1
|
Chatzigiannakis E, Yang J, Sagis LMC, Nikiforidis CV. Thin liquid films stabilized by plant proteins: Implications for foam stability. J Colloid Interface Sci 2025; 683:408-419. [PMID: 39693879 DOI: 10.1016/j.jcis.2024.12.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
HYPOTHESIS Plant-based proteins offer a sustainable solution for stabilizing multiphase food materials like edible foams and emulsions. However, challenges in understanding and engineering plant protein-stabilized interfaces persist, mostly because of the commonly poorer functionality and complex composition of the respective protein isolates. We hypothesize that part of the limited understanding is related to the lack of experimental data on the length-scale of the thin liquid film that separates two neighboring bubbles. By conducting such experiments, we aim to better understand the mechanisms by which plant proteins stabilize foams, a critical material in food applications. EXPERIMENTS In this study, we employ the dynamic thin film balance method to study the equilibrium properties and dynamic drainage behavior of foam thin liquid films stabilized by proteins derived from two main plant protein sources, yellow peas and rapeseeds, to investigate potential differences in film stabilization. FINDINGS Our thin film results provide new insights into the general foam stabilization mechanism of the two plant proteins. Most studies in this field focus on the impact of surface rheological parameters on stability of plant protein-based foam. We show that for such foams the half-life scales linearly with film thickness, the latter being closely related to the steric and electrostatic interactions developed across the respective films in equilibrium. Our study demonstrates the value of thin film studies in complementing traditional methods for studying protein-stabilized interfaces and facilitates an understanding of foam stabilization mechanisms that are universal among various surface-active species.
Collapse
Affiliation(s)
- Emmanouil Chatzigiannakis
- Processing and Performance Group, Mechanical Engineering Department, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600MB, Netherlands; Institute of Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600MB, Netherlands.
| | - Jack Yang
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, Wageningen, 6708WG, Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, Wageningen, 6708WG, Netherlands
| | - Constantinos V Nikiforidis
- Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, Wageningen, 6708WG, Netherlands
| |
Collapse
|
2
|
Peng D, Yang J, de Groot A, Jin W, Deng Q, Li B, M C Sagis L. Soft gliadin nanoparticles at air/water interfaces: The transition from a particle-laden layer to a thick protein film. J Colloid Interface Sci 2024; 669:236-247. [PMID: 38718577 DOI: 10.1016/j.jcis.2024.04.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/27/2024]
Abstract
HYPOTHESIS Protein-based soft particles possess a unique interfacial deformation behavior, which is difficult to capture and characterize. This complicates the analysis of their interfacial properties. Here, we aim to establish how the particle deformation affects their interfacial structural and mechanical properties. EXPERIMENTS Gliadin nanoparticles (GNPs) were selected as a model particle. We studied their adsorption behavior, the time-evolution of their morphology, and rheological behavior at the air/water interface by combining dilatational rheology and microstructure imaging. The rheology results were analyzed using Lissajous plots and quantified using the recently developed general stress decomposition (GSD) method. FINDING Three distinct stages were revealed in the adsorption and rearrangement process. First, spherical GNPs (∼105 nm) adsorbed to the interface. Then, these gradually deformed along the interface direction to a flattened shape, and formed a firm viscoelastic 2D solid film. Finally, further stretching and merging of GNPs at the interface resulted in rearrangement of their internal structure to form a thick film with lower stiffness than the initial film. These results demonstrate that the structure of GNPs confined at the interface is controlled by their deformability, and the latter can be used to tune the properties of prolamin particle-based multiphase systems.
Collapse
Affiliation(s)
- Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Jack Yang
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Anteun de Groot
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | - Weiping Jin
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, 430023, PR China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands.
| |
Collapse
|
3
|
Mateo-Roque P, Morales-Camacho JI, Jara-Romero GJ, Rosas-Cárdenas FDF, Huerta-González L, Luna-Suárez S. Supercritical CO 2 Treatment to Modify Techno-Functional Properties of Proteins Extracted from Tomato Seeds. Foods 2024; 13:1045. [PMID: 38611350 PMCID: PMC11011313 DOI: 10.3390/foods13071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Tomato seeds are a rich source of protein that can be utilized for various industrial food purposes. This study delves into the effects of using supercritical CO2 (scCO2) on the structure and techno-functional properties of proteins extracted from defatted tomato seeds. The defatted meal was obtained using hexane (TSMH) and scCO2 (TSMC), and proteins were extracted using water (PEWH and PEWC) and saline solution (PESH and PESC). The results showed that scCO2 treatment significantly improved the techno-functional properties of protein extracts, such as oil-holding capacity and foaming capacity (especially for PEWC). Moreover, emulsifying capacity and stability were enhanced for PEWC and PESC, ranging between 4.8 and 46.7% and 11.3 and 96.3%, respectively. This was made possible by the changes in helix structure content induced by scCO2 treatment, which increased for PEWC (5.2%) and decreased for PESC (8.0%). Additionally, 2D electrophoresis revealed that scCO2 hydrolyzed alkaline proteins in the extracts. These findings demonstrate the potential of scCO2 treatment in producing modified proteins for food applications.
Collapse
Affiliation(s)
- Paola Mateo-Roque
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Jocksan I. Morales-Camacho
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, San Andrés Cholula 72810, Puebla, Mexico;
| | - Guadalupe Janet Jara-Romero
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Flor de Fátima Rosas-Cárdenas
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Luis Huerta-González
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| | - Silvia Luna-Suárez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla 90700, Tlaxcala, Mexico; (P.M.-R.); (G.J.J.-R.); (F.d.F.R.-C.); (L.H.-G.)
| |
Collapse
|
4
|
Lu S, Xiong W, Yao Y, Zhang J, Wang L. Investigating the physicochemical properties and air-water interface adsorption behavior of transglutaminase-crosslinking rapeseed protein isolate. Food Res Int 2023; 174:113505. [PMID: 37986500 DOI: 10.1016/j.foodres.2023.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Improving the technical functionality to adapt to the application of complex food systems is an important challenge for the development of plant protein ingredients. Herein, the correlation between the physicochemical properties and interfacial adsorption behavior of rapeseed protein isolate (RPI) at the air-water interface after transglutaminase (TG) treatment was investigated. The results of cross-linking degree, Fourier transform infrared spectroscopy (FTIR) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the TG enzyme was able to catalyse cross-linking between lysine and glutamine residues of RPI. The foaming capacity of RPI was enhanced from 120 % to 150 % after TG cross-linking 5 h, whereas the average size (210-219 nm) of the RPI determined by dynamic light scattering did not change significantly. Besides, the hydrophobicity tended to increase overall under the enzyme treatment, while the surface electrostatic potential decreased. The former indicates the unfolding of the protein and reduces the kinetic barriers to protein adsorption at the air-water interface, with a consequent increase in disulfide bonding and surface pressure. Furthermore, as the enzyme treatment time increased, a significant increase in protein content of foam by 33.86 %. These findings provide novel insight into the foaming mechanism of TG cross-linking RPI.
Collapse
Affiliation(s)
- Shanshan Lu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Wenfei Xiong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Yijun Yao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Jing Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
5
|
Edward, Wongprasert T, Bunyakanchana T, Siripitakpong P, Supabowornsathit K, Vilaivan T, Suppavorasatit I. Cricket Protein Isolate Extraction: Effect of Ammonium Sulfate on Physicochemical and Functional Properties of Proteins. Foods 2023; 12:4032. [PMID: 37959151 PMCID: PMC10649177 DOI: 10.3390/foods12214032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Crickets are known to be a promising alternative protein source. However, a negative consumer bias and an off-flavor have become obstacles to the use of these insects in the food industry. In this study, we extracted the protein from commercial cricket powder by employing alkaline extraction-acid precipitation and including ammonium sulfate. The physicochemical and functional properties of the proteins were determined. It was found that, upon including 60% ammonium sulfate, the cricket protein isolate (CPI) had the highest protein content (~94%, w/w). The circular dichroism results indicated that a higher amount of ammonium sulfate drastically changed the secondary structure of the CPI by decreasing its α-helix content and enhancing its surface hydrophobicity. The lowest solubility of CPI was observed at pH 5. The CPI also showed better foaming properties and oil-holding capacity (OHC) compared with the cricket powder. In conclusion, adding ammonium sulfate affected the physicochemical and functional properties of the CPI, allowing it to be used as an alternative protein in protein-enriched foods and beverages.
Collapse
Affiliation(s)
- Edward
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand; (E.); (T.W.); (T.B.); (P.S.)
| | - Thanakorn Wongprasert
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand; (E.); (T.W.); (T.B.); (P.S.)
| | - Thasorn Bunyakanchana
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand; (E.); (T.W.); (T.B.); (P.S.)
| | - Panattida Siripitakpong
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand; (E.); (T.W.); (T.B.); (P.S.)
| | - Kotchakorn Supabowornsathit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand; (K.S.); (T.V.)
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand; (K.S.); (T.V.)
| | - Inthawoot Suppavorasatit
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand; (E.); (T.W.); (T.B.); (P.S.)
| |
Collapse
|
6
|
Cháirez-Jiménez C, Castro-López C, Serna-Saldívar S, Chuck-Hernández C. Partial characterization of canola ( Brassica napus L.) protein isolates as affected by extraction and purification methods. Heliyon 2023; 9:e21938. [PMID: 38027992 PMCID: PMC10654237 DOI: 10.1016/j.heliyon.2023.e21938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Canola (Brassica napus L.) meal represents a prominent alternative plant-based source for protein isolation. This work aimed to investigate the combined effect of extraction and purification methods for the production of canola protein isolates (CPIs). CPIs were characterized in terms of process yield, protein recovery, basic composition, amino acid profile, in vitro protein digestibility, techno-functional properties, structural properties, and molecular features. The results showed that the Alk-Uf method enhanced yield (16.23 %) and protein recovery (34.88 %). Meanwhile, the Et-Alk-Uf method exhibited the highest crude protein (89.71 %) and free amino nitrogen (4.34 mg g protein-1) contents. Furthermore, protein digestibility (95.5 %) and protein digestibility corrected amino acid score (1.0) were improved using the Et-Alk-Ac method. Conversely, the amino acid composition, secondary structure, and electrophoretic profiles were generally similar for all CPIs. The Alk-Uf and Et-Alk-Uf methods produced isolates with the highest water solubility (∼39.18 %), water absorption capacity (∼3.86 g water g protein-1), oil absorption capacity (∼2.77 g oil g protein-1), and foaming capacity (∼505.26 %). Finally, the foaming stability (93.75 %) and foaming density (34.38 %) were increased when employing the Alk-Ac method. These findings suggest that, in general, the Alk-Uf and Et-Alk-Uf methods can be used to obtain CPIs with high added value for use in food formulations.
Collapse
Affiliation(s)
- Cristina Cháirez-Jiménez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, Monterrey, Nuevo León, 64849, Mexico
- Tecnologico de Monterrey, Instituto para la Investigación en Obesidad, Eugenio Garza Sada 2501, Monterrey, Nuevo León, 64849, Mexico
| | - Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos. Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, Mexico
| | - Sergio Serna-Saldívar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eugenio Garza Sada 2501, Monterrey, Nuevo León, 64849, Mexico
| | - Cristina Chuck-Hernández
- Tecnologico de Monterrey, Instituto para la Investigación en Obesidad, Eugenio Garza Sada 2501, Monterrey, Nuevo León, 64849, Mexico
| |
Collapse
|
7
|
Zena Y, Periyasamy S, Tesfaye M, Tumsa Z, Jayakumar M, Mohamed BA, Asaithambi P, Aminabhavi TM. Essential characteristics improvement of metallic nanoparticles loaded carbohydrate polymeric films - A review. Int J Biol Macromol 2023; 242:124803. [PMID: 37182627 DOI: 10.1016/j.ijbiomac.2023.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Petroleum-based films have contributed immensely to various environmental issues. Developing green-based films from carbohydrate polymers is crucial for addressing the harms encountered. However, some limitations exist on their property, processibility, and applicability that prohibit their processing for further developments. This review discusses the potential carbohydrate polymers and their sources, film preparation methods, such as solvent-casting, tape-casting, extrusion, and thermo-mechanical compressions for green-based films using various biological polymers with their merits and demerits. Research outcomes revealed that the essential characteristics improvement achieved by incorporating different metallic nanoparticles has significantly reformed the properties of biofilms, including crystallization, mechanical stability, thermal stability, barrier function, and antimicrobial activity. The property-enhanced bio-based films made with nanoparticles are potentially interested in replacing fossil-based films in various areas, including food-packaging applications. The review paves a new way for the commercial use of numerous carbohydrate polymers to help maintain a sustainable green environment.
Collapse
Affiliation(s)
- Yezihalem Zena
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Melaku Tesfaye
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Zelalem Tumsa
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, P.O. Box No. 138, Haramaya, Dire Dawa, Ethiopia
| | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Po Box - 378, Jimma, Ethiopia
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| |
Collapse
|
8
|
Gravel A, Dubois-Laurin F, Doyen A. Effects of hexane on protein profile and techno-functional properties of pea protein isolates. Food Chem 2023; 406:135069. [PMID: 36459795 DOI: 10.1016/j.foodchem.2022.135069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The defatting of legume flours with hexane is usually the first step in producing protein-rich ingredients. However, its impact on protein profiles, zeta potential, surface hydrophobicity and techno-functionality of pea proteins has not been evaluated. Consequently, this work aimed to evaluate the impact of the hexane defatting step on pea protein profiles, surface hydrophobicity and zeta potential, as well as techno-functional properties of non-defatted and defatted pea protein isolates. The results showed that alkaline extraction of hexane-defatted pea flour increased the net surface charge (zeta-potential) and reduced particle size of the pea protein isolate. Moreover, only the foaming properties of pea protein isolate generated from defatted pea flour were improved. Consequently, except for improving foaming properties, the defatting step is not essential for the production of pea protein isolate.
Collapse
Affiliation(s)
- Alexia Gravel
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Florence Dubois-Laurin
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Alain Doyen
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
9
|
Lie-Piang A, Yang J, Schutyser MAI, Nikiforidis CV, Boom RM. Mild Fractionation for More Sustainable Food Ingredients. Annu Rev Food Sci Technol 2023; 14:473-493. [PMID: 36972157 DOI: 10.1146/annurev-food-060721-024052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
With the rising problems of food shortages, energy costs, and raw materials, the food industry must reduce its environmental impact. We present an overview of more resource-efficient processes to produce food ingredients, describing their environmental impact and the functional properties obtained. Extensive wet processing yields high purities but also has the highest environmental impact, mainly due to heating for protein precipitation and dehydration. Milder wet alternatives exclude, for example, low pH-driven separation and are based on salt precipitation or water only. Drying steps are omitted during dry fractionation using air classification or electrostatic separation. Benefits of milder methods are enhanced functional properties. Therefore, fractionation and formulation should be focused on the desired functionality instead of purity. Environmental impact is also strongly reduced by milder refining. Antinutritional factors and off-flavors remain challenges in more mildly produced ingredients. The benefits of less refining motivate the increasing trend toward mildly refined ingredients.
Collapse
Affiliation(s)
- A Lie-Piang
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| | - J Yang
- Laboratory for Biobased Chemistry and Technology, Wageningen University, Wageningen, The Netherlands
| | - M A I Schutyser
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| | - C V Nikiforidis
- Laboratory for Biobased Chemistry and Technology, Wageningen University, Wageningen, The Netherlands
| | - R M Boom
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| |
Collapse
|
10
|
Zhu P, Ma C, Fan J, Yang Y, Liu X, Bian X, Ren L, Xu Y, Yu D, Liu L, Fu Y, Gao J, Zhang N. The interaction of trehalose and molten globule state soybean 11S globulin and its impact on foaming capacities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1194-1204. [PMID: 36088619 DOI: 10.1002/jsfa.12214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Soybean 11S globulin has good functional properties, which are widely used in the field of food. However, natural soybean 11S globulin (N-11S) has low flexibility and is easy to aggregate, impacting its foaming process. Studies have shown that soybean 11S globulin in molten globule state (MG-11S) has better molecular flexibility than N-11S, and trehalose has been shown to improve the properties of proteins. Therefore, this study investigated the interaction mechanism between trehalose and MG-11S, and its impact on rheological and foaming properties of MG-11S. RESULTS The molecular docking and intrinsic fluorescence results showed that hydrogen bonding was the main interaction force at lower than 0.5 mol L-1 trehalose added. Meanwhile, rheology and foaming showed that the MG-11S-trehalose complexes had better viscoelasticity, foaming ability (66.67-86.67%) and foaming stability (75.00-89.29%) than N-11S (16.67% foaming ability and 40.00% foaming stability); however, when the trehalose was higher than 0.5 mol L-1 , molecular crowding occurred and H-bonds were weakened, resulting in reduction of foaming capacities. Microstructure determination showed that trehalose attached to the surface of foam membrane; meanwhile, the foaming structure of the complex with 0.5 mol L-1 trehalose had a thicker liquid film with decreased drainage rate, less agglomeration and disproportionation of foam, illustrating the best foaming ability and foaming stability. CONCLUSION The results suggested that trehalose at different concentrations can interact with MG-11S through different mechanisms, and improve the foaming capacity of MS-11S. This provided a reference for the application of MS-11S in foaming food. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pengyu Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jing Fan
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Likun Ren
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yue Xu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Dehui Yu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Jian Gao
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
11
|
Immonen M, Chandrakusuma A, Hokkanen S, Partanen R, Mäkelä-Salmi N, Myllärinen P. The effect of deamidation and lipids on the interfacial and foaming properties of ultrafiltered oat protein concentrates. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Shen P, Yang J, Nikiforidis CV, Mocking-Bode HC, Sagis LM. Cruciferin versus napin – Air-water interface and foam stabilizing properties of rapeseed storage proteins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Yu J, Li D, Wang LJ, Wang Y. Improving freeze-thaw stability and 3D printing performance of soy protein isolate emulsion gel inks by guar & xanthan gums. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
The interfacial behavior and long-term stability of emulsions stabilized by gum arabic and sugar beet pectin. Carbohydr Polym 2022; 291:119623. [DOI: 10.1016/j.carbpol.2022.119623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023]
|
15
|
Beyond particle stabilization of emulsions and foams: Proteins in liquid-liquida and liquid-gas interfaces. Adv Colloid Interface Sci 2022; 308:102743. [DOI: 10.1016/j.cis.2022.102743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 01/02/2023]
|
16
|
Hinderink EB, Meinders MB, Miller R, Sagis L, Schroën K, Berton-Carabin CC. Interfacial protein-protein displacement at fluid interfaces. Adv Colloid Interface Sci 2022; 305:102691. [PMID: 35533557 DOI: 10.1016/j.cis.2022.102691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/01/2022]
Abstract
Protein blends are used to stabilise many traditional and emerging emulsion products, resulting in complex, non-equilibrated interfacial structures. The interface composition just after emulsification is dependent on the competitive adsorption between proteins. Over time, non-adsorbed proteins are capable of displacing the initially adsorbed ones. Such rearrangements are important to consider, since the integrity of the interfacial film could be compromised after partial displacement, which may result in the physical destabilisation of emulsions. In the present review, we critically describe various experimental techniques to assess the interfacial composition, properties and mechanisms of protein displacement. The type of information that can be obtained from the different techniques is described, from which we comment on their suitability for displacement studies. Comparative studies between model interfaces and emulsions allow for evaluating the impact of minor components and the different fluid dynamics during interface formation. We extensively discuss available mechanistic physical models that describe interfacial properties and the dynamics of complex mixed systems, with a focus on protein in-plane and bulk-interface interactions. The potential of Brownian dynamic simulations to describe the parameters that govern interfacial displacement is also addressed. This review thus provides ample information for characterising the interfacial properties over time in protein blend-stabilised emulsions, based on both experimental and modelling approaches.
Collapse
|
17
|
Wang S, Zhou B, Yang X, Niu L, Li S. Tannic acid enhanced the emulsion stability, rheology and interface characteristics of
Clanis Bilineata Tingtauica Mell
protein stabilised oil‐in‐water emulsion. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuya Wang
- Engineering Research Center of Bio‐process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering Hubei University of Technology Wuhan 430068 China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering Hubei University of Technology Wuhan 430068 China
| | - Xinquan Yang
- School of Life Sciences Guangzhou University Guangzhou 511442 China
| | - Liqiong Niu
- School of Life Sciences Guangzhou University Guangzhou 511442 China
| | - Shugang Li
- Engineering Research Center of Bio‐process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering Hefei University of Technology Hefei 230601 China
- Key Laboratory of Fermentation Engineering, Ministry of Education/School of Food and Biological Engineering Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
18
|
Kornet R, Yang J, Venema P, van der Linden E, Sagis LM. Optimizing pea protein fractionation to yield protein fractions with a high foaming and emulsifying capacity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
|
20
|
Ntone E, Kornet R, Venema P, Meinders MB, van der Linden E, Bitter JH, Sagis LM, Nikiforidis CV. Napins and cruciferins in rapeseed protein extracts have complementary roles in structuring emulsion-filled gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Sagis LMC, Yang J. Protein-stabilized interfaces in multiphase food: comparing structure-function relations of plant-based and animal-based proteins. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Yang J, de Wit A, Diedericks CF, Venema P, van der Linden E, Sagis LM. Foaming and emulsifying properties of extensively and mildly extracted Bambara groundnut proteins: A comparison of legumin, vicilin and albumin protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Yu J, Wang Y, Li D, Wang LJ. Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Yang J, Berton-Carabin CC, Nikiforidis CV, van der Linden E, Sagis LM. Competition of rapeseed proteins and oleosomes for the air-water interface and its effect on the foaming properties of protein-oleosome mixtures. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Li J, Zheng C. Preparation and performance of a chelating anionic foaming agent. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2021.2013868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Junliang Li
- Oil Production Engineering Research Institute, Daqing Oilfield Co., Ltd, Daqing, The People's Republic of China
| | - Cunchuan Zheng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People's Republic of China
| |
Collapse
|
26
|
Interfacial behavior of plant proteins — novel sources and extraction methods. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
On the foaming properties of plant proteins: Current status and future opportunities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Hinderink EB, Boire A, Renard D, Riaublanc A, Sagis LM, Schroën K, Bouhallab S, Famelart MH, Gagnaire V, Guyomarc'h F, Berton-Carabin CC. Combining plant and dairy proteins in food colloid design. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Li X, Wang YM, Sun CF, Lv JH, Yang YJ. Comparative Study on Foaming Properties of Egg White with Yolk Fractions and Their Hydrolysates. Foods 2021; 10:2238. [PMID: 34574348 PMCID: PMC8468132 DOI: 10.3390/foods10092238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
As an excellent foaming agent, egg white protein (EWP) is always contaminated by egg yolk in the industrial processing, therefore, decreasing its foaming properties. The aim of this study was to simulate the industrial EWP (egg white protein with 0.5% w/w of egg yolk) and characterize their foaming and structural properties when hydrolyzed by two types of esterase (lipase and phospholipase A2). Results showed that egg yolk plasma might have been the main fraction, which led to the poor foaming properties of the contaminated egg white protein compared with egg yolk granules. After hydrolyzation, both foamability and foam stability of investigated systems thereof (egg white protein with egg yolk, egg white protein with egg yolk plasma, and egg white protein with egg yolk granules) increased significantly compared with unhydrolyzed ones. However, phospholipids A2 (PLP) seemed to be more effective on increasing their foaming properties as compared to those systems hydrolyzed by lipase (LP). The schematic diagrams of yolk fractions were proposed to explain the aggregation and dispersed behavior exposed in their changes of structures after hydrolysis, suggesting the aggregated effects of LP on yolk plasma and destructive effects of PLP on yolk granules, which may directly influence their foaming properties.
Collapse
Affiliation(s)
- Xin Li
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Yue-Meng Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai 264003, China;
| | - Cheng-Feng Sun
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Jian-Hao Lv
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Yan-Jun Yang
- School of Food Science, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
30
|
Hinderink EB, de Ruiter J, de Leeuw J, Schroën K, Sagis LM, Berton-Carabin CC. Early film formation in protein-stabilised emulsions: Insights from a microfluidic approach. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Ntone E, van Wesel T, Sagis LMC, Meinders M, Bitter JH, Nikiforidis CV. Adsorption of rapeseed proteins at oil/water interfaces. Janus-like napins dominate the interface. J Colloid Interface Sci 2020; 583:459-469. [PMID: 33011413 DOI: 10.1016/j.jcis.2020.09.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 01/23/2023]
Abstract
Plants offer a vast variety of protein extracts, typically containing multiple species of proteins that can serve as building blocks of soft materials, like emulsions. However, the role of each protein species concerning the formation of emulsions and interfaces with diverse rheological properties is still unknown. Therefore, deciphering the role of the individual proteins in an extract is highly relevant, since it determines the optimal level of purification, and hence the sustainability aspects of the extract. Here, we will show that when oil/water emulsions were prepared with a rapeseed protein extract containing napins and cruciferins (in a mass ratio of 1:1), only napins adsorbed at the interface exhibiting a soft solid-like rheological behavior. The dominance of napins at the interface was ascribed to their small size (radius r = 1.7 nm) and its unique Janus-like structure, as 45% of the amino acids are hydrophobic and primarily located at one side of the protein. Cruciferins with a bigger size (r = 4.4 nm) and a more homogeneous distribution of the hydrophobic domains couldn't reach the interface, but they appear to just weakly interact with the adsorbed layer of napins.
Collapse
Affiliation(s)
- Eleni Ntone
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, P.O. Box 17, 6708 WG Wageningen, The Netherlands; TiFN, P.O. Box 557, 6700 AN Wageningen, The Netherlands
| | - Tessa van Wesel
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, P.O. Box 17, 6708 WG Wageningen, The Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Marcel Meinders
- TiFN, P.O. Box 557, 6700 AN Wageningen, The Netherlands; Food and Biobased Research, Wageningen University and Research Centre, P.O. Box 17, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, P.O. Box 17, 6708 WG Wageningen, The Netherlands
| | - Constantinos V Nikiforidis
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, P.O. Box 17, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|