompatibility. This review introduces the preparation routes of protein-based HIPEs and summarizes and classifies the preparation methods of protein stabilizers according to their formation mechanism. Further outlined are the types and properties of protein stabilizers used in the present studies, the composition of the oil phase, the encapsulating substances, and the properties of the constituted protein-based HIPEs. Finally, future development of protein-based HIPEs was explored, such as the development of protein-based stabilizers, the improvement of emulsification technology, and the quality control of stabilizers and protein-based HIPEs.
Collapse
Affiliation(s)
- Minghao Zhang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Xiang Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Weilin Chen
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Eric Marchioni
- Inst Pluridisciplinaire Hubert Curien, CNRS, Equipe Chim Analyt Mol Bioact & Pharmacognoise, UMR 7178, UDS, F-67400 Illkirch Graffenstaden, France
| |
Collapse
|
46
|
Niu H, Wang W, Dou Z, Chen X, Chen X, Chen H, Fu X. Multiscale combined techniques for evaluating emulsion stability: A critical review. Adv Colloid Interface Sci 2023; 311:102813. [PMID: 36403408 DOI: 10.1016/j.cis.2022.102813] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Emulsions are multiscale and thermodynamically unstable systems which will undergo various unstable processes over time. The behavior of emulsifier molecules at the oil-water interface and the properties of the interfacial film are very important to the stability of the emulsion. In this paper, we mainly discussed the instability phenomena and mechanisms of emulsions, the effects of interfacial films on the long-term stability of emulsions and summarized a set of systematic multiscale combined methods for studying emulsion stability, including droplet size and distribution, zeta-potential, the continuous phase viscosity, adsorption mass and thickness of the interfacial film, interfacial dilatational rheology, interfacial shear rheology, particle tracking microrheology, visualization technologies of the interfacial film, molecular dynamics simulation and the quantitative evaluation methods of emulsion stability. This review provides the latest research progress and a set of systematic multiscale combined techniques and methods for researchers who are committed to the study of oil-water interface and emulsion stability. In addition, this review has important guiding significances for designing and customizing interfacial films with different properties, so as to obtain emulsion-based delivery systems with varying stability, oil digestibility and bioactive substance utilization.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang 529500, Guangdong, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xianwei Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qiongshan Road, Haikou 571126, PR China.
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China.
| |
Collapse
|
47
|
Gu R, Li C, Shi X, Xiao H. Naturally occurring protein/polysaccharide hybrid nanoparticles for stabilizing oil-in-water Pickering emulsions and the formation mechanism. Food Chem 2022; 395:133641. [PMID: 35816986 DOI: 10.1016/j.foodchem.2022.133641] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
In this study, we reported for the first time that the natural protein/polysaccharide hybrid nanoparticles (PPH NPs) with a diameter of ∼ 129 nm, originating from Lactobacillus plantarum fermented cheese whey, could act as green-based NPs for stabilizing Pickering emulsions. Characterizations of PPH NPs showed that the negative-charged PPH NPs were composed of ∼ 37.7% total protein and ∼ 7.3% polysaccharide bearing several functional groups, such as -OH, -NH, -COOH, etc.; and displayed excellent emulsifying capacity in preparing oil-in-water Pickering emulsions. The obtained emulsions exhibited gel-like behavior with excellent stability against the variation of pH, ionic strength, and temperature. Confocal observations showed that PPH NPs effectively adsorbed and anchored at the oil-water interface, thus creating the steric hindrance to inhibit droplet coalescence. This research is of importance in developing novel and biocompatible Pickering stabilizers with outstanding performance, as well as enable a versatile design of stable Pickering emulsions suitable for food industries.
Collapse
Affiliation(s)
- Ruihan Gu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
48
|
Guo J, Cui L, Meng Z. Oleogels/emulsion gels as novel saturated fat replacers in meat products: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
49
|
Zhang L, Zaky AA, Zhou C, Chen Y, Su W, Wang H, Abd El-Aty A, Tan M. High internal phase Pickering emulsion stabilized by sea bass protein microgel particles: Food 3D printing application. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
50
|
Bu N, Huang L, Cao G, Lin H, Pang J, Mu R, Wang L. Konjac glucomannan/Pullulan films incorporated with cellulose nanofibrils-stabilized tea tree essential oil Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|