1
|
Tian Y, Lv X, Oh DH, Kassem JM, Salama M, Fu X. Emulsifying properties of egg proteins: Influencing factors, modification techniques, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70004. [PMID: 39267186 DOI: 10.1111/1541-4337.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
As an essential food ingredient with good nutritional and functional properties and health benefits, eggs are widely utilized in food formulations. In particular, egg proteins have good emulsification properties and can be commonly used in various food products, such as mayonnaise and baked goods. Egg protein particles can act as stabilizers for Pickering emulsions because they can effectively adsorb at the oil-water interface, reduce interfacial tension, and form a stable physical barrier. Due to their emulsifying properties, biocompatibility, controlled release capabilities, and ability to protect bioactive substances, egg proteins have become ideal carriers for encapsulating and delivering functional substances. The focus of this review is to summarize current advances in using egg proteins as emulsifiers. The effects of influencing factors (temperature, pH, and ionic strength) and various modification methods (physical, chemical, and biological modification) on the emulsifying properties of egg proteins are discussed. In addition, the application of egg proteins as emulsifiers in food products is presented. Through in-depth research on the emulsifying properties of egg proteins, the optimization of their applications in food, biomedical, and other fields can be achieved.
Collapse
Affiliation(s)
- Yujuan Tian
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | | | - Mohamed Salama
- Dairy Department, National Research Centre, Dokki, Giza, Egypt
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
2
|
Song Q, Bai J, Li J, Jia J, Xu X, Wang L, Liu X, Yang N, Duan X. Phosvitin-based hydrogels prepared in AmimCl under magnetic field treatment: Structural characteristics, biological functions, and application in skin wound healing. Int J Biol Macromol 2024; 259:129224. [PMID: 38185308 DOI: 10.1016/j.ijbiomac.2024.129224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Due to the serious bacterial infection of skin and the waste of petroleum-based materials, there is an urgent need to develop natural biodegradable wound dressings with high antibacterial activity. Phosvitin (PSV) has shown its natural antioxidant and antibacterial properties, making it an excellent material for preparing wound healing dressings. In this study, we investigated the effect of magnetic field on the preparation of PSV-Microcrystalline Cellulose (MCC) composite hydrogels in 1-Allyl-3-methylimidazolium chloride (AmimCl) system. The results showed that the prepared hydrogels exhibited homogeneous surface structure, suitable swelling capacity and elasticity modulus, and sufficient thermal stability. The excellent antibacterial and antioxidant activities of hydrogels were mainly resulting from AmimCl and PSV, respectively, and the properties were enhanced after magnetic field treatment. The proteomics analysis indicated that AmimCl can readily penetrate the biological membranes of Staphylococcus aureus (S. aureus), upsetting the metabolism and reducing the virulence. The hydrogels showed great blood compatibility. Compared with the commercial materials, the 5 mT-treated hydrogels presented a comparable wound healing rate in the full-thickness skin injury model. On day 7, the wound healing rate of the 5 mT group reached approximately 84.40 %, which was significantly higher than that of the control group, 72.88 % (P < 0.05). In conclusion, our work provides experience for the development of biodegradable materials combined in ionic liquids and magnetic field, and explores their applications in wound healing dressings.
Collapse
Affiliation(s)
- Qi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jie Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jiayu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Lin Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
3
|
Ding Y, Zhao L, Liu Y, Sun J, Pi Y, Shao JH. Effects of protein aggregation induced by NaCl and temperature on gelation of silkworm (Antheraea pernyi) pupa raw powder. Int J Biol Macromol 2023; 253:126679. [PMID: 37666404 DOI: 10.1016/j.ijbiomac.2023.126679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Edible insects have great potential for producing protein-rich ingredients. This study aimed to investigate the effects of protein aggregation induced by NaCl (0-1 M) and temperature (65-95 °C) on gelation of Antheraea pernyi (A. pernyi) pupa raw powder. No thermal aggregates were observed at low temperature (65 °C), on the basis of there being no significant enhancement in turbidity and particle size (P > 0.05), regardless of NaCl concentrations. At elevated temperatures (75-95 °C), protein solutions exhibited significantly higher turbidity and particle size (P < 0.05), accompanied by an initial rise in surface hydrophobicity followed by a decline, alongside declining sulfhydryl. This marks the beginning of massive thermal aggregation driven by molecular forces. In addition, covalent (disulfide bonds) and non-covalent (hydrogen bonding, electrostatic interactions, and hydrophobicity) forces were influenced by NaCl, leading to variability in the protein aggregation and gelation. Correlation analysis indicates that the higher protein aggregation induced by ions was beneficial to the construction of more compact three-dimensional structures, as well as to the rheology, texture, and water-holding capacity of A. pernyi pupa gels. However, excessive salt ions destroyed the gel structure. Our findings will aid the use of A. pernyi pupae as textural ingredients in formula foods.
Collapse
Affiliation(s)
- Yuxin Ding
- College of Food Science and Engineering, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Lingling Zhao
- College of Food Science and Engineering, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yanqun Liu
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Jingxin Sun
- College of Food Science and Technology, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yuzhen Pi
- College of Food Science and Engineering, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Jun-Hua Shao
- College of Food Science and Engineering, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
4
|
Guo R, Liu L, Huang Y, Lv M, Zhu Y, Wang Z, Zhu X, Sun B. Effect of Na + and Ca 2+ on the texture, structure and microstructure of composite protein gel of mung bean protein and wheat gluten. Food Res Int 2023; 172:113124. [PMID: 37689843 DOI: 10.1016/j.foodres.2023.113124] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
To investigate the change of ionic strength on the gel characteristics during the processing of mung bean protein-based foods, the effects of NaCl and CaCl2 at different concentrations (0-0.005 g/mL) on the properties of mung bean protein (MBP) and wheat gluten (WG) composite protein gel were studied. The results showed that low concentration (0.001-0.002 g/mL) could significantly improve the water holding capacity (WHC), storage modulus (G') and texture properties of composite protein gel (MBP/WG), while the surface hydrophobicity (H0) and solubility were significantly decreased (P < 0.05). With the increase of ion concentration, the secondary structures of MBP/WG shifted from α-helix to β-sheet, and the fluorescence spectra also showed fluorescence quenching phenomenon. By analyzing the intermolecular forces of MBP/WG, it was found that with the addition of salt ions, the hydrogen bonds was weakened and the electrostatic interactions, hydrophobic interactions and disulfide bonds were enhanced, which in turn the aggregation behavior of MBP/WG composite protein gel was affected and larger aggregates between the proteins were formed. It could be also demonstrated that the gel network was denser due to the addition of these large aggregates, thus the gel properties of MBP/WG was improved. However, too many salt ions could disrupt the stable network structure of protein gel. This study can provide theoretical support to expand the development of new mung bean protein products.
Collapse
Affiliation(s)
- Ruqi Guo
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Linlin Liu
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Yuyang Huang
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Mingshou Lv
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Ying Zhu
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Zihan Wang
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China
| | - Xiuqing Zhu
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China.
| | - Bingyu Sun
- Department of Food Engineering, Heilongjiang Key Laboratory of Food Science and Engineering, Heilongjiang Key Laboratory of Grain Food and Comprehensive Processing, Harbin University of Commerce, Harbin 150028, Heilongjiang, China.
| |
Collapse
|
5
|
Gao X, Li J, Chang C, Gu L, Xiong W, Su Y, Yang Y. Characterization of physical properties, volatile compounds and aroma profiles of different salted egg yolk lipids. Food Res Int 2023; 165:112411. [PMID: 36869465 DOI: 10.1016/j.foodres.2022.112411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Salted egg yolks (SEY) have a desirable and unique flavor with multiple underlying applications in food processing, and their abundant lipids contribute to a creamy and pleasant aroma. However, it is important to maintain the stability of the SEY flavor, which depends to a large extent on the egg species and the processing method. This study aimed to extract different SEY lipids with conventional solvents, analyze the fatty acid composition, and screen the volatile compounds to elucidate the flavor differences between salted hen eggs and duck eggs. Compared to ethanol extraction, acetone-extracted lipids had lower acid value and viscosity, and almost had no phospholipid content. Fatty acid analysis revealed that the highest content of fatty acid in SEY lipids was oleic acid, followed by palmitic acid and linoleic acid, while there were significant variations of different SEY lipids in the fatty acid profiles. The volatile compounds were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), and the overall odor was detected by the electronic nose (E-nose). A total of 27 volatile compounds were analyzed in SEY lipids and divided into 8 chemical classes. The aldehydes, furans and pyrazines were decreased, and the hydrocarbons were increased compared with untreated SEY. The combination of the physical properties and flavor evaluation of SEY lipids could provide a theoretical basis for the extension of the characteristic flavor matrix in SEY.
Collapse
Affiliation(s)
- Xuejing Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wen Xiong
- Hunan Jiapin Jiawei Technology Development Group Co. LTD Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, Hunan 415400, China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; Hunan Jiapin Jiawei Technology Development Group Co. LTD Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, Hunan 415400, China.
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; Hunan Jiapin Jiawei Technology Development Group Co. LTD Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, Hunan 415400, China.
| |
Collapse
|
6
|
Unravelling mechanisms of protein and lipid oxidation in mayonnaise at multiple length scales. Food Chem 2022; 402:134417. [DOI: 10.1016/j.foodchem.2022.134417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/09/2022] [Accepted: 09/25/2022] [Indexed: 11/19/2022]
|