1
|
Moon SY, Shin HY, Choi JH, Kim JY. Dry heat treatment induced composites of ceramide NP and high amylose maize starch nanoparticles for enhanced aqueous dispersibility and Pickering emulsion stabilization. Int J Biol Macromol 2025; 305:141245. [PMID: 39971025 DOI: 10.1016/j.ijbiomac.2025.141245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
To enhance the aqueous dispersibility of ceramide (Cer) NP, composites were prepared with high amylose maize starch nanoparticles (HSNP) using dry heat treatment. Differential scanning calorimetry results indicated that dry heat treatment at 120 °C for 120 min minimized the recrystallization of Cer NP in the presence of HSNP. Cer NP (2, 4, and 10 mg) were mixed with 100 mg of HSNP, and the mixture and subjected to optimized dry heat treatment to form composites. For all Cer NP concentrations, dry heat treatment shifted FT-IR peaks from 1613 to 1649 cm-1 and from 1560 to 1545 cm-1, while reducing the melting enthalpy of Cer NP in the composites. X-ray diffraction patterns revealed peaks at 17° and 22°, corresponding to the B-type crystalline structure and V6 amylose allomorph, respectively. The composites exhibited a spherical morphology with a mean hydrodynamic diameter of approximately 120 nm. The composite produced an aqueous dispersion containing up to 0.4 % Cer NP. The hydrophobicity of the composites increased with increasing Cer NP content. When the Pickering emulsion was stabilized by the composite with 10 % Cer NP content, the homogenous phase was maintained for 72 h, exhibiting minimal growth in emulsion droplet size.
Collapse
Affiliation(s)
- So Yeon Moon
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hye-Young Shin
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin Hyeok Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jong-Yea Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute of Fermentation and Brewing, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
2
|
Dai Z, Lin Z, Gao L, Bereka TY, Xu D, Wu F, Zhang J, Xu X, Peng C. A comparative study of starch granule-associated proteins/lipids on short-term and long-term retrogradation of normal and waxy corn starches. Int J Biol Macromol 2025; 302:140479. [PMID: 39889986 DOI: 10.1016/j.ijbiomac.2025.140479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
To evaluate the contribution of starch granule-associated proteins/lipids (SGAPs/SGALs) to the short- and long-term retrogradation of starch, a comparative study was conducted using normal and waxy corn starches. Following the removal of SGAPs, peak viscosity (3504.71 cP) and breakdown viscosity (1659.20 cP) significantly increased, while pasting temperature (74.31 °C) significantly decreased, compared to SGALs-removed (3131.00 cP, 1229.80 cP, 75.46 °C) and native normal corn starches (2704.40 cP, 794.60 cP, 79.30 °C). Rheological profiles further revealed that the removal of SGAPs/SGALs effectively promoted the short-term retrogradation of amylose, as evidenced by larger hysteresis rings and higher consistency indices (K) in the SGAPs/SGALs-removed starch gel. While SGAPs removal also greatly facilitated amylopectin recrystallization and double helix structure aggregation than removal of SGALs, thereby significantly increased the retrogradation enthalpy (from 6.48 to 7.37 J g-1) and gel hardness (from 461.26 gf to 518.31 gf) in normal corn starch after 14 days of storage, while no notable differences were observed in their corresponding waxy counterparts after both treatments. In conclusion, SGAPs showed significant superiority over SGALs in accelerating both short- and long-term retrogradation of normal corn starch, while both had minimal impact on waxy corn starch.
Collapse
Affiliation(s)
- Zhen Dai
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ziyan Lin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Liyuan Gao
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tizazu Yirga Bereka
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Fengfeng Wu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Junhui Zhang
- Beijing Key Laboratory of Nutrition& Health and Food Safety, Beijing 102209, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Chifang Peng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
3
|
Yu W, Yu Y, Li J, Liang H, Li Y, Li B. Effects of deacetylated konjac glucomannan on the retrogradation properties of pea, mung bean and potato starches during the storage. Int J Biol Macromol 2025; 304:140922. [PMID: 39938828 DOI: 10.1016/j.ijbiomac.2025.140922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
The retrogradation of natural starches often leads to quality deterioration of starchy foods during storage and limits their applications, while hydrocolloids can effectively improve the quality of retrogradation starches. Therefore, the effects of deacetylated konjac glucomannan (DKGM) on the retrogradation properties of pea starch (PS), mung bean starch (MBS) and potato starch (ST) during storage were investigated. The rheological properties, water flowability, structural properties and microstructure of the samples were comparatively analyzed. The results showed that DKGM could effectively improve the viscoelasticity and pseudoplasticity of the starch gels. With the increase in the proportion of DKGM, the hardness and water retention of the composite system were improved, and the microstructure of starch gels was also enhanced. In addition, the hydrogen bonds formed between DKGM and starch molecules restricted the cross-linking of amylose and the formation of starch double-helix structure, which reduced the crystallinity of starch. In summary, DKGM enhanced the network structure of starch gels and inhibited starch retrogradation, which lays the foundation for the study of the role of DKGM in the shelf life and organoleptic qualities of starchy foods.
Collapse
Affiliation(s)
- Wanxu Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yudie Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Meng N, Kang Z, Jiang P, Wu D, Bao Y, Chen X. Effects of laminarin and ferulic acid on pasting, rheology, freeze-thaw stability and in vitro digestion of cassava starch. Int J Biol Macromol 2025; 300:140248. [PMID: 39855515 DOI: 10.1016/j.ijbiomac.2025.140248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
This study aimed to investigate the effects of laminarin (LA) and ferulic acid (FA) on the gelatinization, rheological properties, freeze-thaw stability, and digestibility of cassava starch (CS). The results indicated that LA increased the peak viscosity, trough viscosity, final viscosity, storage modulus, and loss modulus of CS, while decreasing the breakdown viscosity. Conversely, FA exerted opposite effects. The addition of LA and FA delayed the setback viscosity of CS, thereby retarding short-term aging. In the ternary system, LA mitigated the adverse effects caused by FA, and further enhanced the gel properties, including viscoelasticity, thermal stability, and resistance to short-term retrogradation. Additionally, the short-term freeze-thaw stability of CS gels was enhanced by the inclusion of LA and FA. Fourier transform infrared spectroscopy (FTIR) showed that LA reduced the structural stability of CS, while FA was beneficial for the structural orderliness. However, the degree of orderliness in the starch gel network structure within the ternary system was compromised. Moreover, LA and FA also affected the digestibility of CS, with the CS + LA + FA ternary system exhibiting significantly higher contents of resistant starch and slowly digestible starch compared to CS, which was conducive to stabilizing blood sugar fluctuations. These findings contributed to the practical application of LA, FA, and CS, and provided a data reference for understanding the application of modified bioactive substances in starch-based food processing.
Collapse
Affiliation(s)
- Ning Meng
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Ziyue Kang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ping Jiang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Danfeng Wu
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Yifeng Bao
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xia Chen
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
5
|
Cui X, Guan C, Wang H, Liu Q, Zhang L, Wang Z, Zhang X. Chlamydomonas reinhardtii polysaccharides retard rice starch retrogradation by weakening hydrogen bond strength within starch double helices. Int J Biol Macromol 2025; 296:139570. [PMID: 39798748 DOI: 10.1016/j.ijbiomac.2025.139570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
This study investigated the effects of Chlamydomonas reinhardtii polysaccharides (CRPs) on retarding the retrogradation of japonica rice starch (JS) and glutinous rice starch (GS). Structure characterization revealed that CRPs, with an average molecular weight of 505 kDa, mainly consisted of glucose, mannose, and galactose and featured a triple-helix structure. CRPs could reduce the storage modulus increment of JS during the cooling process by interacting with amylose, thereby inhibiting gel network formation. After long-term storage, CRPs decreased the hardness of JS and GS gels, limited the mobility of water molecules, and inhibited dehydration of gels. In addition, CRPs restricted starch recrystallization through interactions with amylopectin, resulting in reduced retrogradation enthalpy and relative crystallinity in JS and GS gels. Further investigation revealed that CRPs could weaken hydrogen bond strength within double helices in JS and GS after 14 days, with bond energies of 10.270 kJ for JS-0.4%CRPs and 10.241 kJ for GS-0.4%CRPs, which are lower than those of native starches (10.464 and 10.500 kJ). Moreover, the energy increments of hydrogen bonds within double helices in complexes were smaller than those of native rice starches during storage, which emerges as the essential reason behind the retardation of rice starch retrogradation by CRPs.
Collapse
Affiliation(s)
- Xinwen Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Chunbo Guan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Heqin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Qianru Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Long Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zengli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiuqing Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Liu S, Lu Z, Zhang K, Wang R, Chang X, Zhang J. Effects of high hydraulic pressure on the short-term retrogradation and digestive properties of Lonicern caerulea berry polyphenol-chestnut starch complexes. Int J Biol Macromol 2025; 292:139242. [PMID: 39740716 DOI: 10.1016/j.ijbiomac.2024.139242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/23/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Both fresh and processed Chinese chestnuts are susceptible to retrograde hardening, affecting their texture, flavor, and shelf life because of their high starch content. To reduce the short-term retrogradation of chestnut starch during the food processing of chestnut-based products, a complex of Lonicern caerulea berry polyphenols (LCBP) and chestnut starch (CS) was prepared using high hydraulic pressure (HHP). The results showed that LCBP reduced the water separation rate, hardness, elasticity, and short-range order of retrograde CS under HHP and improved light transmission. After aging for 1 day, the relative crystallinity of 600 MPa-8 % LCBP-CS was significantly reduced by 53.1 % compared with CS (p < 0.05), and its particle size distribution was more uniform, with a complexation rate of 63.9 %. Under the same pressure, the complex with 8 % LCBP showed a more significant short-term retrograde inhibitory effect. In addition, the resistant starch content of 600 MPa-8 % LCBP-CS was 61 %. Correlation analysis showed that the complexation rates of LCBP and CS positively correlated with short-term retrogradation and digestive resistance. In summary, HHP facilitates the formation of a LCBP-CS complex that inhibits short-term retrogradation and enhances digestive resistance, aiding in the development of hypoglycemic chestnut products with extended shelf lives.
Collapse
Affiliation(s)
- Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China.
| | - Zhang Lu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Runzheng Wang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Xuedong Chang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China
| | - Jingzheng Zhang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
7
|
Zheng Y, You L, Wang W, Qin X, Chen Z, Zhang R, Zhao J, Li S. High molecular weight soluble dietary fiber of corn bran exhibits stronger inhibitions in digestibility and short-term retrogradation of corn starch than low molecular weight soluble fiber. Food Chem X 2025; 26:102341. [PMID: 40129731 PMCID: PMC11931310 DOI: 10.1016/j.fochx.2025.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Starch-dietary fiber interactions regulate starch processing and digestion, though the effects of varying molecular weight dietary fibers remain insufficiently studied. This study investigates how corn bran-derived soluble dietary fibers (SDFs) with distinct molecular weights influence corn starch (CS) processing, retrogradation, and digestibility. Results revealed that adding 5 % (W/W, based on the dry weight of CS) high molecular weight soluble dietary fiber (HM-SDF) or low molecular weight soluble dietary fiber (LM-SDF) significantly reduced amylose leaching, peak viscosity, retrogradation value, and retrogradation enthalpy during CS pasting. HM-SDF and LM-SDF decreased the thixotropic ring area by 55.8 % and 16.5 %, respectively, and inhibited the formation of ordered structures in CS. The HM-SDF-CS complex contained the least rapidly digestible starch at 68.26 %, indicating it more effectively slows starch digestion. These findings enhance our understanding of how SDF molecular weight distribution modulates starch-based foods, offering insights into potential applications for improved food processing and digestibility.
Collapse
Affiliation(s)
- Yuqian Zheng
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| | - Lixin You
- School of Life Science, Changchun Sci-Tech University, Changchun, Jilin 130600, China
| | - Wenyan Wang
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| | - Xiaoyan Qin
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| | - Zhilong Chen
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| | - Ruining Zhang
- Agriculture College, Yanbian University, Yanbian 133002, China
| | - Jun Zhao
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| | - Sheng Li
- College of Food Sciences and Engineering, Changchun University, Changchun, 130022, China
| |
Collapse
|
8
|
Luo Y, Zhou Y, Xiao N, Xie X, Li L. Partial gelatinization treatment affects the structural, gelatinization, and retrogradation characteristics of maize starch-dietary fiber complexes. Food Res Int 2025; 202:115799. [PMID: 39967122 DOI: 10.1016/j.foodres.2025.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/08/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
The effect of partial gelatinization (PG) treatment on the structural, gelatinization, and retrogradation characteristics of maize starch (MS)-dietary fiber (pectin, PE; konjac glucomannan, KG) complex was conducted. The result suggests that PG treatment shows an obvious effect in improving thermal stability, decreasing the viscoelastic, inhibiting starch gelatinization and retrogradation of the MS-PE/KG complex. The decreased breakdown viscosity, storage modulus, apparent viscosity, setback value, and hardness value could confirm these results. Furthermore, PG treatment had a better effect on inhibiting the gelatinization and retrogradation of the MS-0.3 %PE complex than other complexes. This result was proved by reduced setback value (by 78.96 %) and hardness value (by 54.46 % and 44.00 % during cold storage at 1 and 14 days, respectively). 0.3 %PE interacts with starch molecules through hydrogen bonding and electrostatic forces during PG treatment forming a strong starch granule structure to impede starch gelatinization and retrogradation. Moreover, the lighter iodine staining, the obvious coating thin layer, and the thicker fluorescence layer have appeared in the MS-PE/KG complex. The relative crystallinity and the short-range order degree of the MS-PE/KG complex were significantly decreased. The current findings provide the theoretical basis for MS modification to improve the quality and prolong the shelf-life of starch-based foods.
Collapse
Affiliation(s)
- Yunmei Luo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuhao Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Jia X, Luo X, Jin W, Shen W, Wu Y, Liu X. Effect of Chlorella pyrenoidosa and Spirulina platensis powder on the physicochemical, structural, and rheological properties of rice starch: A comparative study. Food Chem 2025; 463:141113. [PMID: 39265404 DOI: 10.1016/j.foodchem.2024.141113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
The effect of Chlorella pyrenoidosa (CP) and Spirulina platensis (SP) at concentrations of 0 %-12 % on the properties of rice starch (RS) was investigated. Compared with pure RS, the addition of CP and SP powder decreased the viscosity, increased the gelatinization temperature, and promoted the retrogradation of RS gel. However, when CP was added at 12 % and SP at 8 %, retrogradation inhibition was reduced. At these concentrations, the relative crystallinity of the CP mixture increased by 57.37 %, whereas that of SP increased by 48.13 %. Scanning electron microscopy revealed that the addition of low amount of CP and SP reduced porosity. CP and SP powder facilitated the conversion of bound water to free water and contributed to the weakening of the viscoelasticity of the RS gel. CP powder likely had a more detrimental effect on the short-term storage properties of RS than SP powder. These results provide theoretical support for the development of RS-based products and the innovative utilization of microalgae.
Collapse
Affiliation(s)
- Xiwu Jia
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Key Laboratory of the Deep Processing of Bulk Grain and Oil Authorized by Ministry of Education, Wuhan 430000, Hubei, PR China
| | - Xiaohua Luo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Key Laboratory of the Deep Processing of Bulk Grain and Oil Authorized by Ministry of Education, Wuhan 430000, Hubei, PR China
| | - Wangyang Shen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Key Laboratory of the Deep Processing of Bulk Grain and Oil Authorized by Ministry of Education, Wuhan 430000, Hubei, PR China
| | - Yongning Wu
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing 100021, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xin Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Key Laboratory of the Deep Processing of Bulk Grain and Oil Authorized by Ministry of Education, Wuhan 430000, Hubei, PR China.
| |
Collapse
|
10
|
Zhu Z, Ma X, Wang C, He Z, Du X, Chen X. Heterogeneous amylopectin delays short-term retrogradation via fabricating a binary gel network within steamed cold noodles. Food Res Int 2025; 200:115468. [PMID: 39779080 DOI: 10.1016/j.foodres.2024.115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to investigate the influence of heterogeneous amylopectin (waxy corn starch, WCS) on the retrogradation of wheat starch (WS), hoping to provide a new idea for alleviating the retrogradation of steamed cold noodles. The chain length distribution data confirmed the formation of a binary gel network resulting from the heterogeneous amylopectin structure between WCS and WS. With the increase of WCS concentration, the modulus and setback value of WS-WCS binary gel decreased, which was attributed to the newly built network structure hindering the aggregation of WS molecules. Consistently, the results of water distribution and micromorphology showed that the addition of heterogeneous amylopectin improved the water-holding capacity of the system and made the network structure more dense. When the WCS content was added to 20 %, the retrogradation degree and B-type crystallinity of binary gel decreased from 13.83 % and 9.68 % to 6.17 % and 2.17 %. Besides, compared with pure WS, the hardness and stretching distance of steamed cold noodles of 20 %WCS respectively decreased and increased by 57.82 % and 20.80 % after 7 days of storage. In summary, WCS could effectively improve the storage stability of steamed cold noodles by forming a new network structure to inhibit the intermolecular rearrangement of wheat starch.
Collapse
Affiliation(s)
- Zhijie Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, China
| | - Xinxin Ma
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, China
| | - Caihong Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, China
| | - Zhaoxian He
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, China
| | - Xianfeng Du
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, China.
| | - Xu Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
11
|
Li S, Zheng Y, Chen Z, Xie W, Xiao L, Gao D, Zhao J. Effect of soluble dietary fiber from corn bran on pasting, retrogradation, and digestion characteristics of corn starch. Food Chem X 2024; 24:102013. [PMID: 39659676 PMCID: PMC11629195 DOI: 10.1016/j.fochx.2024.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
This study investigated the effect of twin-screw extruded-enzymatically prepared soluble dietary fibers (EESDF) on various properties of CS. Results showed that adding EESDF decreased the viscosity and crystallinity. Incorporating 10 % EESDF reduced the peak and final viscosities of CS by 323 cP and 380 cP, respectively. When stored for 14 d, EESDF reduced the relative crystallinity (RC) and enthalpy of retrogradation (ΔHr) of CS. The RC and the ΔHr were reduced by 4.83 % and 41.53 %, respectively, when adding 10 % EESDF. The resistant starch content was increased by 6.7 % when stored for 0 d with the addition of 10 % EESDF. The eGI value was decreased when adding 10 % EESDF. These findings showed that EESDF inhibited the retrogradation and digestion of CS. They will provide a basis for using EESDF as a quality control for starchy foods and for using starch in soft gels and foods for dysphagic categories.
Collapse
Affiliation(s)
- Sheng Li
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Yuqian Zheng
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Zhilong Chen
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Wenlong Xie
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Liping Xiao
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Dengji Gao
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| | - Jun Zhao
- College of Food Sciences and Engineering, Changchun University, Changchun 130022, China
| |
Collapse
|
12
|
Wang Z, Lv J, Xie D, Li X, Liu X, Li N, Liu J. The effects of D-allulose on the gelatinization and gelling properties of wheat starch. Int J Biol Macromol 2024; 282:137326. [PMID: 39515697 DOI: 10.1016/j.ijbiomac.2024.137326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
D-Allulose, with its low calorie content and sweetness comparable to sucrose, has gained significant attention from researchers as an ideal substitute for sucrose. Here, we investigated the effects of D-allulose on the physicochemical properties and texture of wheat starch. The gelatinization results showed that D-allulose (D-allulose: wheat starch = 1:1 w/w) increased the pasting temperature (56.4 to 65.2 °C) and transition enthalpy (7.9 to 9.0 J/g) of wheat starch systems, and the impact was significantly lower than that of other commonly used small-molecule sugars (sucrose, fructose, glucose). In addition, rheological, texture, and X-ray diffraction analyses confirmed that the addition of D-allulose improved the hardness, gumminess, and recrystallization of retrograded wheat starch gels. Microstructure analysis indicated that the addition of D-allulose enhanced the structural density of wheat starch system, thereby significantly slowing down the retrogradation of wheat starch. D-allulose exhibited unique properties, promoting the gelatinization of wheat starch and delaying its retrogradation. These results will help to promote the wide application of D-allulose in starchy foods with special physiological functions.
Collapse
Affiliation(s)
- Zhiqi Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Jing Lv
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Diandong Xie
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Xinyu Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Xinliang Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ning Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China; Academy of Sugarcane and Sugar Industry, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
| |
Collapse
|
13
|
Pan W, Qi X, Huang Z, Shen M, Wen H, Xie J. Effect of three polysaccharides with different charge characteristics on the properties of highland barley starch gel. Int J Biol Macromol 2024; 281:136267. [PMID: 39366626 DOI: 10.1016/j.ijbiomac.2024.136267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Highland barley, a nutritious whole grain, faces limited market utilization due to the poor heating stability of its starch. The aim of this study was to investigate the effects of three differently charged ionic polysaccharides-guar gum (GG), xanthan gum (XG), and carboxymethyl chitosan (CMC)-on the gel properties of highland barley starch (HBS). GG and XG notably increased pasting viscosity, viscoelasticity, hardness, and strength of HBS gels. Conversely, CMC resulted in decreased gel properties. All three polysaccharides enhanced OH tensile vibration (3000-3800 cm-1), with GG and XG promoting denser honeycomb network structures and lower spin-spin relaxation time (T2), indicating improved structural integrity. In contrast, low concentrations of CMC led to disorder and loose structure. Hydrogen bonding and electrostatic interactions were the main forces by which polysaccharides influenced the properties of starch gels. This research contributes to enhancing the properties of HBS gel during heating and expanding its commercial applications. It also provides some insights to understand the interaction between different charged polysaccharides and starch.
Collapse
Affiliation(s)
- Wentao Pan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Xie A, Li X, Zhou D, Bai Y, Jin Z. Research on the quantitative relationship of the viscosity reduction effect of large-ring cyclodextrin on potato starch during gelatinization process and mechanism analysis. Carbohydr Polym 2024; 342:122371. [PMID: 39048192 DOI: 10.1016/j.carbpol.2024.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Starch is extensively used across various fields due to its renewable properties and cost-effectiveness. Nonetheless, the high viscosity that arises from gelatinization poses challenges in the industrial usage of starch at high concentrations. Thus, it's crucial to explore techniques to lower the viscosity during gelatinization. In this study, large-ring cyclodextrins (LR-CDs) were synthesized from potato starch (PS) by using 4-α-glucanotransferase and then added to PS to alleviate the increased viscosity during gelatinization. The results from rapid viscosity analyzer (RVA) demonstrated that the inclusion of 5 % (w/w) LR-CDs markedly reduced the peak viscosity (PV) and final viscosity (FV) of PS by 49.85 % and 28.17 %. In addition, there was a quantitative relationship between PV and LR-CDs. The equation was fitted as y = 2530.73×e-x/2.48+1832.79, which provided a basis for the regulation of PS viscosity. The mechanism of LR-CDs reducing the viscosity of PS was also studied. The results showed that the addition of LR-CDs inhibited the gelatinization of PS by enhancing orderliness and limiting water absorption, resulting in a decrease in viscosity. This study provides a novel method for reducing the viscosity of starch, which is helpful for increasing its concentration and reducing energy consumption in industrial applications.
Collapse
Affiliation(s)
- Anning Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dongxin Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
15
|
Yu M, Zhang S, Tang P, Meng L, Cheng W, Gao C, Wu D, Feng X, Wang Z, Tang X. Effects of fatty acids and glycerides on the structure, cooking quality, and in vitro starch digestibility of extruded buckwheat noodles. Food Res Int 2024; 191:114713. [PMID: 39059913 DOI: 10.1016/j.foodres.2024.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
This study aimed to explore the effects of various lipids on the structure, cooking quality, and in vitro starch digestibility of extruded buckwheat noodles (EBNs) with and without 20% high-amylose corn starch (HACS). Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction revealed that lauric acid bound more strongly to starch than did stearic acid and oleic acid, and the binding capacity of fatty acids with starch was stronger than that of glycerides. The presence of HACS during extrusion facilitated increased formation of starch-lipid complexes. Evaluations of cooking quality and digestion characteristics showed that EBNs containing 20% HACS and 0.5% glycerol monooleate demonstrated the lowest cooking loss (7.28%), and that with 20% HACS and 0.5% oleic acid displayed the lowest predicted glycemic index (pGI) (63.54) and highest resistant starch (RS) content (51.64%). However, excessive starch-lipid complexes were detrimental to EBNs cooking quality and the resistance of starch to digestive enzymes because of the damage to the continuity of the starch gel network. This study establishes a fundamental basis for the development of EBNs with superior cooking quality and a relatively lower GI.
Collapse
Affiliation(s)
- Menglan Yu
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Shuyi Zhang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peiqi Tang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
16
|
Zhu Y, Dong C, Chi F, Gu X, Liu L, Yang L. Effects of Cactus Polysaccharide on Pasting, Rheology, Structural Properties, In Vitro Digestibility, and Freeze-Thaw Stability of Rice Starch. Foods 2024; 13:2420. [PMID: 39123611 PMCID: PMC11311433 DOI: 10.3390/foods13152420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This study combined rice starch (RS) with cactus polysaccharide (CP) at different composites (0.6%, 1.2%, 1.8%, 2.4%, and 3.0%, w/w), and analyzed the variations in the complex gelatinization properties, rheological properties, thermal properties, structural properties, digestibility, and freeze-thaw stability. As a result, the pasting parameters (p < 0.05) and storage modulus (G') together with the loss modulus (G″) decreased as the CP concentration increased; meanwhile, the RS and the CP-RS gels were pseudoplastic fluids. As revealed by differential scanning calorimetry (DSC), incorporating CP into the starch elevated the starch gelatinization temperature while decreasing gelatinization enthalpy, revealing that CP effectively retarded long-term retrogradation in RS. The gel microstructure and crystallization type altered after adding CP. Typically, CP inclusion could enhance the proportion of resistant starch and slowly digestible starch (SDS), thereby slowing RS hydrolysis. Concurrently, adding CP promoted the RS freeze-thaw stability. These findings could potentially aid in the innovation of CP-based food products.
Collapse
Affiliation(s)
- Yahui Zhu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Chuang Dong
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Fumin Chi
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Xuedong Gu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Lei Liu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Lin Yang
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| |
Collapse
|
17
|
Lin J, Dai J, Xing J, Han J, Wei C, Zhao C, Wu Y, Xu X, Liu J. Effects of alginate synergized with polyphenol compounds on the retrogradation properties of corn starch. Int J Biol Macromol 2024:133682. [PMID: 39084976 DOI: 10.1016/j.ijbiomac.2024.133682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
This study aimed to investigate the impact of alginate (AG) on the retrogradation properties of corn starch (CS) in conjunction with three phenolic compounds, including naringin (NA), rutin (RT), and soy isoflavones (SI). The findings indicated that AG, NA, RT, and SI collectively resulted in a significant reduction in the hardness, retrogradation enthalpy, and relaxation time of CS gel. This effect was more pronounced when compared to NA, RT, and SI individually. The findings suggested that the elemental system comprising AG, phenolic compounds, and CS yielded enhanced water retention capacity and thermal stability. Moreover, a noticeable decrease in the short-range ordered structure and crystallinity was observed, indicating that AG and phenolic compounds effectively inhibited the retrogradation of CS; notably, the synergistic interaction between AG and SI resulted in the most favorable outcome. The results of this study provide new ideas for the design, development, and quality improvement of starch-based food.
Collapse
Affiliation(s)
- Jiaqi Lin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jiayin Dai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jiayue Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jina Han
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chaoyue Wei
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Xiuying Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
18
|
Wang H, Qiu J, Wu Y, Ouyang J. Impact of soluble soybean polysaccharide on the gelatinization and retrogradation of corn starches with different amylose content. Food Res Int 2024; 184:114254. [PMID: 38609232 DOI: 10.1016/j.foodres.2024.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Polysaccharides have a significant impact on the physicochemical properties of starch, and the objective of this study was to examine the effect of incorporating soluble soybean polysaccharide (SSPS) on the gelatinization and retrogradation of corn starches (CS) with varying amylose content. In contrast to high-amylose corn starch (HACS), the degree of gelatinization of waxy corn starch (WCS) and normal corn starch (NCS) decreased with the addition of SSPS. The inclusion of SSPS resulted in reduced swelling power in all CS, and led to a decrease in gel hardness of the starches. The intermolecular forces between SSPS and CS were primarily hydrogen bonding, and a gel network structure was formed, thereby retarding the short-term and long-term retrogradation of CS. Scanning electron microscopy results revealed that the addition of SSPS in starches led to a loose network structure with larger poles and a reduced ordered structure after retrogradation, as observed from the cross-section of formed gels. These findings suggested that SSPS has great potential for applications in starchy foods, as it can effectively retard both gelatinization and retrogradation of starches.
Collapse
Affiliation(s)
- Huimin Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Junjie Qiu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
19
|
Lan G, Xie S, Duan Q, Huang W, Huang W, Zhou J, Chen P, Xie F. Effect of soybean polysaccharide and soybean oil on gelatinization and retrogradation properties of corn starch. Int J Biol Macromol 2024; 264:130772. [PMID: 38467217 DOI: 10.1016/j.ijbiomac.2024.130772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/02/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
This investigation stems from the wide interest in mitigating starch retrogradation, which profoundly impacts the quality of starch-based food, garnering significant attention in the contemporary food industry. Our study delves into the intricate dynamics of soluble soybean polysaccharide (SSPS) and soybean oil (SO) when added individually or in combination to native corn starch (NCS), offering insights into the gelatinization and retrogradation phenomena. We observed that SSPS (0.5 %, w/w) hindered starch swelling, leading to an elevated gelatinization enthalpy change (∆H) value, while SO (0.5 %, w/w) increased ∆H due to its hydrophobicity. Adding SSPS and/or SO concurrently reduced the viscosity and storage modulus (G') of starch matrix. For the starch gel (8 %, w/v) after refrigeration, SSPS magnified water-holding capacity (WHC) and decreased hardness through hydrogen bonding with starch, while SO increased hardness with limited water retention. Crucially, the combination of SSPS and SO maximized WHC, minimized hardness, and significantly inhibited starch retrogradation. The specific ratio of SSPS to SO was found to significantly influence the starch properties, with a 1:1 ratio resulting in the most desirable quality for application in starch-based foods. This study offers insights for utilizing polysaccharides and lipids in starch-based food products to extend shelf life.
Collapse
Affiliation(s)
- Guowei Lan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shumin Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinfeng Zhou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
20
|
Zheng J, Wang N, Yang J, You Y, Zhang F, Kan J, Wu L. New insights into the interaction between bamboo shoot polysaccharides and lotus root starch during gelatinization, retrogradation, and digestion of starch. Int J Biol Macromol 2024; 254:127877. [PMID: 37926313 DOI: 10.1016/j.ijbiomac.2023.127877] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
In this study, the interaction between bamboo shoot polysaccharides (BSP) and lotus root starch (LS) during gelatinization, retrogradation, and digestion of starch was investigated. The addition of BSP inhibited the gelatinization of LS and decreased the peak viscosity, valley viscosity, and final viscosity. Amylose leaching initially increased and then decreased with the increase in BSP addition. The apparent viscosity and viscoelasticity of LS decreased with the increase in BSP addition. Moreover, 3 % BSP increased the hardness and cohesiveness of LS gel, whereas 6 %-15 % BSP decreased them. In addition, 3 %-6 % BSP promoted the uniform distribution of water molecules in the starch paste, whereas the addition of 12 % and 15 % BSP resulted in the inhomogeneous distribution of the water. The retrogradation degree of LS gel gradually increased with the increase in BSP addition from 3 % to 6 %, whereas 9 %-15 % BSP restricted the short-term and long-term retrogradation of LS. After 12 % BSP was added, the RDS content reduced by 11.6 %, the RS content significantly increased by 75 %, and the digestibility of starch decreased. This work revealed the interaction between BSP and LS during starch gelatinization, retrogradation, and digestion to improve the physicochemical properties and digestive characteristics of LS.
Collapse
Affiliation(s)
- Jiong Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| | - Nan Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jinlai Yang
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Yuming You
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 400715, China
| | - Fusheng Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Liangru Wu
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China.
| |
Collapse
|
21
|
Zhu Z, Sun C, Wang C, Mei L, He Z, Mustafa S, Du X, Chen X. The anti-digestibility mechanism of soy protein isolate hydrolysate on natural starches with different crystal types. Int J Biol Macromol 2024; 255:128213. [PMID: 37989032 DOI: 10.1016/j.ijbiomac.2023.128213] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
The effects of soy protein isolate hydrolysate (SPIH) on the physicochemical properties and digestive characteristics of three starch types (wheat, potato, and pea) were investigated. Fourier-transform infrared spectroscopy and molecular dynamics simulations showed that hydrogen bonds were the driving force of the interaction between SPIH and starch. Furthermore, the SPIH was predicted to preferentially bind to the terminal region of starch using molecular dynamics simulations. Compared to pure starch, adding 20 % SPIH to wheat starch, potato starch, and pea starch, the content of resistant starch increased by 39.71 %, 125.66 % and 37.83 %, respectively. Both the radial distribution function (RDF) and low field-nuclear magnetic resonance (LF-NMR) showed that SPIH reduced the flow of water molecules in starch, indicating that SPIH competed with starch for water molecules. Multiple characterization experiments and molecular dynamics simulations confirmed that the anti-digestibility mechanism of SPIH on natural starches with different crystal types could be attributed to the interaction between starch and SPIH, which decreased the catalytic efficiency of amylase. This study clarified the anti-digestibility mechanism of SPIH on natural starches, which provides new insights into the production of low-glycemic index foods for the diabetic population.
Collapse
Affiliation(s)
- Zhijie Zhu
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, China; Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chengyi Sun
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Caihong Wang
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Liping Mei
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoxian He
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Saddam Mustafa
- Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xianfeng Du
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, China; Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Xu Chen
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, China; Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
22
|
Zhang Y, Wang Y, Yang B, Han X, He Y, Wang T, Sun X, Zhao J. Effects of zucchini polysaccharide on pasting, rheology, structural properties and in vitro digestibility of potato starch. Int J Biol Macromol 2023; 253:127077. [PMID: 37769764 DOI: 10.1016/j.ijbiomac.2023.127077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/16/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Zucchini polysaccharide (ZP) has a unique molecular structure and a variety of biological activities. This study aimed to evaluate the effects of ZP (1, 2, 3, 4 and 5 %, w/w) on the properties of potato starch (PS), including pasting, rheological, thermodynamic, freeze-thaw stability, micro-structure, and in vitro digestibility of the ZP-PS binary system. The results showed that the appearance of ZP significantly reduced the peak, breakdown, final and setback viscosity and prolonged the pasting temperature of PS, whereas increased the trough viscosity. The tests of rheological showed that ZP had a damaging effect on PS gels. Meanwhile, the results of thermodynamic and Fourier transform infrared exhibited that the presence of ZP significantly retarded the retrogradation of PS, especially at a higher levels. The observation of the microstructure exhibited that ZP significantly altered the microscopic network structure of the PS gels, and ZP reduced the formation of the gel structure. Besides, ZP postponed the retrogradation process of PS gels. Moreover, ZP weakened the freeze-thaw stability of the PS gel. Furthermore, ZP also can decrease the digestibility and estimated glycemic index (eGI) value of PS from 86.04 % and 70.89 to 77.67 % and 65.22, respectively. Simultaneously, the addition of ZP reduced the rapidly digestible starch content (from 25.09 % to 16.59 %) and increased the slowly digestible starch (from 24.99 % to 26.77 %) and resistant starch content (from 49.92 % to 56.64 %). These results have certain guiding significance for the application of ZP in starch functional food.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Yiming Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xunze Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Yuting He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Tiange Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xun Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
23
|
Xu L, Ren J, Wang X, Bai Z, Chai S, Wang X. Effects of sugar beet pectin on the pasting, rheological, thermal, and microstructural properties of wheat starch. Int J Biol Macromol 2023; 253:127328. [PMID: 37820921 DOI: 10.1016/j.ijbiomac.2023.127328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The effects of addition of sugar beet pectin (SBP) on the pasting, rheological, thermal, and microstructural properties of wheat starch (WS) were investigated. Results revealed that SBP addition significantly increased the peak viscosity, trough viscosity, breakdown value, final viscosity, and setback value of WS, whereas decreased the pasting temperature. SBP raised the swelling power (from 13.44 to 21.32 g/g) and endothermic enthalpy (ΔH, from 8.17 to 8.98 J/g), but decreased the transparency (from 9.70 % to 1.37 %). Regarding rheological properties, WS-SBP mixtures exhibited a pseudo-plastic behavior, and SBP enhanced the viscoelasticity, but decreased the deformability. Particle size distribution analysis confirmed that SBP promoted the swelling of WS granules. Fourier-transform infrared spectroscopy results suggested that the interactions between SBP and WS did not involve covalent bonding, and the formation of ordered structure was inhibited by SBP addition. Additionally, scanning electron microscopy observation found that the gel network of WS-SBP mixtures became more irregular, pore size gradually decreased, and the wall became thinner as the SBP concentration increased. These results indicated that SBP is a promising non-starch polysaccharide that can enhance the processing properties of WS.
Collapse
Affiliation(s)
- Lei Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China.
| | - Jinyun Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Xin Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Zhaoliang Bai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Shihao Chai
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| | - Xiaole Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu Province, China
| |
Collapse
|
24
|
Wang N, Dai J, Miao D, Li C, Yang X, Shu Q, Zhang Y, Dai Y, Hou H, Xu S. Influence of enzymatic modification on the basis of improved extrusion cooking technology (IECT) on the structure and properties of corn starch. Int J Biol Macromol 2023; 253:127274. [PMID: 37804624 DOI: 10.1016/j.ijbiomac.2023.127274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Enzymatic modification can directly affect the structure and properties of starch, but generally causes high energy consumption in drying process. Improved extrusion cooking technology (IECT) itself is a starch modification technology. In this work, a co-extrusion method of starch with 42 % moisture and enzyme was adopted to reveal the effects of different enzyme dosages on the structure and properties of corn starch. After enzyme treatment on the basis of IECT, starch granules were broken into fragments without the occurrence of clear Maltese cross. R1047/1022 and R995/1022 values, peak intensity of Raman spectra and gelatinization temperature decreased, and the full width at half maximum at 480 cm-1 of Raman spectra raised. Moreover, the bound water proportion decreased from 87.44 % to 85.84 % ∼ 78.67 %, and the maximum light transmittance and dextrose equivalent values increased to 34.13 % and 26.14, respectively. The solubility of starch granules was all above 60 %. Findings supported that the mechanochemical effect of IECT on starch was conducive to the enzymatic modification.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Jingqi Dai
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Di Miao
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chen Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Xiaoyan Yang
- Shandong Provincial Key Laboratory of Fat & Oil Deep-processing, Binzhou, Shandong 256500, China; Shandong Bohi Industry Co., Ltd., Binzhou, Shandong 256500, China
| | - Quanxian Shu
- Shandong Provincial Key Laboratory of Fat & Oil Deep-processing, Binzhou, Shandong 256500, China; Shandong Bohi Industry Co., Ltd., Binzhou, Shandong 256500, China
| | - Yong Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Shaobin Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
25
|
Tang P, Zhang S, Meng L, Wang Z, Yang Y, Shen X, Tang X. Effects of different content of EGCG or caffeic acid addition on the structure, cooking, antioxidant characteristics and in vitro starch digestibility of extruded buckwheat noodles. Int J Biol Macromol 2023; 252:126426. [PMID: 37604422 DOI: 10.1016/j.ijbiomac.2023.126426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
The effects of different types and content of polyphenol addition on the structure, cooking, antioxidant characteristics and in vitro starch digestibility of extruded buckwheat noodles were investigated in this study. The result showed epigallocatechin-3-gallate (EGCG) was more easily combined with starch to form complex than caffeic acid, and amylose tended to be combined with polyphenols to form more complex. Amylose had a protective effect on polyphenols during extrusion process, which led to a significant increase of polyphenol content and antioxidant activity of extruded noodles. The addition of polyphenol and high amylose corn starch (HACS) improved the cooking quality of extruded buckwheat noodles. The extruded buckwheat noodles with 20 % HACS and 1 % EGCG had the lowest cooking loss of 6.08 %. The addition of EGCG and HACS increased the content of resistant starch and reduced predicted glycemic index (pGI). The noodles with 20 % HACS and 3 % EGCG had the lowest pGI (63.38) and the highest resistant starch (RS) content (61.60 %). This study provides a theoretical basis for the development of low pGI extruded buckwheat noodles.
Collapse
Affiliation(s)
- Peiqi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Shuyi Zhang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yuling Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
26
|
Liu W, McClements DJ, Peng X, Jin Z, Chen L. Recent progress in regulating starch digestibility using natural additives and sustainable processing operations. Crit Rev Food Sci Nutr 2023; 65:612-626. [PMID: 37933826 DOI: 10.1080/10408398.2023.2278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The development of a healthier and more sustainable food supply is a main concern of consumers, industry, governments, and international institutions. Foods containing high levels of rapidly digestible starches have been linked to a rise in the number of people suffering from diet-related chronic diseases. Consequently, there is interest in reducing the digestibility of starch to improve their healthiness. The ability of natural additives including proteins, dietary fibers, and polyphenols, and sustainable processing technologies such as high-intensity ultrasonic, pulsed electric field, non-thermal plasma, γ-ray irradiation that regulate reduce starch digestibility in foods are reviewed. The potential mechanisms of action, advantages, and disadvantages of each approach at inhibiting starch digestibility is highlighted. The potential for commercializing these technologies is discussed, and areas where further research are required are emphasized. Natural additives and sustainable processing operations can effectively reduce the digestibility of starch and inhibit postprandial sugar "spikes" in the bloodstream by adjusting the structural changes, which can be used to create healthier and more sustainable foods and have broad application prospects.
Collapse
Affiliation(s)
- Wenmeng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Wang J, He Y, Li X, Xie Y, Wang X, Zhu D, Liu H. Effect of soluble soybean polysaccharides on the short- and long-term retrogradation properties of instant rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4850-4857. [PMID: 36917022 DOI: 10.1002/jsfa.12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Rice starch retrogradation is prone to occur during instant rice storage, which contributes to reduced viscosity, poor sensory characteristics, and shortened shelf life. The purpose of this study was to explore the anti-retrogradation effect of soybean soluble polysaccharides (SSPS) on instant rice and the possible interaction between SSPS and high-moisture starch products. RESULTS We studied the effects of SSPS on the retrogradation of instant rice, using hardness as an index. The optimal amount of SSPS was 0.2%. Hardness, enthalpy, relative crystallinity, and full width at half maximum values were lower in the SSPS-treated group than in the control group (no SSPS) during storage. The weight loss rate of instant rice had the following trend: SSPS-treated group (0 day) < control group (0 day) < SSPS-treated group (28 days) < control group (28 days). The lower the weight loss rate, the lower was the material loss. Scanning electron microscopy results showed that the gaps between starch granules were less obvious in the control group than in the SSPS-treated group during storage. The SSPS-treated group presented a starch network with uniform chambers. SSPS might compete with starch molecules for water absorption, thereby improving water retention and limiting starch retrogradation. CONCLUSION The results showed that adding SSPS to instant rice could effectively inhibit starch retrogradation, because the interaction of SSPS and amylopectin side chains inhibited the crosslinking of starch molecules through hydrogen bonds, which hindered the formation of ordered structures. It was helpful to understand the anti-retrogradation mechanism of SSPS during the storage of instant rice, and provided the basis for the industrial production of high-water-content starch foods. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, China
| | - Yutang He
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, China
| | - Xuyang Li
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, China
| | - Yumei Xie
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xinran Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Danshi Zhu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - He Liu
- College of Food Science and Engineering, Bohai University, Jinzhou, China
- Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, China
| |
Collapse
|
28
|
Wang Z, Zhong Z, Zheng B, Zhang Y, Zeng H. Effects of Porphyra haitanensis polysaccharides on gelatinization and gelatinization kinetics of starches with different crystal types. Int J Biol Macromol 2023:125117. [PMID: 37247716 DOI: 10.1016/j.ijbiomac.2023.125117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
The effects of Porphyra haitanensis polysaccharide (PHP) on the gelatinization and gelatinization kinetics of corn starch (CS), potato starch (PS) and lotus seed starch (LS) were studied. The gelatinization, rheological and thermal enthalpy properties of the samples were measured by a rapid viscosity analyzer (RVA), a rheometer, and a differential scanning calorimeter (DSC), respectively. And the kinetic equations were further established. RVA confirmed that the addition of 0.4 %, 0.8 % and 1.2 % PHP elevated the gelatinization viscosity of CS and LS but decreased that of the PS, and also elevated the thermal balance of CS, PS, and LS, especially PS (The breakdown viscosity was decreased to 363.00 ± 6.08, 370.00 ± 1.15, and 362.00 ± 0.58, respectively). And the rheometer indicated that the addition of 0.4 %, 0.8 % and 1.2 % PHP improved the apparent viscosity of CS, PS and LS, especially PS (The consistency coefficient was increased to 18.26 ± 0.02, 21.71 ± 0.04, and 23.26 ± 0.01, respectively). Eventually, DSC displayed that the addition of 0.4 %, 0.8 % and 1.2 % PHP extended the gelatinization temperature and enthalpy of CS, PS, and LS, especially PS. Among them, the gelatinization temperature (63.40 ± 0.03, 70.26 ± 0.02 and 74.61 ± 0.01, respectively) and the gelatinization enthalpy (1.55 ± 0.01) of PS increased the most with 1.2 % PHP. Moreover, gelatinization kinetics displayed that the addition of 0.4 %, 0.8 % and 1.2 % PHP decreased the rate constants of CS, PS, and LS and accelerated the activation energies of CS (666.37 ± 4.23, 623.89 ± 4.21 and 558.39 ± 2.35, respectively) and PS (752.53 ± 4.13, 699.61 ± 3.78 and 662.15 ± 4.52, respectively) while reducing that of the LS (938.87 ± 3.38, 669.98 ± 4.61 and 491.48 ± 4.29, respectively). Therefore, the addition of PHP at all concentrations inhibited the gelatinization procedure of CS and PS but promoted that of the LS. This study provided a theoretical basis for the creation of new products based on PHP and starch.
Collapse
Affiliation(s)
- Zhiyun Wang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihong Zhong
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Yi Zhang
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| |
Collapse
|
29
|
Wu C, Gong X, Zhang J, Zhang C, Qian JY, Zhu W. Effect of rice protein on the gelatinization and retrogradation properties of rice starch. Int J Biol Macromol 2023:125061. [PMID: 37247715 DOI: 10.1016/j.ijbiomac.2023.125061] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
In this study, rice starch (RS) was mixed with varying amounts of rice protein (RP; 0 % to 16 %) to explore the effects of protein on the gelatinization and retrogradation of starch during storage. The increased RP addition decreased the viscosity and gelatinization enthalpy of the mixtures but caused an upward trend in the gelatinization temperature, indicating that protein hampers the process of starch gelatinization. Furthermore, RP addition reduced gel hardness, decreased retrogradation enthalpy and crystallization rate constant, but increased Avrami exponent upon RS retrogradation. RP addition also facilitated the mobility of water molecules, weakened the conversion from bound water to free water in the gels, and moderately increased the uniformity and thickness of gel shape. In summary, RP had a dose-dependent effect on the gelatinization and retrogradation behavior of RS, although the anti-retrogradation concentration effect strongly weakened at protein levels exceeding 12 %. It is noteworthy, that excessive RP addition resulted in disulfide bond formation, which increased gel strength and network structure but reduced the ability of RP to facilitate water molecule mobility and restrict water migration, ultimately reducing its anti-retrogradation capability. This phenomenon can be partially attributed to spontaneous protein-protein interaction caused by excessive protein addition, replacing the starch-protein interaction.
Collapse
Affiliation(s)
- Chunsen Wu
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China; China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Fucheng Road 11, Beijing 100048, People's Republic of China
| | - Xin Gong
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jian Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Chen Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China.
| | - Wenzheng Zhu
- School of Tourism and Cuisine, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, People's Republic of China
| |
Collapse
|
30
|
Zhuang Y, Wang Y, Yang H. Characterizing digestibility of potato starch with cations by SEM, X-ray, LF-NMR, FTIR. Food Chem 2023; 424:136396. [PMID: 37267654 DOI: 10.1016/j.foodchem.2023.136396] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/12/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023]
Abstract
Cations can combine with starch and alter its physicochemical characteristics. The addition of cations may influence the in vitro digestion of potato starch. Scanning electron microscopy, X-ray diffraction, low-field nuclear magnetic resonance, and Fourier transform infrared spectroscopy were used to measure the microstructure, relative crystallinity, water distribution, and interaction of potato starch with cations and characterize its digestibility. The results showed that all cations decreased rapidly digestible starch (RDS) at a low concentration but increased the RDS with the addition of cations, especially trivalent cations. However, the resistant starch (RS) had the opposite trend. All cations increased the relative crystallinity of potato starch, except Ca2+. Fe3+, and Al3+ markedly decreased the mobility and hydrogen bonds in potato starch. In general, the addition of cations influenced the retrogradation of potato starch, resulting in a change in its digestibility.
Collapse
Affiliation(s)
- Yang Zhuang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yudong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hong Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei 430070, China; Aquatic Product Engineering and Technology Research Center of Hubei Province, Wuhan, Hubei 430070, China.
| |
Collapse
|
31
|
Cao Y, Wang X, Zhao C, Zhang H, Zheng M, Xu X, Liu J. Study on physicochemical, structural, and functional properties of Zhengdan958 and Xianyu335 cornstarch from newly harvested corn under postharvest ripening conditions at ambient temperature. Heliyon 2023; 9:e15650. [PMID: 37153400 PMCID: PMC10160505 DOI: 10.1016/j.heliyon.2023.e15650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
The importance of starch in nutrition and industry is unquestionable. This study investigated the changes in physicochemical, structural, and functional properties of cornstarch from newly harvested Zhengdan958 (Zd958) and Xianyu335 (Xy335) corn during for 0, 20, 40, and 60 d at ambient temperature. The results showed no significant changes in the proximate components and apparent structure of Zd958 and Xy335 cornstarch under postharvest ripening conditions. Compared with 0 d, the molecular weight distribution and mass fraction of Zd958 and Xy335 cornstarch have changed significantly, the relative crystallinity (RC) has significantly increased from 26.4% to 26.5%-28.8% and 28.4%, and R1045/1022 has significantly increased from 0.828 to 0.826 to 0.843 and 0.883, respectively. The changes in structure indicated that the synthesis and rearrangement of cornstarch molecules formed highly ordered crystalline structures, and the ordered structures of long-range and short-range molecules increased. Moreover, the changes in structure affected the pasting characteristics and texture profiles of cornstarch, therefore, affecting the final food quality.
Collapse
Affiliation(s)
- Yong Cao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Xiujuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Xiuying Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Corresponding author. 2888, Xincheng Street, Changchun, Jilin Province 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Corresponding author. 2888, Xincheng Street, Changchun, Jilin Province130118, China.
| |
Collapse
|
32
|
Hirata Y, Nakagawa H, Yamauchi H, Kaneko K, Hagihala M, Yamaguchi H, Ohmoto C, Katsuno N, Imaizumi T, Nishizu T. Effect of starch retrogradation on molecular dynamics of cooked rice by quasi-elastic neutron scattering. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
33
|
Feasibility of hydrocolloid addition for 3D printing of Qingtuan with red bean filling as a dysphagia food. Food Res Int 2023; 165:112469. [PMID: 36869482 DOI: 10.1016/j.foodres.2023.112469] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Glutinous rice flour, the main component of Qingtuan, has increased adhesiveness after gelatinization and hardness after aging; this results in great challenge in swallowing if for patients with dysphagia. Dual nozzle 3D printing has great potential for developing innovative Chinese pastries with fillings that conform to dysphagia diets. In this experimental study, the gelatinization and retrogradation behavior of glutinous rice starch was improved by designing printing inks of optimal properties made with different soluble soybean polysaccharide (SSPS) additions (0%, 0.3%, 0.6%, 0.9%). The internal structure of Qingtuan was modified by adjusting different filling densities (75%, 100%) in combination with the dual nozzle 3D printing. The objective of these tests was to enhance the texture of Qingtuan so that it meets the requirements of International Dysphagia Diet Standardization Initiative (IDDSI). The experimental results showed that 0.9% SSPS addition could effectively reduce the hardness and adhesiveness of the Qingtuan, which met the Level- 6 -soft & bite-sized standard while lower filling density lowers both hardness and adhesiveness.
Collapse
|
34
|
Huang J, Yu M, Wang S, Shi X. Effects of jicama (Pachyrhizus erosus L.) non-starch polysaccharides with different molecular weights on structural and physiochemical properties of jicama starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Lu S, Li J, Xu M, Mu Y, Wen Y, Li H, Wang J, Sun B. The textural properties of cooked convenience rice upon repeated freeze-thaw treatments are largely affected by water mobility at grain level. Food Res Int 2023; 163:112254. [PMID: 36596165 DOI: 10.1016/j.foodres.2022.112254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/16/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022]
Abstract
Brown rice (BR) is a promising source for convenience rice that are mostly stored frozen. However, freezing and thawing may cause deterioration in rice texture quality. To investigate how rice texture is influenced by freeze-thaw cycles, BR, the pretreated BR with partially ruptured bran layer (UER) and white rice (WR) were cooked and treated with repeated freeze-thaw cycles, with their textural properties, variations in moisture distribution and starch structure being measured. Results showed that the repeated freeze-thaw treatment induced a progressive reduction in hardness and stickiness of all cooked rice. The reduced hardness of rice could be explained by the enlarged pore size of starch inside rice under scanning electron microscopy. Moisture migration in WR was the fastest responding to multiply freeze-thaw cycles, followed by UER, while water mobility in BR was slowest. Moreover, WR, BR and UER resulted in a similar extent of amylopectin retrogradation and chains length distribution after repeated freeze-thaw cycles. It indicated similar and minor effect of starch variations on determining the texture of different rice samples against freeze-thawing. Water mobility tended to be a main factor leading to the textural difference of fully gelatinized rice samples. This study focused on the relationship between water distribution and starch retrogradation, providing a better understanding on influences of multiple freeze-thawing on textural quality of cooked rice maintaining different extents of surface layer.
Collapse
Affiliation(s)
- Shiyi Lu
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Jie Li
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Minghao Xu
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yifan Mu
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Hongyan Li
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Jing Wang
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
36
|
Insights into high hydrostatic pressure pre-treatment generating a more efficient catalytic mode of maltogenic α-amylase: Effect of multi-level structure on retrogradation properties of maize starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Yu C, Guo XN, Zhu KX. Effects of thermal treatment on the microbial shelf-life and quality stability of wet instant cooked noodles during storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Tu J, Adhikari B, Brennan MA, Cheng P, Bai W, Brennan CS. Interactions between sorghum starch and mushroom polysaccharides and their effects on starch gelatinization and digestion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Fan H, Liu H, Li W, Su W, Wang D, Zhang S, Liu T, Zhang Y. Effect of Tremella fuciformis polysaccharide on the stalling and flavor of tteok during storage. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Arzami AN, de Carvalho DM, Vilaplana F, Stoddard FL, Mikkonen KS. Narrow-leafed lupin (Lupinus angustifolius L.): Characterization of emulsification and fibre properties. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Taguchi T, Onishi M, Katsuno N, Miwa N, Oomoto C, Sato M, Sekita M, Yamaguchi H, Imaizumi T, Nishizu T. Evaluation of starch retrogradation by X-ray diffraction using a water-addition method. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Duceac IA, Stanciu MC, Nechifor M, Tanasă F, Teacă CA. Insights on Some Polysaccharide Gel Type Materials and Their Structural Peculiarities. Gels 2022; 8:771. [PMID: 36547295 PMCID: PMC9778405 DOI: 10.3390/gels8120771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Global resources have to be used in responsible ways to ensure the world's future need for advanced materials. Ecologically friendly functional materials based on biopolymers can be successfully obtained from renewable resources, and the most prominent example is cellulose, the well-known most abundant polysaccharide which is usually isolated from highly available biomass (wood and wooden waste, annual plants, cotton, etc.). Many other polysaccharides originating from various natural resources (plants, insects, algae, bacteria) proved to be valuable and versatile starting biopolymers for a wide array of materials with tunable properties, able to respond to different societal demands. Polysaccharides properties vary depending on various factors (origin, harvesting, storage and transportation, strategy of further modification), but they can be processed into materials with high added value, as in the case of gels. Modern approaches have been employed to prepare (e.g., the use of ionic liquids as "green solvents") and characterize (NMR and FTIR spectroscopy, X ray diffraction spectrometry, DSC, electronic and atomic force microscopy, optical rotation, circular dichroism, rheological investigations, computer modelling and optimization) polysaccharide gels. In the present paper, some of the most widely used polysaccharide gels will be briefly reviewed with emphasis on their structural peculiarities under various conditions.
Collapse
Affiliation(s)
- Ioana Alexandra Duceac
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Magdalena-Cristina Stanciu
- Natural Polymers, Bioactive and Biocompatible Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Fulga Tanasă
- Polyaddition and Photochemistry Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center for Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
43
|
Co-delivery of hydrophobic astaxanthin and hydrophilic phycocyanin by a pH-sensitive water-in-oil-in-water double emulsion-filled gellan gum hydrogel. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Cui C, Jia Y, Sun Q, Yu M, Ji N, Dai L, Wang Y, Qin Y, Xiong L, Sun Q. Recent advances in the preparation, characterization, and food application of starch-based hydrogels. Carbohydr Polym 2022; 291:119624. [DOI: 10.1016/j.carbpol.2022.119624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
|
45
|
Wang L, Zhu L, Gao J, Zhang F, Li L, Yang Y, Xu Y. Effect of dandelion root polysaccharide on structure, rheology, and retrogradation properties of corn starch during storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Libo Wang
- College of Arts and Sciences Northeast Agricultural University Harbin 150030 China
| | - Ling Zhu
- College of Arts and Sciences Northeast Agricultural University Harbin 150030 China
| | - Jingyu Gao
- College of Arts and Sciences Northeast Agricultural University Harbin 150030 China
| | - Fengjie Zhang
- College of Arts and Sciences Northeast Agricultural University Harbin 150030 China
| | - Lianyu Li
- College of Arts and Sciences Northeast Agricultural University Harbin 150030 China
| | - Yu Yang
- College of Arts and Sciences Northeast Agricultural University Harbin 150030 China
| | - Yaqin Xu
- College of Arts and Sciences Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
46
|
Li X, He Y, Wang J, Liu H. Effect of fructooligosaccharides on retrogradation of instant rice. STARCH-STARKE 2022. [DOI: 10.1002/star.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuyang Li
- College of Food Science and Technology Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Yutang He
- College of Food Science and Technology Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Jian Wang
- College of Food Science and Technology Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - He Liu
- College of Food Science and Technology Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| |
Collapse
|
47
|
Effects of non-covalent interactions between pectin and volatile compounds on the flavor release of tomato paste. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Chen S, Qin L, Chen T, Yu Q, Chen Y, Xiao W, Ji X, Xie J. Modification of starch by polysaccharides in pasting, rheology, texture and in vitro digestion: A review. Int J Biol Macromol 2022; 207:81-89. [PMID: 35247426 DOI: 10.1016/j.ijbiomac.2022.02.170] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/05/2022]
Abstract
Starch is a copolymer with unique physicochemical characteristics, is known for its low cost, easy degradability, renewable and easy availability. However, natural starches have some undesirable properties such as poor solubility, poor functional properties, lower resistant starch content with reduced retrogradation, and poor stability under various temperatures, pH, which limit their application in food. Different modification methods are used to improve its performance and expand its application. Numerous studies have been conducted to investigate why the addition of small amounts of polysaccharides affects the properties of starch pastes and gels. The application of polysaccharide-modified starch can be seen in the pasting, rheology, texture and in vitro digestive properties of starch gels. The main influencing factors include different starches, different specific polysaccharides, and different methods of preparation of composite pastes and gels. This paper reviews the changes in the properties of starch in terms of pasting, rheology, texture and in vitro digestion after modification with polysaccharides and the mechanism of polysaccharide action on starch.
Collapse
Affiliation(s)
- Shuai Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Qin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenhao Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyao Ji
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
49
|
Cheng Y, Guan Y, Guo F, Wang Z, Zeng M, Qin F, Chen J, Li W, He Z. Effects of dietary fibre and soybean oil on the digestion of extruded and roller‐dried maize starch. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yong Cheng
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae Quanzhou Normal University Quanzhou Fujian 362000 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Yanming Guan
- China National Research Institute of Food and Fermentation Industries Co., Ltd. Beijing 100015 China
| | - Fengxian Guo
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae Quanzhou Normal University Quanzhou Fujian 362000 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Weiwei Li
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University Nanjing Jiangsu 210023 China
| | - Zhiyong He
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae Quanzhou Normal University Quanzhou Fujian 362000 China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
50
|
Chen C, Zhang M, Liu W, Lin Z. Baking characteristic improvement and starch retrogradation inhibition of Chinese pancakes by hydrocolloids. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Chen
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
- International Joint Laboratory on Food Safety Jiangnan University 214122 Wuxi, Jiangsu China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University 214122 Wuxi, Jiangsu China
| | - Wenchao Liu
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi, Jiangsu China
| | - Zhihan Lin
- Jiangsu New Herunshijia Food Co Zhenjiang Jiangsu China
| |
Collapse
|