1
|
Wang L, He Y, Zhou Y, Xie H, Mei X, Zhao J, Du Q, Jin P, Xie D. Enhanced antioxidant activity of low-molecular-weight hyaluronan-based coatings amended with EGCG for Torreya grandis kernels preservation. Food Chem 2025; 478:143742. [PMID: 40058264 DOI: 10.1016/j.foodchem.2025.143742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 04/06/2025]
Abstract
Polysaccharide coating protection technology has always been a research hotspot in the field of food preservation. In this study, hyaluronic acid (HA), the widely used green polysaccharide was optimized by a free radical mediated method for covalent grafting high antioxidant epigallocatechin gallate (EGCG) to prepare copolymers (HA-EGCG) and applied to the preservation of Torreya grandis kernels. The physicochemical properties, antioxidant activities and application effect of HA-EGCG were investigated. The results found that low-molecular-weight HA (LHA) could obtain a higher grafting rate than high-molecular-weight HA (HHA), reaching 93.5 %. For structural character, the LHA-EGCG showed good stablility, which improved the surface roughness of the edible coating and the addition of EGCG significantly enhanced the antioxidant activities (p < 0.01). For application effect, LHA-EGCG coating significantly inhibit the change of appearance color, and increase of malonaldehyde, acid value, and peroxide value during long-term storage of T. grandis kernels, and could maintain its flavor to prolong quality retention. Collectively, the edible coating of HA grafted EGCG significantly prolong the quality of the kernel and has broad application potential in the field of food preservation.
Collapse
Affiliation(s)
- Lu Wang
- The College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yan He
- The College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yingying Zhou
- The College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Huiqin Xie
- The College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xin Mei
- The College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Jinsong Zhao
- The College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qizhen Du
- The College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China
| | - Peng Jin
- The College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Dongchao Xie
- The College of Food and Health, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Zhang W, Azizi-Lalabadi M, Can Karaca A, Abedi-Firoozjah R, Assadpour E, Zhang F, Jafari SM. A review of bio-based dialdehyde polysaccharides as multifunctional building blocks for biomedical and food science applications. Int J Biol Macromol 2025; 309:142964. [PMID: 40210025 DOI: 10.1016/j.ijbiomac.2025.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Food science and biomedical engineering are key disciplines related to human health, with the development of functional materials being an important research direction in both fields. In recent years, dialdehyde polysaccharides (DAPs), as green biopolymers, have become increasingly important in functional materials within food science and biomedical engineering. This work systematically summarizes the sources and properties of various DAPs, introduces their preparation methods and common DAP-based functional biomaterials, including hydrogels, scaffolds, films, coatings, nanoparticles, and nanofibers. Importantly, this work also reviews DAP applications in functional materials for food science and biomedical engineering, such as drug delivery, wound dressings, tissue engineering, food packaging films/edible coatings, food emulsions, antibacterial nanoparticles, and enzyme immobilization. Finally, the work briefly discusses the biosafety of DAPs. To conclude, this study provides a toolkit for developing functional materials in these fields and offers important reference value regarding the broad application of DAPs.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Reza Abedi-Firoozjah
- Student Research committee, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Huang J, Ying C, Li X, Kuang J, Li J, Huang T, Li J. Study on structure, properties and formation mechanism of cassava starch-faba bean protein heat-induced gel. Int J Biol Macromol 2025; 300:140216. [PMID: 39855501 DOI: 10.1016/j.ijbiomac.2025.140216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
In this experiment, the effects of different concentrations of cassava starch (CS) on the gel behavior of faba bean protein (FBP) were studied, focusing on the structural characteristics, gel characteristics and physical and chemical characteristics of the gel system. Specifically, with the increase of CS concentration from 4 % to 12 %, the morphology of the sample changed from fluid to gel solid. From the molecular structure, different concentrations of CS affected the secondary and tertiary structures of FBP protein, which made aromatic amino acids move to the surface of protein and promoted the transformation from α-helix to β-sheet. In addition, free sulfhydryl groups are converted into disulfide bonds, which increases the number of hydrogen bonds in the system. Microscopically, high temperature treatment leads to the cracking of CS and FBP structures, which enhances the noncovalent interactions between them, and forms a compact and smaller pore three-dimensional network structure, providing more channels for external moisture to transfer to the inside. From the gel characteristics, the water holding capacity, viscoelasticity and mechanical behavior of the composite gel were improved when the concentration of CS was 6 %-12 %. This work provides reference for the application of cassava starch-faba bean protein gel in specific food and medicine fields.
Collapse
Affiliation(s)
- Jianyu Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Cai Ying
- First Sanatorium of Air Force Healthcare Center for Special Services Hangzhou, Hangzhou 310007, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Kuang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianqiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Huang
- College of Food Science and Engineering, Ningbo University, Ningbo, China.
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
4
|
Zhao M, Han P, Mu H, Sun S, Dong J, Sun J, Lu S, Wang Q, Ji H. Food packaging films from natural polysaccharides and protein hydrogels: A comprehensive review. Food Chem X 2025; 25:102174. [PMID: 39897972 PMCID: PMC11786921 DOI: 10.1016/j.fochx.2025.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/09/2024] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
The development of innovative, biodegradable food packaging materials to combat plastic pollution has garnered significant attention from scholars and government agencies worldwide. Natural polysaccharides and proteins exhibit excellent modifiability, biodegradability, high ductility, and compatibility with food products, making them ideal candidates for constructing hydrogels. Hydrogel films based on these biopolymers have opened new research horizons in food packaging applications. This review examines natural polysaccharides and proteins commonly used in hydrogel film preparation and explores strategies to improve their packaging performance, including the use of binary mixtures and exogenous additives. To optimize functionality, the cross-linking mechanisms between materials and film-forming methods are summarized. Additionally, recent applications of hydrogel films in food packaging in are discussed, showcasing their ability to extend or monitor food freshness. Despite existing challenges, the current advancements present a promising and sustainable alternative to conventional plastic materials paving the way for innovative packaging solutions.
Collapse
Affiliation(s)
- Mou Zhao
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ping Han
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hongyan Mu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Suling Sun
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jingtao Sun
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hua Ji
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
5
|
Wang Y, Huang Z, Zhou T, Li C, Sun Y, Pang J. Progress of research on aroma absorption mechanism and aroma fixation pathway of jasmine green tea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9111-9127. [PMID: 38877788 DOI: 10.1002/jsfa.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
This overview summarizes the latest research progress on the aroma absorption mechanism and aroma fixation pathway of jasmine green tea, and discusses in depth the aroma absorption mechanism of green tea, the aroma release mechanism of jasmine flowers, as well as the absorption and fixation mechanism of the aroma components of jasmine green tea in the process of scenting, to provide a theoretical basis for the improvement of the quality of jasmine green tea and the innovation of processing technology. It was found that the aroma absorption mechanism of jasmine green tea is mainly associated with both physical and chemical adsorption, aroma release in jasmine involves the phenylpropanoid/benzoin biosynthetic pathway, β-glycosidase enzymes interpreting putative glycosidic groups, and heat shock proteins (HSPs) as molecular chaperones to prevent stress damage in postharvest flowers due to high temperatures and to promote the release of aroma components, and so forth. The preparation of aroma-protein nano-complexes, heat stress microcapsules, and the spraying of polymeric substances - β-cyclodextrin are three examples of aroma-fixing pathways. This overview also summarizes the problems and future development trends of the current research and proposes the method of loading benzyl acetate, the main aroma component of jasmine, through konjac glucomannan (KGM)-based gel to solve the problem of volatile aroma and difficult-to-fix aroma, which provides a reference for the sustainable development of the jasmine green tea industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yueguang Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zifeng Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taoyi Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Charlie Li
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Yilan Sun
- Department of Oral and maxillofacial Head and neck Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Ran C, Li Q, Zhao M, Cui H, Yang Y, Diao K, Liu Y, Lu S, Dong J, Wang Q. Gelatin/polyvinyl alcohol films loaded with doubly stabilized clove essential oil chitosomes: Preparation, characterization, and application in packing marinated steaks. Food Chem 2024; 460:140673. [PMID: 39089012 DOI: 10.1016/j.foodchem.2024.140673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
In this study, a promising active food-packaging film of Gelatin/polyvinyl alcohol (GEL/PVA) integrated with doubly stabilized clove essential oil chitosome nanoparticles (CNP) was developed to maintain the freshness of marinated steaks. Results from the XRD and SEM experiments indicated excellent compatibility between the CNP and GEL/PVA matrix. Additionally, CNP was found to introduce more free hydroxyl groups, enhance the water retention and surface wettability of the CNP-GEL/PVA (C-G/P) film, and significantly reduce the swelling index from 963.78% to 495.11% (p < 0.05). Notably, the highest tensile strength and elongation at break (53.745 MPa and 46.536%, respectively) were achieved with the addition of 30% (v/v, based on the volume of gelatin) CNP; UVC was fully absorbed with 40% CNP; and films containing 60% CNP showed optimal inhibition of both Staphylococcus aureus and Escherichia coil, extending the shelf life of marinated steak from 3 to 7 days.
Collapse
Affiliation(s)
- Cenchen Ran
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingqing Li
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Mou Zhao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Haotian Cui
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yi Yang
- Silk Road camel Bell trading Co., LTD, Tumushuk, Xinjiang, China
| | - Kui Diao
- Silk Road camel Bell trading Co., LTD, Tumushuk, Xinjiang, China
| | - Yazhi Liu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Shiling Lu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Juan Dong
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingling Wang
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
7
|
Liu Y, Li D, Hu J, Li P, He L, Yang N, Nishinari K. New insight into synergistic interaction between the backbone or side chain of xanthan gum and the backbone of Gleditsia sinensis polysaccharide. Int J Biol Macromol 2024; 279:135396. [PMID: 39265908 DOI: 10.1016/j.ijbiomac.2024.135396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
In this study, the synergistic effect and weak gel mechanism of XG and Gleditsia sinensis polysaccharide (GSP) in different ratios were studied through the rheological properties, microstructure and molecular simulation based on density functional theory (DFT). The results of rheological properties showed that the mixtures formed a weak gel at the concentration of 0.5 % (w/v), with the synergistic impact peaking at a XG/GSP ratio of 3:7. Weak gels produced by XG and GSP had the intersection of G' and G" within the temperature sweep range, and the largest change in the G' slope at a XG/GSP ratio of 3:7. By calculating the interaction energy, it was found that the backbone of XG was more likely to interact with the backbone of GSP. Furthermore, the XG mainchain intersected with the backbone of GSP in a cross shape ("X" shape). As a result, this paper proposed a possible mechanism for the formation of the XG/GSP weak gel, with XG as the main chain and GSP as the grid point, and the main interaction type being hydrogen bonding, with the van der Waals force also involved. The results provide new insight for designing and producing physical gels with specific interactions in food industry.
Collapse
Affiliation(s)
- Yantao Liu
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Diming Li
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Junxian Hu
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China.
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
8
|
Tian R, Zhao Y, Fu Y, Yang S, Jiang L, Sui X. Sacrificial hydrogen bonds enhance the performance of covalently crosslinked composite films derived from soy protein isolate and dialdehyde starch. Food Chem 2024; 456:140055. [PMID: 38876072 DOI: 10.1016/j.foodchem.2024.140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Soy protein films have the advantage of being eco-friendly and renewable, but their practical applications are hindered by the mechanical properties. The exceptional tensile strength and fracture toughness of natural silk stem from sacrificial hydrogen bonds it contains that effectively dissipates energy. In this study, we draw inspiration from silk's structural principles to create biodegradable films based on soy protein isolate (SPI). Notably, composite films containing sodium lignosulfonate (LS) demonstrate exceptional strain at break (up to 153%) due to the augmentation of reversible hydrogen bonding, contrasted to films with the addition of solely dialdehyde starch (DAS). The enhancement of tensile strength is realized through a combination of Schiff base cross-linking and sacrificial hydrogen bonding. Furthermore, the incorporation of LS markedly improves the films' ultraviolet (UV) blocking capabilities and hydrophobicity. This innovative design strategy holds great promise for advancing the production of eco-friendly SPI-based films that combine strength and toughness.
Collapse
Affiliation(s)
- Ran Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yidan Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuyuan Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Zhang D, Bu N, Zhou L, Lin L, Wen Y, Chen X, Huang L, Lin H, Mu R, Wang L, Pang J. Quercetin-loaded melanin nanoparticle mediated konjac glucomannan/polycaprolactone bilayer film with dual-mode synergistic bactericidal activity for food packaging. Int J Biol Macromol 2024; 276:133982. [PMID: 39029854 DOI: 10.1016/j.ijbiomac.2024.133982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
It is still difficult for a single antibacterial modality to realize satisfactory management of bacterial breeding in food preservation. To solve this problem, we developed a photothermal-derived dual-mode synergistic bactericidal konjac glucomannan (KGM)/polycaprolactone (PCL) bilayer film incorporated with quercetin-loaded melanin-like nanoparticles (Q@MNPs). The results showed that the mechanical properties (TS: 29.8 MPa, EAB: 43.1 %), UV shielding properties, and water resistance (WCA: 124.1°, WVP: 3.92 g mm/m2 day kPa) of KGM-Q@MNPs/PCL bilayer films were significantly improved. More importantly, KGM-Q@MNPs/PCL bilayer film presented outstanding photothermal inversion and controlled release behavior of Q triggered by near infrared (NIR) radiation, thus contributing to excellent dual-mode synergistic antibacterial properties against E. coli and S. aureus. Meanwhile, the KGM-Q@MNPs/PCL bilayer film possessed good biocompatibility and low toxicity. As a proof-of-concept application, we further verified the significant value of film for the preservation of cherry tomatoes. Since KGM-Q@MNPs/PCL bilayer film showed excellent biodegradability, this work will aid the development of sustainable antibacterial food packaging materials.
Collapse
Affiliation(s)
- Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Lizhen Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lihong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifan Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Xiao H, Wang L, Bu N, Duan J, Pang J. Electrospun Photodynamic Antibacterial Konjac Glucomannan/Polyvinylpyrrolidone Nanofibers Incorporated with Lignin-Zinc Oxide Nanoparticles and Curcumin for Food Packaging. Foods 2024; 13:2007. [PMID: 38998513 PMCID: PMC11240967 DOI: 10.3390/foods13132007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Due to the growing concerns surrounding microbial contamination and food safety, there has been a surge of interest in fabricating novel food packaging with highly efficient antibacterial activity. Herein, we describe novel photodynamic antibacterial konjac glucomannan (KGM)/polyvinylpyrrolidone (PVP) nanofibers incorporated with lignin-zinc oxide composite nanoparticles (L-ZnONPs) and curcumin (Cur) via electrospinning technology. The resulting KGM/PVP/Cur/L-ZnONPs nanofibers exhibited favorable hydrophobic properties (water contact angle: 118.1°), thermal stability, and flexibility (elongation at break: 241.9%). Notably, the inclusion of L-ZnONPs and Cur endowed the nanofibers with remarkable antioxidant (ABTS radical scavenging activity: 98.1%) and photodynamic antimicrobial properties, demonstrating enhanced inhibitory effect against both Staphylococcus aureus (inhibition: 12.4 mm) and Escherichia coli (12.1 mm). As a proof-of-concept study, we evaluated the feasibility of applying nanofibers to fresh strawberries, and the findings demonstrated that our nanofibers could delay strawberry spoilage and inhibit microbial growth. This photodynamic antimicrobial approach holds promise for design of highly efficient antibacterial food packaging, thereby contributing to enhanced food safety and quality assurance.
Collapse
Affiliation(s)
- Huimin Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Nitong Bu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Duan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Liu Y, Cheng Y, Yu X, Zhu J, Chen K, Kuang Y, Wu K, Jiang F. Konjac glucomannan films incorporated pectin-stabilized Mandarin oil emulsions: Structure, properties, and application in fruit preservation. Int J Biol Macromol 2024; 267:131292. [PMID: 38580015 DOI: 10.1016/j.ijbiomac.2024.131292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
To enhance the water-resistance and antibacterial properties of KGM films, mandarin oil (MO), was directly emulsified by pectin and then dispersed to the KGM matrix. The effect of MO concentration (0, 0.5, 1.0, 1.5, and 2 wt%) on the performance of the film-forming emulsions as well as the emulsion films was investigated. The results revealed that pectin could encapsulate and protect MO, and KGM as film matrix could further contributed to the high stability of the film-forming emulsions. The FT-IR, XRD, and SEM suggested that MO stabilized by pectin was uniformly distributed in the KGM matrix. The compatibility and good interaction between KGM and pectin contributed to highly dense and compact structure. Furthermore, increasing the concentration of MO effectively improved water-resistance, oxygen barrier, and antimicrobial activity of the KGM based films. The 1.5 wt% MO loaded KGM film had the highest tensile strength (72.22 MPa) and water contact angle (θ = 95.73°), reduced the WVP and oxygen permeability by about 25.8 % and 32.8 times, respectively, prolonged the shelf life of strawberries for 8 days. As demonstrated, the 1.5 wt% MO-loaded KGM film has considerable potential for high-performance natural biodegradable active films to ensure food safety and reduce environmental impacts.
Collapse
Affiliation(s)
- Yi Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, PR China; Centre for Water Soluble Polymers, Wrexham Glyndwr University, Wrexham, United Kingdom
| | - Yuhang Cheng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Xiang Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Jingyu Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Kai Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Ying Kuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Kao Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China
| | - Fatang Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, PR China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
12
|
Zhou L, Zhang D, Bu N, Huang L, Lin H, Liu W, Cao G, Mu R, Pang J, Wang L. Robust construction of konjac glucomannan/polylactic acid nanofibrous films incorporated with carvacrol via microfluidic blow spinning for food packaging. Int J Biol Macromol 2024; 266:131250. [PMID: 38556241 DOI: 10.1016/j.ijbiomac.2024.131250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
In recent years, the application of biopolymer-based nanofibers prepared via microfluidic blow spinning (MBS) for food packaging has continuously increased due to their advantages of biocompatibility, biodegradability, and safety. However, the poor spinnability, undesirable water barrier capacity, and loss of antibacterial and antioxidant properties of biopolymer-based nanofibers strictly restrict their real-world applications. In this work, carvacrol (CV) incorporated konjac glucomannan (KGM)/polylactic acid (PLA) nanofibrous films (KP-CV) were produced by MBS. The FTIR spectra and XRD analysis revealed the hydrogen bonding interactions among CV, PLA, and KGM, thus significantly improving the TS of KP-CV nanofibrous films from 0.23 to 1.27 MPa with increased content of CV from 0 % to 5 %. Besides, KP-CV nanofibrous films showed improved thermal stability, excellent hydrophobicity (WCA: 128.19°, WVP: 1.02 g mm/m2 h kPa), and sustained release of CV combined with good antioxidant activities (DPPH radical scavenging activity: 77.51 ± 1.57 %), and antibacterial properties against S. aureus (inhibition zone: 26.33 mm) and E. coli (inhibition zone: 22.67 mm). Therefore, as prepared KP-CV nanofibrous films can be potentially applied as packaging materials for the extended shelf life of cherry tomatoes.
Collapse
Affiliation(s)
- Lizhen Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoyu Cao
- Department of Food, Minbei Vocational and Technical College, Nanping 353000, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| |
Collapse
|
13
|
Wang H, Yuan D, Meng Q, Zhang Y, Kou X, Ke Q. Pickering nanoemulsion loaded with eugenol contributed to the improvement of konjac glucomannan film performance. Int J Biol Macromol 2024; 267:131495. [PMID: 38614180 DOI: 10.1016/j.ijbiomac.2024.131495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Konjac glucomannan (KGM) is becoming a very potential food packaging material due to its good film-forming properties and stability. However, KGM film has several shortcomings such as low mechanical strength, strong water absorption, and poor self-antibacterial performance, which limits its application. Therefore, in order to enhance the mechanical and functional properties of KGM film, this study prepared Pickering nanoemulsion loaded with eugenol and added it to the KGM matrix to explore the improvement effect of Pickering nanoemulsion on KGM film properties. Compared to pure KGM film and eugenol directly added film, the mechanical strength of Pickering-KGM film was significantly improved due to the establishment of ample hydrogen bonding interactions between the β-cyclodextrin inclusion complex system and KGM. Pickering-KGM film had significant antioxidant capacity than pure KGM film and eugenol directly added KGM film (eugenol-KGM film) (~3.21 times better than KGM film, ~0.51 times better than eugenol-KGM film). In terms of antibacterial activity, Pickering-KGM film had good inhibitory effect on Escherichia coli, Staphylococcus aureus, and Candida albicans, and raspberry preservation experiment showed that the shelf life of the Pickering-KGM film could be extended to about 6 days. To sum up, this study developed a novel means to improve the film performance and provide a new insight for the development and application of food packaging film.
Collapse
Affiliation(s)
- Hui Wang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Dan Yuan
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
| | - Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China.
| |
Collapse
|
14
|
Deng B, Chen J, Li S, Liu J, Zhou Z, Qin Z, Wang H, Su M, Li L, Bai Z. An antibacterial packaging film based on amylose starch with quaternary ammonium salt chitosan and its application for meat preservation. Int J Biol Macromol 2024; 261:129706. [PMID: 38272422 DOI: 10.1016/j.ijbiomac.2024.129706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
A new generation of food packaging films is gradually replacing traditional plastic packaging films because of their biodegradability, safety, and some functional properties such as anti-bacterial and oxidant resistance. In the present work, an antibacterial packing film based on amylose starch and 2-hydroxypropyl-trimethylammonium chloride chitosan (HTCC) was prepared for meat preservation. The interfacial bonding mechanism between amylose, HTCC, and glutaraldehyde (GA) was determined experimentally and through molecular dynamics (MD) simulation. The macromolecular chains of amylose starch and HTCC became entangled via inter-molecular H-bonds and then cross-linked with GA via the Schiff base reaction. The interaction of amylose starch and HTCC improved the mechanical properties of the amylose films. Compared with the amylose films, the tensile strength and elongation at break of the optimal HTCC/amylose films reached to 16.13 MPa (an increase of 206.65 %) and 53.86 % (an increase of 109.49 %). The HTCC/amylose films were found to provide obvious bacteriostatic performance, a relatively low cytotoxicity, the lower transmittance in the UV region, and thus the ability to enhance the preservation of fresh meat. These excellent characteristics therefore suggest that HTCC/amylose films might be promising candidates for application in antibacterial food packaging films.
Collapse
Affiliation(s)
- Bin Deng
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingwen Chen
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shaobo Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhongkai Zhou
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Zhu Qin
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Huixing Wang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Mengxiang Su
- School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Li Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China.
| | - Zongchun Bai
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Nanjing, China.
| |
Collapse
|
15
|
Deng N, Hu Z, Li H, Li C, Xiao Z, Zhang B, Liu M, Fang F, Wang J, Cai Y. Physicochemical properties and pork preservation effects of lotus seed drill core powder starch-based active packaging films. Int J Biol Macromol 2024; 260:129340. [PMID: 38262831 DOI: 10.1016/j.ijbiomac.2024.129340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
Lotus seed drill core powder starch (LCPS)-based active packaging films incorporated with cellulose nanocrystals (CNC) and grapefruit essential oil-corn nanostarch Pickering emulsion (ECPE) were characterized, and their pork preservation effects were investigated in this study. In contrast with corn, potato and rice starches, LCPS showed higher amylose content, elliptical and circular shape with more uniform size distribution. Furthermore, LCPS film exhibited lower light transmittance, stronger tensile strength, and smaller elongation at break compared to the other starch films. Then, the LCPS film containing 4 % CNC and 9 % ECPE was fabricated which had stronger mechanical properties, lower water vapor permeability and oxygen transmission rate, and denser network structure. FTIR and XRD analyses also confirmed that CNC and ECPE were successfully implanted into the LCPS matrix without damaging the crystalline structure of LCPS. Herein, the LCPS/CNC/ECPE film exerted potential antibacterial activity against Escherichia coli and Staphylococcus aureus. Besides, packaging with this composite film significantly preserved the pork during cold storage via decreasing its juice loss rate, pH value, total number of colonies, total volatile base nitrogen and thiobarbituric acid reactive substance values. The present study will provide a theoretical basis for the application of LCPS as new biodegradable active films.
Collapse
Affiliation(s)
- Na Deng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhiqiang Hu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hui Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resources, Hunan Academy of Forestry, Changsha 410018, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resources, Hunan Academy of Forestry, Changsha 410018, China
| | - Bo Zhang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Miao Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China
| | - Fang Fang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China; Hunan Provincial Engineering Technology Research Center of Intelligent Manufacturing and Quality Safety of Xiang Flavoured Compound Seasoning for Chain Catering, Liuyang 410023, China.
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China; Hunan Province Prepared Dishes Engineering Technology Research Center, Changsha University of Science & Technology, Changsha 410114, China.
| |
Collapse
|
16
|
Wang K, Li W, Wu L, Li Y, Li H. Preparation and characterization of chitosan/dialdehyde carboxymethyl cellulose composite film loaded with cinnamaldehyde@zein nanoparticles for active food packaging. Int J Biol Macromol 2024; 261:129586. [PMID: 38266856 DOI: 10.1016/j.ijbiomac.2024.129586] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
In this study, zein-loaded cinnamaldehyde (Cin@ZN) nanoparticles were incorporated into Chitosan (CS)/dialdehyde carboxymethyl cellulose (DCMC) matrix to fabricate the active food packaging materials possessing outstanding antioxidant and antibacterial properties. The research investigated how varying levels of Cin@ZN nanoparticles affected the morphology, microstructure, physicochemical properties of CS/DCMC composite films. The inclusion of Cin@ZN could significantly improve the mechanical strength, reduce the water vapor and oxygen permeability of CS/DCMC composite films and endow films with UV-light blocking properties. It's worth noting that the antibacterial and antioxidant capacities of CS/DCMC films had an astonishing enhancement with Cin@ZN blending, in which ABTS scavenging ratio of the composite films (100 mg) with different Cin@ZN contents reached >90 %. Furthermore, CS/DCMC/Cin@ZN 35 % composite film has the ability to efficiently protect strawberries from microbial damage and decelerate the spoilage rate of strawberries under ambient condition. Consequently, the CS/DCMC/Cin@ZN composite film can be applied as packaging material to extend the lifespan of fruits.
Collapse
Affiliation(s)
- Kun Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wei Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Linhuanyi Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongshi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
17
|
Zhao Y, Wang D, Xu J, Tu D, Zhuang W, Tian Y. Effect of polysaccharide concentration on heat-induced Tremella fuciformis polysaccharide-soy protein isolation gels: Gel properties and interactions. Int J Biol Macromol 2024; 262:129782. [PMID: 38281520 DOI: 10.1016/j.ijbiomac.2024.129782] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
The formation of a single soybean protein isolate (SPI) gel is limited by the processing conditions, and has the disadvantages of poor gel property, and it is usually necessary to add other biomacromolecules to improve its property. In this study, we investigated the effects of polysaccharide concentration on gel properties and interaction mechanisms of Tremella fuciformis polysaccharide (TFP)-SPI complexes. It was found that (1) the rheological properties, texture properties, water-holding properties, and thermal stability of TFP-SPI composite gels were improved with the addition of TFP (0.25-2.0 %, w/v) in a concentration-dependent manner; (2) hydrogen bond, the electrostatic interaction, hydrophobic interaction, and disulfide bond in the gel system increased with the increase of TFP concentration; (3) the electrostatic and hydrophobic interactions played an important role in the formation of the TFP-SPI composite gel while hydrogen bond formation was the least contributor to the binary composite gel network. Overall, TFP is not only a critical health food but also a promising structural component for improving the gel properties of SPI.
Collapse
Affiliation(s)
- Yingting Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danni Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingxin Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongkun Tu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuting Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
18
|
Xu H, Li J, McClements DJ, Cheng H, Long J, Peng X, Xu Z, Meng M, Zou Y, Chen G, Jin Z, Chen L. Eggshell waste act as multifunctional fillers overcoming the restrictions of starch-based films. Int J Biol Macromol 2023; 253:127165. [PMID: 37778592 DOI: 10.1016/j.ijbiomac.2023.127165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Starch has great potential to replace petroleum-based plastics in food packaging applications. However, starch films often exhibit poor mechanical and barrier properties, and are vulnerable to moisture and bacterial contamination. This study proved that the incorporation of eggshell powder (ES) enhanced the hydrogen bonding in starch-based films significantly, which contributed to improved tensile strength, Young's modulus, and water resistance of the films. The performance of ES-incorporated films could be optimized by adjusting the size, concentration, and surface property of ES in the film matrix. Notably, adsorbing epigallocatechin gallate (EGCG) on the surface of porous ES contributed to enhanced dispersibility of the fillers in the film matrix, which increased the tortuous path of light, water vapor, and oxygen have to take through the films, resulting in increased UV screening performance, water vapor and oxygen barrier property of the films by 60 %, 7.2 %, and 27.9 %, respectively. Meanwhile, loading EGCG in ES also enable superior antibacterial activity of the final films. This study suggests that eggshell fillers offer a sustainable means of improving the functional performance of starch-based films, which may increase their application as packaging materials in the food industry.
Collapse
Affiliation(s)
- Hao Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jiaxu Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Hao Cheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Man Meng
- Guangdong Licheng Detection Technology Co., Ltd, Zhongshan 528436, China
| | - Yidong Zou
- Yixing Skystone Feed Co., Ltd, Wuxi 214251, China
| | | | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China; Guangdong Licheng Detection Technology Co., Ltd, Zhongshan 528436, China.
| |
Collapse
|
19
|
Wu Y, Wang Y, Lv J, Jiao H, Liu J, Feng W, Sun C, Li X. Preparation and characterization of egg white protein film incorporated with epigallocatechin gallate and its application on pork preservation. Food Chem X 2023; 19:100791. [PMID: 37780287 PMCID: PMC10534098 DOI: 10.1016/j.fochx.2023.100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/09/2023] [Indexed: 10/03/2023] Open
Abstract
The aim of this study was to develop the composite films with antioxidant and biodegradable activity based on egg white protein (EWP) and epigallocatechin gallate (EGCG). Water susceptibility, light transmittance, microstructure and antioxidant properties of the composite films without and with EGCG were fully characterized. It was noted that the addition of EGCG might decrease the moisture content, water solubility and swelling capacity. SEM micrographs revealed that discontinuous blocks and rough surfaces were caused by increasing concentration of EGCG, whereas compact and homogeneous particles appeared when the concentration of EGCG reached to 80 μmol/L. Moreover, the biodegradability of the composite films was demonstrated by the soil degradation properties that they can be almost completely degraded within ten days. Experimental results on the application in chilled fresh pork showed that the EWP-based films could play an antioxidant role when incorporated with EGCG, indicating their great potential for food packaging.
Collapse
Affiliation(s)
- Yue Wu
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Yuemeng Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, China
| | - Jianhao Lv
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Han Jiao
- Anhui Rongda Food Co., Ltd., Guangde, Anhui 242200, China
| | - Jiahan Liu
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Wenhui Feng
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Chengfeng Sun
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Xin Li
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| |
Collapse
|
20
|
Bu N, Zhou N, Cao G, Mu R, Pang J, Ma C, Wang L. Konjac glucomannan/carboxymethyl chitosan film embedding gliadin/casein nanoparticles for grape preservation. Int J Biol Macromol 2023; 249:126131. [PMID: 37543273 DOI: 10.1016/j.ijbiomac.2023.126131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Constructing biopolymer-based packaging films with fantastic water resistance and mechanical properties for food preservation is highly desirable and challenging. In this work, Gliadin/Casein nanoparticles (GCNPs) were prepared by pH-driven method and embedded into konjac glucomannan/carboxymethyl chitosan (KC) film matrix to improve the water resistance and mechanical properties of KC film. Gliadin and Casein showed good compatibility and co-assembled to form compact GCNPs clusters through hydrogen bonding and hydrophobic interaction verified by FT-IR spectroscopy, and fluorescence spectroscopy. The particle size and zeta potential of GCNPs was 269.7 nm and -7.6 mV, respectively. The effect of GCNPs on the mechanics, water barrier, thermal stability, and UV-shielding of KC-GCNPs film was investigated. SEM images revealed that GCNPs uniformly distributed into KC film matrix and significantly improved the mechanics (tensile strength: 75.6 MPa, elongation at breaking: 36.7 %), water barrier ability (water contact angle: 91.3°, water vapor permeability: 0.994 g mm/m2 day kPa, water solubility: 52.0 %), thermal stability and UV blocking property of KC-GCNPs film. Furthermore, KC-GCNPs film could also be applied to extend the shelf life of grapes. This paper demonstrated the great potential of GCNPs as functional nanofillers in enhancing the physicochemical properties of KC film.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ning Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoyu Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Dong Z, Yin J, Zhou X, Li S, Fu Z, Liu P, Shen L, Shi W. Natural and biocompatible dressing unit based on tea carbon dots modified core-shell electrospun fiber for diabetic wound disinfection and healing. Colloids Surf B Biointerfaces 2023; 226:113325. [PMID: 37148664 DOI: 10.1016/j.colsurfb.2023.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/01/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Wound infection and healing in patients with diabetes is one of the complex problems in trauma treatment. Therefore, designing and preparing an advanced dressing membrane for treating the wounds of such patients is essential. In this study, a zein film with biological tea carbon dots (TCDs) and calcium peroxide (CaO2) as the main components for promoting diabetic wound healing was prepared by an electrospinning technique, which combines the advantages of natural degradability and biosafety. CaO2 is a biocompatible material with a microsphere structure that reacts with water to release hydrogen peroxide and calcium ions. TCDs with a small diameter were doped in the membrane to mitigate its properties while improving the antibacterial and healing effects of the membrane. TCDs/CaO2 was mixed with ethyl cellulose-modified zein (ZE) to prepare the dressing membrane. The antibacterial properties, biocompatibility and wound-healing properties of the composite membrane were investigated by antibacterial experiment, cell experiment and a full-thickness skin defect. TCDs/CaO2 @ZE exhibited significant anti-inflammatory and wound healing-promoting properties in diabetic rats, without any cytotoxicity. This study is meaningful in developing a natural and biocompatible dressing membrane for diabetic wound healing, which shows a promising application in wound disinfection and recovery in patients with chronic diseases.
Collapse
Affiliation(s)
- Zhenyou Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Junhui Yin
- Institute of Microsurgery On Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Xueqing Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Suyun Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Zhenyu Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China.
| | - Wenyan Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Key Laboratory of Organic Compound Pollution Engineering (MOE), Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
22
|
Mu R, Bu N, Yuan Y, Pang J, Ma C, Wang L. Development of chitosan/konjac glucomannan/tragacanth gum tri-layer food packaging films incorporated with tannic acid and ε-polylysine based on mussel-inspired strategy. Int J Biol Macromol 2023:125100. [PMID: 37236557 DOI: 10.1016/j.ijbiomac.2023.125100] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Constructing biodegradable food packaging with good mechanics, gas barrier and antibacterial properties to maintain food quality is still challenge. In this work, mussel-inspired bio-interface emerged as a tool for constructing functional multilayer films. Konjac glucomannan (KGM) and tragacanth gum (TG) with physical entangled network are introduced in the core layer. Cationic polypeptide ε-polylysine (ε-PLL) and chitosan (CS) producing cationic-π interaction with adjacent aromatic residues in tannic acid (TA) are introduced in the two-sided outer layer. The triple-layer film mimics the mussel adhesive bio-interface, where cationic residues in outer layers interact with negatively charged TG in the core layer. Furthermore, a series of physical tests showed excellent performance of triple-layer film with great mechanical properties (tensile strength (TS): 21.4 MPa, elongation at break (EAB): 7.9 %), UV-shielding (almost 0 % UV transmittance), thermal stability, water, and oxygen barrier (oxygen permeability (OP): 1.14 × 10-3 g/m s Pa and water vapor permeability (WVP): 2.15 g mm/m2 day kPa). In addition, the triple-layer film demonstrated advanced degradability, antimicrobial functions, and presented good moisture-proof performance for crackers, which can be potentially applied as dry food packaging.
Collapse
Affiliation(s)
- Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Ma
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Characterizations of konjac glucomannan/curdlan edible coatings and the preservation effect on cherry tomatoes. Int J Biol Macromol 2023; 232:123359. [PMID: 36693611 DOI: 10.1016/j.ijbiomac.2023.123359] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
In this study, konjac glucomannan (KGM) and curdlan were used to fabricate composite coating (KC). The coating solutions were investigated using a rheological method, and the coatings were characterized by water solubility tests, water vapor permeability (WVP), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The preservation effect of KC coating on cherry tomatoes stored at room temperature was determined. Results indicated that the curdlan addition can adjust the hydrophilicity/hydrophobicity of KGM coatings. Curdlan addition enhanced intermolecular entanglement and film-forming property. Increasing curdlan content in KC coatings significantly decreased the moisture content, dissolution and swelling ratio, and WVP. The KGM-curdlan composites behaved as high-performance coatings with good compatibility and uniformity. The K3C2 coating showed the best uniformity, water barrier, and thermal stability. The application of K3C2 coating significantly reduced the weight loss, decay loss, and delayed the decreases of firmness, soluble solids, total acid, and VC contents of cherry tomatoes. The KGM/curdlan edible coatings have promising potential for prolonging the shelf life of cherry tomatoes and applications in fruits preservation in the future.
Collapse
|
24
|
Structure, Merits, Gel Formation, Gel Preparation and Functions of Konjac Glucomannan and Its Application in Aquatic Food Preservation. Foods 2023; 12:foods12061215. [PMID: 36981142 PMCID: PMC10048453 DOI: 10.3390/foods12061215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Konjac glucomannan (KGM) is a natural polysaccharide extracted from konjac tubers that has a topological structure composed of glucose and mannose. KGM can be used as a gel carrier to load active molecules in food preservation. The three-dimensional gel network structure based on KGM provides good protection for the loaded active molecules and allows for sustained release, thus enhancing the antioxidant and antimicrobial activities of these molecules. KGM loaded with various active molecules has been used in aquatic foods preservation, with great potential for different food preservation applications. This review summarizes recent advances in KGM, including: (i) structural characterization, (ii) the formation mechanism, (iii) preparation methods, (iv) functional properties and (v) the preservation of aquatic food.
Collapse
|
25
|
The Improved Inhibition of Mn (II)-EGCG on α-Glucosidase: Characteristics and Interactions Properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
26
|
Leyva-Jiménez FJ, Oliver-Simancas R, Castangia I, Rodríguez-García AM, Alañón ME. Comprehensive review of natural based hydrogels as an upcoming trend for food packing. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Maryam Adilah Z, Han Lyn F, Nabilah B, Jamilah B, Gun Hean C, Nur Hanani Z. Enhancing the physicochemical and functional properties of gelatin/graphene oxide/cinnamon bark oil nanocomposite packaging films using ferulic acid. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
28
|
Chen J, Yang X, Xia X, Wang L, Wu S, Pang J. Low temperature and freezing pretreatment for konjac glucomannan powder to improve gel strength. Int J Biol Macromol 2022; 222:1578-1588. [DOI: 10.1016/j.ijbiomac.2022.09.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
29
|
Han Y, Zhou M, McClements DJ, Liu F, Cheng C, Xiong J, Zhu M, Chen S. Investigation of a novel smart and active packaging materials: Nanoparticle-filled carrageenan-based composite films. Carbohydr Polym 2022; 301:120331. [DOI: 10.1016/j.carbpol.2022.120331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/15/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
|
30
|
Tang P, Zheng T, Yang C, Li G. Enhanced physicochemical and functional properties of collagen films cross-linked with laccase oxidized phenolic acids for active edible food packaging. Food Chem 2022; 393:133353. [DOI: 10.1016/j.foodchem.2022.133353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/29/2022] [Accepted: 05/28/2022] [Indexed: 11/26/2022]
|
31
|
Bu N, Huang L, Cao G, Pang J, Mu R. Stable O/W emulsions and oleogels with amphiphilic konjac glucomannan network: preparation, characterization, and application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6555-6565. [PMID: 35587687 DOI: 10.1002/jsfa.12021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The stabilization of oil-in-water (O/W) emulsions has long been explored. Assembly of polymer networks is an effective method for stabilizing O/W emulsions. Konjac glucomannan (KGM) is a plant polysaccharide and the network of KGM gel is a good candidate for stabilizing O/W emulsions based on its high viscosity and thickening properties. However, natural KGM has strong hydrophilicity and is not able to offer interfacial activity. Octenyl succinic anhydride (OSA) is a hydrophobic molecule, which is widely used as thickener and stabilizer in food emulsions. In this work, the amphiphilic biopolymer (OSA-KGM) was fabricated by modifying the KGM with OSA. Furthermore, OSA-KGM biopolymer was used to prepare O/W emulsions, which were then freeze-dried and used to prepare oleogels as fat substitute for bakery products. RESULTS OSA-KGM had advanced hydrophobicity with water contact angle 81.13° and adsorption behavior at the oil-water interface, with interfacial tension decreasing from 18.52 to 13.57 mN m-1 within 1 h. The emulsification of OSA-KGM remarkably improved the stability of emulsions without phase separation during storage for 31 days. Oleogels with OSA-KGM showed good thixotropic and structure recovery properties (approximately 100%) and low oil loss (from 69.5% to 50.4%). Cakes made from oleogels had a softer texture than cakes made from peanut oil and margarine. CONCLUSION Amphiphilic biopolymer OSA-KGM shows advanced interfacial activity and hydrophobicity. This paper provides an insight into preparing stable O/W emulsions with a new biopolymer and oleogels potentially applied as fat substitute in bakery products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nitong Bu
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liying Huang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoyu Cao
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Pang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruojun Mu
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
32
|
Xi M, Hou Y, Wang R, Ji M, Cai Y, Ao J, Shen H, Li M, Wang J, Luo A. Potential Application of Luteolin as an Active Antibacterial Composition in the Development of Hand Sanitizer Products. Molecules 2022; 27:7342. [PMID: 36364167 PMCID: PMC9657794 DOI: 10.3390/molecules27217342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
Antibacterial hand sanitizers could play a prominent role in slowing down the spread and infection of hand bacterial pathogens; luteolin (LUT) is potentially useful as an antibacterial component. Therefore, this study elucidated the antibacterial mechanism of LUT against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and developed an antibacterial hand sanitizer. The results showed that LUT had excellent antibacterial activity against both E. coli (minimum inhibitory concentration (MIC) = 312.5 μg/mL, minimal bactericidal concentration (MBC) = 625 μg/mL), and S. aureus (MIC = 312.5 μg/mL, MBC = 625 μg/mL). Furthermore, LUT induced cell dysfunction in E. coli and S. aureus, changed membrane permeability, and promoted the leakage of cellular contents. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) analysis showed that LUT treatment affected cell structure and disrupted cell membrane integrity. The Fourier transform infrared analysis (FTIR) also confirmed that the LUT acted on the cell membranes of both E. coli and S. aureus. Overall, the application of LUT in hand sanitizer had better inhibition effects. Therefore, this study could provide insight into expanding the application of LUT in the hand sanitizer markets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
33
|
Bu N, Huang L, Cao G, Lin H, Pang J, Mu R, Wang L. Konjac glucomannan/Pullulan films incorporated with cellulose nanofibrils-stabilized tea tree essential oil Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Bio-Nanocomposite Based on Edible Gelatin Film as Active Packaging from Clarias gariepinus Fish Skin with the Addition of Cellulose Nanocrystalline and Nanopropolis. Polymers (Basel) 2022; 14:polym14183738. [PMID: 36145881 PMCID: PMC9506570 DOI: 10.3390/polym14183738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
This study develops bio-nano composite gelatin-based edible film (NEF) by combining nanogelatin, cellulose nanocrystal (CNC), and nanopropolis (NP) fillers to improve the resulting film characteristics. The NEF was characterized in terms of thickness, swelling, pH, water content, solubility, vapor and oxygen permeability, mechanical properties, heat resistance, morphology, transparency, and color. The results showed that the thickness and swelling increased significantly, whilst the pH did not significantly differ in each treatment. The water content and the water solubility also showed no significant changes with loadings of both fillers. At the same time, vapor and oxygen permeability decreased with addition of the fillers but were not significantly affected by the loading amounts. The heat resistance properties increased with the filler addition. Tensile strength and Young’s modulus increased for the films loaded with >3% CNC. The elongation at break showed a significant difference together with transparency and color change. The greater the CNC concentration and NP loading were, the darker the resulting transparency and the color of the NEF. Overall results show a considerable improvement in the properties of the resulting NEFs with the incorporation of CNC and NP fillers.
Collapse
|
35
|
Bu N, Sun R, Huang L, Lin H, Pang J, Wang L, Mu R. Chitosan films with tunable droplet size of Pickering emulsions stabilized by amphiphilic konjac glucomannan network. Int J Biol Macromol 2022; 220:1072-1083. [PMID: 36037908 DOI: 10.1016/j.ijbiomac.2022.08.157] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
In this work, chitosan (CS) emulsion films were prepared with grapefruit essential oil (GEO) Pickering emulsions (OGEOs) stabilized by amphiphilic octenyl succinic anhydride (OSA) konjac glucomannan (OSA-KGM) network. The droplet size of emulsion was regulated by altering oil content in OGEOs (10 %, 20 %, 30 % and 40 %, w/w). The structural and physicochemical properties of CS films with tunable emulsion droplets (OGEOs) were investigated. The droplet size of OGEOs increased with the increasing content of GEO. FT-IR revealed that the formation of CS-OGEOs films was attributed to hydrogen bonding. CS-OGEOs films with large droplets presented smoother surface, enhanced water resistance, UV-shielding property, mechanical properties, but increased water vapor permeability (WVP) compared with CS-OGEOs films with small droplets. In addition, CS-OGEOs films with large droplets also presented compact film structure, controlled release of GEO, high efficiency of DPPH free radical scavenging and antibacterial activity. To sum up, incorporation of emulsion droplets was a good strategy for improving the structural and physicochemical properties of CS films.
Collapse
Affiliation(s)
- Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Runzhi Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanglong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China.
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
36
|
Zhao W, Liang X, Wang X, Wang S, Wang L, Jiang Y. Chitosan based film reinforced with EGCG loaded melanin-like nanocomposite (EGCG@MNPs) for active food packaging. Carbohydr Polym 2022; 290:119471. [PMID: 35550766 DOI: 10.1016/j.carbpol.2022.119471] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
Abstract
In this study, EGCG loaded melanin-like nanoparticles (EGCG@MNPs) were incorporated into chitosan matrix to prepare an active nanocomposite food packaging film, chitosan-EGCG@MNPs (CH-EM). The influence of EGCG@MNPs on the physical and biological properties of the chitosan film was investigated. The EGCG@MNPs nanoparticles were cross-linked with chitosan through intermolecular hydrogen bonds and uniformly distributed in the matrix. Besides, the incorporation of EGCG@MNPs tremendously improved the solubility, swelling ratio and water vapor barrier properties of the film, and permitted superior ultraviolet rays blocking property. In addition, the mechanical properties, thermal stability and surface hydrophobicity have also been significantly improved. The CH-EM2.0 nanocomposite films also showed excellent oxidation resistance (58.4 ± 4.4%, DPPH and 92.4 ± 1.3%, ABTS+), and strong inhibitory ability against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The experimental results comprehensively showed that the prepared chitosan-EGCG@MNPs nanocomposite film offering excellent potential for eco-friendly active food packaging.
Collapse
Affiliation(s)
- Wangchen Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyun Liang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiqi Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siqi Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Longfeng Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
37
|
Development of pH-responsive konjac glucomannan/pullulan films incorporated with acai berry extract to monitor fish freshness. Int J Biol Macromol 2022; 219:897-906. [PMID: 35963350 DOI: 10.1016/j.ijbiomac.2022.08.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/22/2022]
Abstract
In this work, konjac glucomannan (KGM)-based film reinforced with pullulan (PL) and acai berry extract (ABE) was developed by solvent casting method. The as-prepared films performed pH-sensitive properties, which can be potentially applied for fish freshness detection. Rheology, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) were used to characterize chemical structure and morphology of ABE-loaded KGM/PL (KP) films (KP-ABE). FT-IR spectrum indicated that hydrogen bond dominated the formation of KP-ABE films. Adding PL contributed to enhanced mechanical properties of KGM film with increased tensile strength (TS) from 21.25 to 50.27 MPa and elongation at break (EAB) from 10.64 to 19.19 %. Incorporating ABE upgraded flexibility, UV-shielding, thermostability, water barrier (decreased Water vapor permeability (WVP) from 2.07 to 1.67 g·mm/m2·day kPa), antioxidant, and antibacterial ability of KP films, but weakened TS. In addition, KP-ABE films can reflect fish freshness in real time through color variability. Therefore, KP-ABE films exhibited potential applications in intelligent food packaging materials.
Collapse
|
38
|
Zhang W, Rhim JW. Recent progress in konjac glucomannan-based active food packaging films and property enhancement strategies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Development of Gelatin Thin Film Reinforced by Modified Gellan Gum and Naringenin-Loaded Zein Nanoparticle as a Wound Dressing. Macromol Res 2022. [DOI: 10.1007/s13233-022-0049-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
|
41
|
Wang YL, Liang P, Wu JN, Zheng T, Xie JH, Pang J. Blackening and blackening control of litopenaeus vannamei during storage at low temperature. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2021.2021994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ya Li Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutriton, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Liang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutriton, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Na Wu
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen, China
| | - Ting Zheng
- Antibiotic Laboratory, Fujian Institute for Food and Drug Quality Control, Fuzhou, China
| | - Jian Hua Xie
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou, China
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutriton, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
42
|
Zhang S, He Z, Xu F, Cheng Y, Waterhouse GI, Sun-Waterhouse D, Wu P. Enhancing the performance of konjac glucomannan films through incorporating zein–pectin nanoparticle-stabilized oregano essential oil Pickering emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107222] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Development of antimicrobial oxidized cellulose film for active food packaging. Carbohydr Polym 2022; 278:118922. [PMID: 34973741 DOI: 10.1016/j.carbpol.2021.118922] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 11/02/2022]
Abstract
Foodborne diseases caused by bacteria have aroused ongoing concerns for food safety. Most existing packaging plastics bring pollution and potential toxicity. Here antimicrobial dialdehyde cellophane (DACP) was developed by periodate oxidation. The structure, mechanical properties, optical properties, and barrier properties of DACP were characterized. The antimicrobial activity of DACP against four Gram-positive bacteria was studied. The packaging effect of DACP for food with high water content was evaluated, including strawberry and tofu. The antimicrobial activity of DACP improved with increased aldehyde content. Compared with the polyethylene film and cellophane, our DACP exhibited excellent antimicrobial effect and extended the shelf life of food significantly, which shows promising prospects in food packaging.
Collapse
|
44
|
Maroufi LY, Shahabi N, Ghanbarzadeh MD, Ghorbani M. Development of Antimicrobial Active Food Packaging Film Based on Gelatin/Dialdehyde Quince Seed Gum Incorporated with Apple Peel Polyphenols. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02774-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
45
|
Li Z, Zheng S, Sun H, Xi R, Sun Y, Luo D, Xu W, Jin W, Shah BR. Structural characterization and antibacterial properties of konjac glucomannan/soluble green tea powder blend films for food packaging. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:562-571. [PMID: 35185176 PMCID: PMC8814267 DOI: 10.1007/s13197-021-05041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 02/03/2023]
Abstract
Antimicrobial activity is a promising property for food packaging which could prolong the shelf life of food products. In this paper, the physicochemical and antimicrobial properties of konjac glucomannan (KGM)/soluble green tea powder (SGTP) edible films were firstly prepared and analyzed through light barrier properties, Fourier transform infrared spectroscopy (FT-IR), tensile strength (TS), X-ray diffraction (XRD), thermogravimetric analysis and scanning electron microscope (SEM). The results showed that appropriate addition of SGTP could improve the TS of composite films. With the increase of SGTP content, the transmittance of the films in the ultraviolet region decreased obviously, and the thermal stability was improved in a SGTP dependent manner. KGM/SGTP films present a fairly smooth and flat surface without any fracture when 0.5% SGTP was provided. The bacteriostatic test showed that the bacteriostatic performance of the composite films against Staphylococcus aureus and Escherichia coli was also significantly enhanced. When 1% SGTP was provided, the zones of inhibition for Escherichia coli and Staphyloccocus aureus reached to 13.45 ± 0.94 mm and 13.76 ± 0.92 mm, respectively. Overall, the KGM/SGTP films showed great potential as bioactive packaging materials to extend food shelf life.
Collapse
Affiliation(s)
- Zhifan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023 China
| | - Shuqing Zheng
- College of Life Science, Xinyang Normal University, Xinyang, 464000 China
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023 China
| | - Rui Xi
- College of Life Science, Xinyang Normal University, Xinyang, 464000 China
| | - Yuqing Sun
- College of Life Science, Xinyang Normal University, Xinyang, 464000 China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023 China
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang, 464000 China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023 China
| | - Bakht Ramin Shah
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 37005 České Budějovice, Czech Republic
| |
Collapse
|
46
|
Ma K, Zhe T, Li F, Zhang Y, Yu M, Li R, Wang L. Sustainable films containing AIE-active berberine-based nanoparticles: A promising antibacterial food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Lu Y, Luo Q, Chu Y, Tao N, Deng S, Wang L, Li L. Application of Gelatin in Food Packaging: A Review. Polymers (Basel) 2022; 14:polym14030436. [PMID: 35160426 PMCID: PMC8838392 DOI: 10.3390/polym14030436] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 01/27/2023] Open
Abstract
Owing to the increasing environmental concerns and requirements for high-quality foods, edible films and coatings (based on proteins, polysaccharides, natural phenolic active substances, etc.) are being developed as effective alternatives to traditional plastic packaging. Gelatin is extracted from collagen. It is an ideal material for food packaging due to its versatile advantages such as low price, polymerization, biodegradability, good antibacterial and antioxidant properties, etc. However, gelatin film exists poor waterproof and mechanical properties, which limit its developments and applications in food packaging. Previous studies show that pure gelatin can be modified by adding active ingredients and incorporating them with bio-polymers to improve its mechanical properties, aiming to achieve the desirable effect of preservation. This review mainly shows the preparation and molding ways of gelatin-based edible films and the applications of gelatin modified with other biopolymers. Furthermore, this review provides the latest advances in gelatin-based biodegradable packaging and food applications that exhibit outstanding advantages in food preservation.
Collapse
Affiliation(s)
- Yanan Lu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Qijun Luo
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Yuchan Chu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Li Wang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.); (Q.L.); (Y.C.); (N.T.)
- Correspondence: (L.W.); (L.L.); Tel.: +86-13062789659 (L.W.); +86-21-61900372 (L.L.)
| |
Collapse
|
48
|
Zhao W, Liu Z, Liang X, Wang S, Ding J, Li Z, Wang L, Jiang Y. Preparation and characterization of epigallocatechin-3-gallate loaded melanin nanocomposite (EGCG @MNPs) for improved thermal stability, antioxidant and antibacterial activity. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
The covalent crosslinking of dialdehyde glucomannan and the inclusion of tannic acid synergistically improved physicochemical and functional properties of gelatin films. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Multilayer Films Based on Poly(lactic acid)/Gelatin Supplemented with Cellulose Nanocrystals and Antioxidant Extract from Almond Shell By-Product and Its Application on Hass Avocado Preservation. Polymers (Basel) 2021; 13:polym13213615. [PMID: 34771175 PMCID: PMC8587537 DOI: 10.3390/polym13213615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
In this work, poly(lactic acid) (PLA)/gelatin/PLA multilayer films supplemented with cellulose nanocrystals and antioxidant extract from almond shell (AS) by-products were developed by solvent casting technique for active food packaging. The almond shell antioxidant extract (ASE) was obtained by microwave-assisted extraction, while cellulose nanocrystals (CNCs) were extracted from AS by a sequential process of alkalization, acetylation and acid hydrolysis. Four formulations were obtained by adding 0 (control), 6 wt.% of ASE (FG/ASE), 4.5 wt.% of CNCs (FG/CNC) and 6 wt.% + 4.5 wt.% of ASE + CNCs, respectively, (FG/ASE + CNC) into fish gelatin (FG). PLA/FG/PLA multilayer films were prepared by stacking two outer PLA layers into a middle FG film. A surface modification of PLA by air atmospheric plasma treatment was optimized before multilayer development to improve PLA adhesion. Complete characterization of the multilayers underlined the FG/ASE + CNC formulation as a promising active reinforced packaging system for food preservation, with low values of transparency, lightness and whiteness index. A good adhesion and homogeneity of the multilayer system was obtained by SEM, and they also demonstrated low oxygen permeability (40.87 ± 5.20 cm3 mm m-2 day) and solubility (39.19 ± 0.16%) values, while mechanical properties were comparable with commercial plastic films. The developed multilayer films were applied to Hass avocado preservation. The initial degradation temperature (Tini), DSC parameters and in vitro antioxidant capacity of the films were in accordance with the low peroxide and anisidine values obtained from avocado pulp after packaging for 14 days at 4 °C. The developed PLA/FG/PLA films supplemented with 6 wt.% ASE+ 4.5 wt.% CNCs may be potential bioactive packaging systems for fat food preservation.
Collapse
|