1
|
Wei Y, Ning D, Sun L, Gu Y, Zhuang Y, Ding Y, Fan X. Breaking barriers: Elevating legume protein functionality in food products through non-thermal technologies. Food Chem X 2025; 25:102169. [PMID: 39872822 PMCID: PMC11770516 DOI: 10.1016/j.fochx.2025.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Legume proteins have recently gained significant interest in the food industry for their eco-friendliness and nutritional qualities. Research shows that the replacement of specific animal protein sources with legume proteins presents sustainability and economic benefit. Nonetheless, legume proteins frequently exhibit inferior functional properties and palatability compared to animal proteins. Various non-thermal technologies, including high hydrostatic pressure, ultrasound, cold plasma, pulsed electric field, and dynamic high-pressure microjet, had been investigated to enhance the functional properties of legume proteins without loss of nutritional and sensory properties. Although these technologies show potential, no systematic study has been conducted to summarize and compare their effects on different legume proteins. This review aims to fill this gap by addressing the most promising approaches of non-thermal technologies for the modification of functional properties of legume proteins. New insights are discussed, elaborating the effect of non-thermal technologies on the structural and functional behavior of proteins.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland Sciences, Kunming 650201, China
- Yunnan Technology Innovation Center of Woody Oil, Kunming 650201, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Technology Innovation Center of Woody Oil, Kunming 650201, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
2
|
Liu Y, Sun J, Wen Z, Wang J, Roopesh MS, Pan D, Du L. Functionality enhancement of pea protein isolate through cold plasma modification for 3D printing application. Food Res Int 2024; 197:115267. [PMID: 39593346 DOI: 10.1016/j.foodres.2024.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Pea protein isolate (PPI) is a valued sustainable protein source, but its relatively poor functional properties limit its applications. This study reports on the effects of cold argon plasma (CP) treatment of a 15 % (w/w) PPI solution on the functionality, structure, and oxidative characteristics of PPI, as well as its application in 3D-printed plant-based meat. Results indicate that hydroxyl radicals and high-energy excited-state argon atoms are the primary active substances. A decrease in free sulfhydryl content and an increase in carbonyl content were observed in treated PPI, indicating oxidative modification. Compared to the control group, the gel strength of PPI was increased by 62.5 % and the storage modulus was significantly improved after 6 min treatment, forming a more ordered and highly cross-linked 3D gel network. Additionally, CP significantly improved the water-holding capacity, oil-holding capacity, emulsifying activity, and emulsion stability of PPI. The α-helix and random coil content in PPI decreased, while the β-sheet content increased, resulting in a more ordered secondary structure after CP treatment. Compared to untreated PPI, the consistency coefficient (K) increased from 36.00 to 47.68 Pa·sn. The treated PPI exhibited higher apparent viscosity and storage modulus and demonstrated better 3D printing performance and self-supporting ability. This study demonstrates that CP can significantly enhance the functional properties of PPI, providing great potential and prospects for improving the printability of 3D printing materials and developing plant protein foods with low-allergenicity.
Collapse
Affiliation(s)
- Ye Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jiayu Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Zimo Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo 315800, China.
| |
Collapse
|
3
|
Li B, Peng L, Cao Y, Liu S, Zhu Y, Dou J, Yang Z, Zhou C. Insights into Cold Plasma Treatment on the Cereal and Legume Proteins Modification: Principle, Mechanism, and Application. Foods 2024; 13:1522. [PMID: 38790822 PMCID: PMC11120358 DOI: 10.3390/foods13101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cereal and legume proteins, pivotal for human health, significantly influence the quality and stability of processed foods. Despite their importance, the inherent limited functional properties of these natural proteins constrain their utility across various sectors, including the food, packaging, and pharmaceutical industries. Enhancing functional attributes of cereal and legume proteins through scientific and technological interventions is essential to broadening their application. Cold plasma (CP) technology, characterized by its non-toxic, non-thermal nature, presents numerous benefits such as low operational temperatures, lack of external chemical reagents, and cost-effectiveness. It holds the promise of improving proteins' functionality while maximally retaining their nutritional content. This review delves into the pros and cons of different cold plasma generation techniques, elucidates the underlying mechanisms of protein modification via CP, and thoroughly examines research on the application of cold plasma in augmenting the functional properties of proteins. The aim is to furnish theoretical foundations for leveraging CP technology in the modification of cereal and legume proteins, thereby enhancing their practical applicability in diverse industries.
Collapse
Affiliation(s)
- Bin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Yanan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yuchen Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianguo Dou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenguang Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Gulzar S, Martín-Belloso O, Soliva-Fortuny R. Tailoring the Techno-Functional Properties of Fava Bean Protein Isolates: A Comparative Evaluation of Ultrasonication and Pulsed Electric Field Treatments. Foods 2024; 13:376. [PMID: 38338512 PMCID: PMC10855325 DOI: 10.3390/foods13030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The fava bean protein isolate (FBPI) holds promise as a sustainable plant-based protein ingredient. However, native FBPIs exhibit limited functionality, including unsuitable emulsifying activities and a low solubility at a neutral pH, restricting their applications. This study is focused on the effect of ultrasonication (US) and pulsed electric fields (PEF) on modulating the techno-functional properties of FBPIs. Native FBPIs were treated with US at amplitudes of 60-90% for 30 min in 0.5 s on-and-off cycles and with PEF at an electric field intensity of 1.5 kV/cm with 1000-4000 pulses of 20 μs pulse widths. US caused a reduction in the size and charge of the FBPIs more prominently than the PEF. Protein characterization by means of SDS-PAGE illustrated that US and PEF caused severe-to-moderate changes in the molecular weight of the FBPIs. In addition, a spectroscopic analysis using Fourier-transform infrared (FTIR) and circular dichroism (CD) revealed that US and the PEF induced conformational changes through partial unfolding and secondary structure remodeling from an α-helix to a β-sheet. Crystallographic and calorimetric determinations indicated decreased crystallinity and lowered thermal transition temperatures of the US- and PEF-modified FBPIs. Overall, non-thermal processing provided an effective strategy for upgrading FBPIs' functionality, with implications for developing competitive plant-based protein alternatives.
Collapse
Affiliation(s)
- Saqib Gulzar
- Department of Food Technology, Engineering and Science, University of Lleida, Avda. Rovira Roure 191, 25198 Lleida, Spain; (O.M.-B.); (R.S.-F.)
- Agrotecnio CERCA Center, Avda. Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science, University of Lleida, Avda. Rovira Roure 191, 25198 Lleida, Spain; (O.M.-B.); (R.S.-F.)
- Agrotecnio CERCA Center, Avda. Rovira Roure 191, 25198 Lleida, Spain
| | - Robert Soliva-Fortuny
- Department of Food Technology, Engineering and Science, University of Lleida, Avda. Rovira Roure 191, 25198 Lleida, Spain; (O.M.-B.); (R.S.-F.)
- Agrotecnio CERCA Center, Avda. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
5
|
Kaur G, Kaur N, Wadhwa R, Tushir S, Yadav DN. Techno-functional attributes of oilseed proteins: influence of extraction and modification techniques. Crit Rev Food Sci Nutr 2023; 65:1518-1537. [PMID: 38153305 DOI: 10.1080/10408398.2023.2295434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Plant-based protein isolates and concentrates are nowadays becoming popular due to their nutritional, functional as well as religious concerns. Among plant proteins, oilseeds, a vital source of valuable proteins, are continuously being explored for producing protein isolates/concentrates. This article delineates the overview of conventional as well as novel methods for the extraction of protein and their potential impact on its hydration, surface properties, and rheological characteristics. Moreover, proteins undergo several modifications using physical, chemical, and biological techniques to enhance their functionality by altering their microstructure and physical performance. The modified proteins hold a pronounced scope in novel food formulations. An overview of these protein modification approaches and their effects on the functional properties of proteins have also been presented in this review.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Navjot Kaur
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Ritika Wadhwa
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Surya Tushir
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| | - Deep Narayan Yadav
- Food Grains and Oilseeds Processing Division, ICAR-Central Institute of Post-harvest Engineering & Technology, Ludhiana, India
| |
Collapse
|
6
|
Effect of cold plasma-activated water on the physicochemical and functional properties of Bambara groundnut globulin. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Li XL, Liu WJ, Xu BC, Zhang B, Wang W, Su DL. OSA-linear dextrin enhances the compactness of pea protein isolate nanoparticles: Increase of high internal phase emulsions stability. Food Chem 2023; 404:134590. [DOI: 10.1016/j.foodchem.2022.134590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
8
|
Pickering stabilizing capacity of Plasma-treated Grass pea protein nanoparticles. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Zhang L, Zhang M, Ju R, Mujumdar AS, Deng D. Recent advances in essential oil complex coacervation by efficient physical field technology: A review of enhancing efficient and quality attributes. Crit Rev Food Sci Nutr 2022; 64:3384-3406. [PMID: 36226715 DOI: 10.1080/10408398.2022.2132207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although complex coacervation could improve the water solubility, thermal stability, bioavailability, antioxidant activity and antibacterial activity of essential oils (EOs). However, some wall materials (such as proteins and polysaccharides) with water solubility and hydrophobic nature limited their application in complex coacervation. In order to improve the properties of EO complex coacervates, some efficient physical field technology was proposed. This paper summarizes the application and functional properties of EOs in complex coacervates, formation and controlled-release mechanism, as well as functions of EO complex coacervates. In particular, efficient physical field technology as innovative technology, such as high pressure, ultrasound, cold plasma, pulsed electric fields, electrohydrodynamic atomization and microwave technology improved efficient and quality attributes of EO complex coacervates are reviewed. The physical fields could modify the gelling, structural, textural, emulsifying, rheological properties, solubility of wall material (proteins and polysaccharides), which improve the properties of EO complex coacervates. Overall, EOs complex coacervates possess great potential to be used in the food industry, including high bioavailability, excellent antioxidant capacity and gut microbiota in vivo, masking the sensation of off-taste or flavor, favorable antimicrobial capacity.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Dash DR, Singh SK, Singha P. Recent advances on the impact of novel non-thermal technologies on structure and functionality of plant proteins: A comprehensive review. Crit Rev Food Sci Nutr 2022; 64:3151-3166. [PMID: 36218326 DOI: 10.1080/10408398.2022.2130161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The recent trend in consumption of plant-based protein over animal protein opens up a new avenue for sustainable agriculture practice, less environmental impact and greenhouse gas emission. The modification of plant-based proteins by novel non-thermal technologies includes the structural transformation followed by the modulation of their functional properties that are exploited to develop a protein ingredient system for application in food formulation. This review explores the impact of non-thermal process technologies on structural modification of plant proteins followed by improvement in protein's function in food formulation. Novel concepts articulating the impact of non-thermal technologies on structural and functional modification of plant proteins affecting it's digestibility and bioavailability are addressed. Limitations and prospects of applying non-thermal technologies in developing an alternative plant-based protein food system are also summarized. Non-thermal processes are considered as the emerging technologies that results in conformational changes in secondary, tertiary and quaternary structure of plant proteins which helps in modification of functional properties without jeopardizing the organoleptic properties and bioactivity of the protein. However, extensive future study is needed to optimize the non-thermal process parameters along with the finding of new protein sources to achieve healthy and sustainable plant-based food system.
Collapse
Affiliation(s)
- Dibya Ranjan Dash
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
11
|
Pea protein based nanocarriers for lipophilic polyphenols: Spectroscopic analysis, characterization, chemical stability, antioxidant and molecular docking. Food Res Int 2022; 160:111713. [DOI: 10.1016/j.foodres.2022.111713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023]
|
12
|
Modification of grass pea protein isolate (Lathyrus sativus L.) using high intensity ultrasound treatment: Structure and functional properties. Food Res Int 2022; 158:111520. [DOI: 10.1016/j.foodres.2022.111520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
|
13
|
Improving Ecological Functions and Ornamental Values of Traditional Pear Orchard by Co-Planting of Green Manures of Astragalus sinicus L. and Lathyrus cicera L. SUSTAINABILITY 2021. [DOI: 10.3390/su132313092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditional orchards received little attention in ecology. In order to enhance the ecological function of traditional pear orchard, it is an effective strategy to co-plant the ornamental green manure (GM) under the pear forest. In this study, two kinds of GM, i.e., Astragalus sinicus L. (AS) and Lathyrus cicera L. (LC), were co-planted in pear tree orchard to elevate its landscape benefits of spatiotemporal distribution of flowers, the nutrient benefits and oxygen production. The results showed that the flower height of AS and LC arrange between 20~30 cm, and the flowering period covers the March. LC has a large number of flowers, a small area of single flower, and high yield of fresh grass. AS has a small number of flowers, a large area of single flower, and low yield of a single fresh grass. Among them, 35% AS + 65% LC and 50% AS + 50% LC are more suitable in achieving the well tourism value and potential good production of pear orchard. Nutrient accumulation, total carbon fixation and oxygen production, flower number of 35% AS + 65% LC are larger than other treatments, while the flower period of 50% AS + 50% LC is longest. This study proposed a “win-win” GM planting strategy for sustainable orchard development, by enhancing ecology functions and the landscaped value of the traditional fruit orchard.
Collapse
|
14
|
Physical modification of Lepidium perfoliatum seed gum using cold atmospheric-pressure plasma treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106789] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Li XL, Xie QT, Liu WJ, Xu BC, Zhang B. Self-Assembled Pea Protein Isolate Nanoparticles with Various Sizes: Explore the Formation Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9905-9914. [PMID: 34412476 DOI: 10.1021/acs.jafc.1c02105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pea protein isolate nanoparticles (PPINs) were successfully prepared by potassium metabisulfite (K2S2O5). The disulfide bonds were disrupted by K2S2O5, and then the PPINs were formed through self-assembly. The average diameter of PPINs increased from 124.7 to 297.5 nm as the concentration of K2S2O5 was increased from 2 to 8 mM, and the PPINs showed higher ζ-potentials (-32.2 to -35.8 mV) and unimodal distribution. The content of free sulfhydryl groups first increased and then decreased with the fracture and reformation of disulfide bonds. Subsequently, the increase of the β-sheet, which has considerable hydrophobicity, promoted the formation of PPINs. The formation mechanism of PPINs was explored by dissociation tests: hydrophobic interactions maintained the basic skeleton of PPINs, disulfide bonds stabilized the internal structure, and hydrogen bonds existed on the exterior of the particles. This study provided a simple and economical method to fabricate nanoparticles.
Collapse
Affiliation(s)
- Xiao-Long Li
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Qiu-Tao Xie
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410082, P. R. China
| | - Wen-Jie Liu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
17
|
Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Ghobadi M, Varidi MJ, Koocheki A, Varidi M. Effect of heat treatment on the structure and stability of Grass pea (Lathyrus sativus) protein isolate/Alyssum homolocarpum seed gum nanoparticles. Int J Biol Macromol 2021; 182:26-36. [PMID: 33798584 DOI: 10.1016/j.ijbiomac.2021.03.170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/28/2021] [Indexed: 11/26/2022]
Abstract
In the present study, Grass pea protein isolate (GPPI)- Alyssum homolocarpum seed gum (AHSG) complex nanoparticles were formed through two fabrication methods and their physicochemical properties, structure and stability against sodium chloride and different pHs were investigated. Type 1 particles were formed by creating GPPI nanoparticles, and then coating them with AHSG; while Type 2 particles were fabricated through the heat treatment of GPPI-AHSG complexes at 85 °C for 15 min. The preparation methods did not influence the magnitude of electrical charges on biopolymer particles. The particle size analysis revealed that Type 2 particles had lower mean diameter (d = 360.20 nm) compared to Type 1 particles (d = 463.22 nm). Structural properties of Type 1 and Type 2 particles were determined using Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), Differential scanning calorimetry (DSC), Atomic force microscopy (AFM), and transmission electron microscopy (TEM). Hydrogen bonding, electrostatic and hydrophobic interactions were the main driving forces contributed to the formation of both GPPI-AHSG complex particles. Assessments of morphological and structural properties also indicated that both Type 1 and 2 particles had spherical shapes and heat treatment increased the ordered intermolecular structures in biopolymer particles. Type 2 particles had higher denaturation temperature and better pH and salt stability when compared to Type 1 particles. These results indicate that thermal treatment was effective for the fabrication of stable GPPI-AHSG complex nanoparticles.
Collapse
Affiliation(s)
- Mohammad Ghobadi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Javad Varidi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Koocheki
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mehdi Varidi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|